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Abstract: Introduction: Big data-based artificial intelligence (AI) has become increasingly important
in medicine and may be helpful in the future to predict diseases and outcomes. For severely
injured patients, a new analytics tool has recently been developed (WATSON Trauma Pathway
Explorer) to assess individual risk profiles early after trauma. We performed a validation of this
tool and a comparison with the Trauma and Injury Severity Score (TRISS), an established trauma
survival estimation score. Methods: Prospective data collection, level I trauma centre, 1 January
2018–31 December 2019. Inclusion criteria: Primary admission for trauma, injury severity score
(ISS) ≥ 16, age ≥ 16. Parameters: Age, ISS, temperature, presence of head injury by the Glasgow
Coma Scale (GCS). Outcomes: SIRS and sepsis within 21 days and early death within 72 h after
hospitalisation. Statistics: Area under the receiver operating characteristic (ROC) curve for predictive
quality, calibration plots for graphical goodness of fit, Brier score for overall performance of WATSON
and TRISS. Results: Between 2018 and 2019, 107 patients were included (33 female, 74 male; mean
age 48.3 ± 19.7; mean temperature 35.9 ± 1.3; median ISS 30, IQR 23–36). The area under the curve
(AUC) is 0.77 (95% CI 0.68–0.85) for SIRS and 0.71 (95% CI 0.58–0.83) for sepsis. WATSON and TRISS
showed similar AUCs to predict early death (AUC 0.90, 95% CI 0.79–0.99 vs. AUC 0.88, 95% CI
0.77–0.97; p = 0.75). The goodness of fit of WATSON (X2 = 8.19, Hosmer–Lemeshow p = 0.42) was
superior to that of TRISS (X2 = 31.93, Hosmer–Lemeshow p < 0.05), as was the overall performance
based on Brier score (0.06 vs. 0.11 points). Discussion: The validation supports previous reports
in terms of feasibility of the WATSON Trauma Pathway Explorer and emphasises its relevance to
predict SIRS, sepsis, and early death when compared with the TRISS method.

Keywords: polytrauma; WATSON Trauma Pathway Explorer; outcome; SIRS; sepsis; early death;
TRISS; artificial intelligence

1. Introduction

Large patient databases have been successfully used to assess the clinical course in
trauma patients [1–3]. In line with these changes and medical improvements, the focus
regarding complications has moved from early pulmonary changes to later complications
that may determine outcomes, such as sepsis.

Our group recently used a big database to develop a new predictive visual analytics
tool for polytrauma patients and has presented a proof of concept (IBM WATSON Trauma
Pathway Explorer) [1]. It has become evident that an existing database can be used to
select certain parameters that help determine certain risk profiles. They reconfirm that a
combination of indicators of acute haemorrhage, coagulopathy, acid–base changes, and
indirect signs of soft tissue injury remain evident [1]. In the current follow-up study, we
used a validation set of patients and compared the prognostic accuracy of the WATSON
Explorer with the trauma and injury severity score (TRISS) as an established prediction
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tool. Moreover, we looked at SIRS and sepsis within 21 days since admission and early
death within 72 h since admission using Sankey diagrams [4]. Thereby, a comparison of
the predictive value regarding mortality could be made in comparison with TRISS, which
represents the closest predictive tool in terms of simplicity. Within WATSON, it is possible
to compare the predictive abilities for mortality, sepsis and SIRS.

Therefore, the aim of this study was threefold:

(i) to validate the WATSON Explorer in a different patient population;
(ii) to expand the predictive capacity from mortality to clinical complications, such as

SIRS and sepsis;
(iii) to compare aspects of prediction with the TRISS methodology.

2. Methods

The study was conducted according to the guidelines for good clinical practice and
follows the Helsinki guidelines. The research was based on the TRIPOD Statement, a
guideline for multivariable prediction models [5].

The analysis of patient records has been approved by the ethical committee upon
the development of the database (Nr. StV: 1-2008) and reapproved to develop the WAT-
SON Trauma Pathway Explorer (BASEC: 2021-00391). For model validations, there is
little evidence for calculating sample size. Consecutively, multiple injured patients were
prospectively enrolled if they were treated after the development period of the WATSON
analytics tool. All patients were recruited during two full years between 1 January 2018,
and 31 December 2019, including all seasons, in a single-level I trauma centre.

2.1. Inclusion/Exclusion Criteria

Eligibility criteria for the participants were age ≥ 16 years and ISS ≥ 16. Patients
admitted primarily and only those with complete datasets were included. Patients referred
from another hospital were excluded, and those with missing prediction data required for
the calculation of TRISS or WATSON criteria, as well as non-survivors on the scene these
patients were also excluded. In the initial care of polytrauma patients, the temperature
was not always taken before entering the shock room or in the shock room itself. Since the
temperature at admission is mandatory for WATSON’s predictions, these patients were not
included in the validation and no imputation method could be considered. Early deceased
patients were not excluded for WATSON’s prediction of SIRS or sepsis.

2.2. Definitions

The injury severity score (ISS), based on the Abbreviated Injury Scale (AIS; update
2008 version), was used to determine regional injuries and to grade the general severity
of trauma [6]. Shock states (I–IV) were defined according to the criteria used by ATLS,
an established scoring system widely used for medical teaching. SIRS was defined as the
presence of two or more of the following criteria: body temperature > 38 ◦C or < 36 ◦C,
heart rate > 90 bpm, respiratory rate > 20 breaths/min or PaCO2 < 32 mmHg, and white
blood cell count >12,000/µL or <4000/µL. The same criteria apply for the presentation
of sepsis, with an additional infectious focus [7–9]. TRISS includes six physiological and
clinical parameters. Estimated survival probability by TRISS was based on the logarithmic
regression formulas listed below, according to the TRISS Coefficients 2009 Revision [10]:

For blunt trauma = −0.4499 + 0.8085 × RTS − 0.0835 × ISS − 1.7430 × Age Index

For penetrating trauma = −2.5355 + 0.9934 × RTS − 0.0651 × ISS − 1.1360 × Age Index

2.3. Clinical Course

Clinical complications focused on SIRS and sepsis and were measured each day from
admission for 21 days. All data needed for SIRS and sepsis criteria were documented for
each day. If a day displayed more than one value for temperature, heart rate, respiratory
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rate, or white blood cell count, the clinically most abnormal number was used for the
data extraction. All outcomes were ascertained by one investigator. The parameters used
for the WATSON Trauma Pathway Explorer and TRISS are compared in Table 1. Four
predictors were considered for the validation of the visual analytics tool: age, temperature,
ISS, and the AIS filter for head injury. Head injury was included because it is one of the
strongest predictive variables [11]. AIS scores for each body region were extracted from
the admission report to calculate the ISS score. For the calculation of the revised trauma
score (RTS), which is a component of TRISS, the earliest documented values for Glasgow
Coma Scale (GCS), systolic blood pressure, and respiratory rate were used. All data were
visible in the out-of-hospital rescue service log. All other data needed for the validation
were retrieved from the admission report.

Table 1. Predictors used in WATSON and TRISS.

Predictors in WATSON Predictors in TRISS Measurement

Age Age Admission report, numerical data
Temperature — Admission report, numerical data

ISS ISS Admission report, ordinal data
AIS filter for head injury — Admission report, binary data

— GCS Rescue service log, ordinal data
— Systolic blood pressure Rescue service log, numerical data
— Respiratory rate Rescue service log, numerical data
— Type of trauma Admission report, binary data

TRISS = trauma and injury severity score; ISS = injury severity score; AIS = Abbreviated Injury Scale;
GCS = Glasgow Coma Scale.

2.4. Statistics

The baseline characteristics of the patients’ sample were described through means
with standard deviation (SD) for numerical variables, medians with interquartile ranges
(IQR) for ordinal data, and percentages for binary variables.

For descriptive statistics, the patient sample was also divided into two subgroups: sur-
vivors versus early deceased within 21 days after admission. Unpaired t-test for numerical
variables and Mood’s median test for ordinal variables assessed the differences between
these groups.

We assessed the predictive performance of the WATSON-based visual analytics tool
and TRISS by examining measures of discrimination and calibration.

Discrimination refers to how strongly a predictive model can distinguish from current
patient data whether a patient will or will not experience a given outcome [11]. The receiver
operating characteristic (ROC) curve was calculated [12]. We considered an AUC of at least
0.7 to be reasonable discrimination [13–15]. The statistical precision of the measurements
is quantified by confidence intervals (CI), which have been determined by bootstrapping
with 2000 repetitions. As TRISS presents estimated survival rates, for the comparison with
WATSON, all values were subtracted from 1 to provide predicted death rates. To quantify
the difference between the two AUCs, a p-value was calculated. When using the predefined
significance level of 5%, a p-value < 0.05 indicates that the AUCs are not equal [16]. A
cut-off point of 0.5 was used to classify predicted probabilities as events or non-events.

Calibration describes whether the predictive model can discriminate over the entire
range of outcome probabilities [11]. The plotting of the predicted outcome probabilities on
the x-axis versus the observed outcomes on the y-axis makes it possible to graphically assess
the calibration of the prediction models [12]. A perfect prediction lies on the 45-degree
line [12]. The Hosmer–Lemeshow test was used to quantify the calibration of the models,
following a chi-square distribution. The range of predicted early death was divided into
10 groups. The smaller the chi-square value and the higher the p-value, the better the fit. A
chi-square value of zero indicates perfect calibration. [15].

For the overall model’s performance, we used the Brier score, which summarises the
discrimination and calibration by defining the mean squared error of prediction [17]. The
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score ranges from 0 to 1, where 0 indicates perfect accuracy. Data were analysed using
Python version 3.6.9 (Python Software Foundation, Wilmington, DE, USA).

2.5. Development of the Model and Validation

The general characteristics of the validation group were tabularly compared with the
patients used for the development of the tool (Table 2). As the WATSON-based visual
analytics tool for polytrauma patients is based on a local trauma data bank, we assumed
that all patients included in the prediction validation were treated according to the same
clinical guidelines. The eligibility criteria were the same for the patients used in the
development and validation of the prediction model. The definition of the outcomes in
the validation sample was the same as the original outcome definition in the development
group. The architectural components of the WATSON Trauma Pathway Explorer are shown
in Figure 1 [1].

Table 2. General characteristics of the validation group and the development group.

Validation Group Development Group

Patient Sample
n = 107

Survivors
n = 96

Non-Survivors
n = 11 p-Value Patient Sample

n = 3647

Age (mean, SD) 48.3 ± 19.7 47.1 ± 19.0 58.7 ± 24.0 0.063 45.8 ± 20.2
Male 69.2% (n = 74) 69.8 % (n = 67) 63.6% (n = 7) — 73.5 % (n = 2680)

Blunt trauma 99.1% (n = 106) 100% (n = 96) 90.9% (n = 10) — 91.3% (n = 3329)
ATLS shock class (median, IQR) 1 (1–3) 1 (1–3) 1 (1–3.5) 0.149 1 (1–2)

ISS (median, IQR) 30 (23–36) 29 (22–34.5) 42 (31–66) 0.009 25 (17–34)
Temperature at admission (mean, SD) 35.9 ± 1.3 36.0 ± 1.2 34.9 ± 1.6 0.007 35.5 ± 1.7

Head injury 70.1% (n = 75) 67.7% (n = 65) 90.9% (n = 10) — 76.2% (n = 2780)
SIRS (within 21 days) 76.6% (n= 82) 75.0% (n = 72) 90.9% (n = 10) — 83.5% (n = 3044)

Sepsis (within 21 days) 12.1% (n = 13) 13.5% (n = 13) 0% (n = 0) — 15.0% (n = 546)
Early Death (within 72 h) 10.3% (n = 11) — — — 19.4% (n = 709)

GCS at patient contact (median, IQR) 13 (8.5–15) 14 (9–15) 3 (3–9.5) <0.001 —
SBP at patient contact (mean, SD) 119 ± 37 122 ± 32 98 ± 66 0.039 —

RR at patient contact
(mean, SD) 17.3 ± 6.7 17.8 ± 6.5 12.9 ± 7.4 0.022 —

RTS at patient contact (median, IQR) 6.90 (5.97–7.84) 7.11 (6.38–7.84) 4.09 (3.73–5.71) <0.001 —

SD = standard deviation; IQR = interquartile range; ATLS = Advanced Trauma Life Support; ISS = injury severity score; GCS = Glasgow
Coma Scale; SBP = systolic blood pressure; RR = respiratory rate; RTS = revised trauma score.
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Figure 1. The digital architecture of the Sankey visual analytics tool modified for use in polytraumatized patients.
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3. Results
3.1. General Characteristics

The outcome validation encompassed 107 polytrauma patients, 33 female and 74 male
(Table 2). The age distribution ranged between 16 years and 89 years (mean 48.3 ± 19.7).
The gender distribution followed the epidemiology of polytrauma in Europe [18]. In most
cases, the trauma mechanism was blunt (99.1%). Road traffic accidents accounted for the
majority, followed by falls. 75 participants suffered additional head injury. The range of
the ISS score in the 107 polytrauma patients varied from ISS 17 to ISS 75 (median 30, IQR
23–36), while the body temperature at admission ranged from 28.4 ◦C to 37.4 ◦C (mean
35.9 ± 1.3). No patient was overheated > 38 ◦C. All four ATLS shock classes were present
in the 107 patients (median 1, IQR 1–3).

Patients that deceased early showed a similar age as survivors (p = 0.063). ISS, temper-
ature, GCS, systolic blood pressure, and respiratory rate showed significantly worse results
in non-survivors (p < 0.05). Based on the GCS, systolic blood pressure, and respiratory rate,
the RTS ranged from 0 to 7.84 (median 6.90, IQR 5.97–7.84).

The general demographics of the 107 polytrauma patients correspond with the patients
incorporated into the database used by the WATSON Trauma Pathway Explorer. The
demographic data of the validation and development group are described in Table 2 [1].

3.2. Model Performance

The predictive performance of the WATSON Trauma Pathway Explorer and TRISS is
summarised in Table 3.

Table 3. Results of the ROC analysis for WATSON versus TRISS.

AUC H-L Statistics Brier SCORE

SIRS by WATSON 0.77 (95% CI 0.68–0.85) X2 = 5.24, p = 0.73 0.15
Sepsis by WATSON 0.71 (95% CI 0.58–0.83) X2 = 12.14, p = 0.14 0.12

Early Death by WATSON 0.90 (95% CI 0.79–0.99) X2 = 8.19, p = 0.42 0.06
Early Death by TRISS 0.88 (95% CI 0.77–0.97) X2 = 31.93, p < 0.05 0.11

AUC = area under curve; H-L = Hosmer–Lemeshow; CI = confidence intervals; TRISS = trauma and injury
severity score.

SIRS criteria were assessed on each of the 21 days since admission. As described
above, at least two of four clinical findings are needed for the definition of SIRS. In total,
82 patients developed SIRS, while 25 patients did not meet any SIRS criteria. SIRS was
present at admission in 55 cases. In some patients, SIRS occurred after several days. Only
four patients suffered SIRS each of the 21 days. The 107 predictions by WATSON for this
outcome ranged from 33% to 100%. All patients with a predicted probability of more than
90% for SIRS developed the clinical manifestation. As is apparent in the ROC curve, the
AUC is near 0.8 (Figure 2).

Sepsis developed in 13 cases. In those patients, SIRS was present for at least five days.
WATSON’s range for predicted sepsis in the analysed patient group was between 0% and
100%. The predictive accuracy was lower for sepsis than for SIRS or early death. The AUC
amounts to approximately 0.7 (Figure 3).

The 11 patients who died within 72 h had mostly experienced a polytrauma with
head injury. Early death and sepsis did not occur together in this prediction validation.
Both WATSON and TRISS showed good discrimination for the prediction of early death
with an AUC of >0.8 (Figure 4). The predictive quality of the WATSON Trauma Pathway
Explorer was slightly higher than the reference score (AUC 0.90, 95% CI 0.79–0.99 vs.
AUC of 0.88, 95% CI 0.77–0.97; Table 3). However, the difference between the two AUCs
was not significant (p = 0.75). The WATSON Trauma Pathway Explorer’s predictions for
early death in the 107 analysed patients ranged from 0% to 100%, and the death rates
estimated by TRISS ranged from 1.13% to 99.94%. Graphical illustration of early death
may suggest a similar calibration of the WATSON Trauma Pathway Explorer and TRISS
(Figure 4). However, the Hosmer–Lemeshow test presented better goodness of fit for
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the WATSON Trauma Pathway Explorer than for TRISS (X2 = 8.19, Hosmer–Lemeshow
p = 0.42 vs. X2 = 31.93, Hosmer–Lemeshow p < 0.05; Table 3). WATSON’s calibration was
particularly stronger at higher death probabilities. The Brier score of WATSON was better
than that of TRISS in predicting early death (0.06 vs. 0.11 points).
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early death and the corresponding prediction by WATSON and TRISS.
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4. Discussion

Worldwide, trauma surgeons assert that the primary goal of trauma care to improve
survival rates. They often focus on reducing the number of early deaths, as these are
considered to be preventable [19,20]. For this reason, several trauma scoring systems have
been developed to estimate survival rate in trauma patients, including the Trauma and
Injury Severity Score (TRISS) or A Severity Characterization of Trauma (ASCOT) [21].
TRISS is a scoring system used for the determination of survival probability in blunt and
penetrating trauma and is one of the most commonly used scores in this area [22,23]. It
combines physiological and anatomical trauma scoring systems. The score comprises the
revised trauma score (RTS) for the assessment of the physiological state of a polytrauma
patient and the injury severity score (ISS) for the anatomical severity of the injuries. RTS
includes the GCS, systolic blood pressure, and respiratory rate. Furthermore, TRISS
considers the type of trauma, i.e., penetrating versus blunt [24]. The coefficients in TRISS
are estimated by logistic regression and have been revised several times [10,23,25]. TRISS
has shown accurate survival estimation for trauma patients in several studies with a
discriminative AUC > 0.8 [26–30]. However, a recent publication demonstrated the benefits
and outperformance of machine learning for predicting outcomes in trauma patients
compared to established trauma scoring systems [31–34].

For these reasons, we had decided to use TRISS for comparison. The new WATSON
application for the assessment of polytrauma patients demonstrates that a tool is capable
of predicting different outcomes of patients who have sustained multiple injuries.

Our main results regarding the validation of the predicted outcomes are as follows:
The prediction of the WATSON-based visual analytics tool for early death corre-

sponded to the effective clinical outcome in approximately 90% of the analysed polytrauma
patients, which was similar to the discriminative performance of TRISS. The WATSON
Trauma Pathway Explorer, however, was better calibrated to the test data.

Within WATSON’s prediction options, its validity for early death was better than for
SIRS and sepsis (80% and 70%, respectively). Furthermore, the graphical calibration for
sepsis suggested lower goodness of fit than for SIRS and early death.

Several scores exist, particularly for the survival probability after trauma, such as
TRISS, which has been compared with the predicted outcome of the WATSON Trauma
Pathway Explorer in this study. There are few and inconsistent scores for the prediction of
sepsis in trauma patients. The traumatic sepsis score (TSS) was developed to predict sepsis
risk following trauma, with an AUC of 0.79. The score included the ISS, GCS, temperature,
heart rate, albumin, international normalized ratio (INR), and C-reactive protein (CRP) [35].
Other scores and parameters, such as the new injury severity score (NISS), the Acute
Physiology and Chronic Health Evaluation Score II (APACHE II), and the prothrombin
time, were evaluated regarding the predictive ability for sepsis in polytrauma patients,
showing AUCs of 0.77, 0.82, and 0.74, respectively [36].

An advantage of our prediction model is the implementation of the existence or
absence of a head injury, which is the number one killer [11]. On the other hand, it lacks
physiological parameters such as systolic blood pressure or respiratory rate, both of which
are included in TRISS. One way to improve early death estimation in our model could
be the addition of blood parameters such as lactate and pH to the existing predictive
parameters. Another way to improve predictive performance may be the inclusion of
out-of-hospital traumatic cardiac arrest. Prehospital cardiac arrest in trauma patients is
associated with poor effects on patient outcomes [37,38]. Previous studies have stated the
importance of high-sensitivity troponin T (hs-TnT), red cell distribution width (RDW) or
C-reactive protein (CRP) as predictors of a cardiogenic shock or multiple organ dysfunction
syndrome [39]. These parameters, especially CRP, may also play an important role in
predicting SIRS or sepsis, and could be examined in the future regarding predictive quality.

Several attempts to improve or outperform TRISS have shown mixed results. In a
study by Domingues et al., the original TRISS equation was compared with three new
adjustments to TRISS, which included best motor response, peripheral oxygen saturation,
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or new injury severity score. The newly proposed TRISS adjustments showed no difference
in predictive performance (p > 0.5) [40]. Becalick et al. compared TRISS with artificial
intelligence techniques. However, the results showed significantly better discriminative
values for TRISS [11].

Only a small percentage of all physicians assume that they correctly assess the predic-
tion of traumatic head injuries [41]. Nonetheless, an accurate prediction of trauma patients
regarding early death is essential for treatment decisions and other implications [33].
Studies dealing with machine learning in traumatology share similar features for model
development to the WATSON-based visual analytics tool for polytrauma patients. These
include age, temperature, ISS, respiratory rate, or heart rate [31].

Our study has several limitations. The determination of the AIS and the resulting ISS
has certain interobserver weaknesses, which may play a role in our assessment. However,
since all AIS scores have been determined by one investigator, this limits the subjective
variance between the two models compared.

No blinding experiment was conducted. However, the outcome early death does not
leave any room for interpretation and is clearly defined in time.

The study only considered death within an arbitrary 72 h since admission. In most
cases, a trauma-related death in a hospital occurs in the first hours or first few days after
admission. Nevertheless, some patients in this validation study sustained death after 72 h
due to trauma-related complications and were therefore not recorded.

The high Hosmer–Lemeshow p-value for the WATSON Trauma Pathway Explorer
may be affected by the test having lower power to detect misspecification since our sample
size is rather small.

Finally, it must be emphasised that this study represents an internal validation with
a limited sample size in the same institution and with the same practice patterns as in
the development of the WATSON Trauma Pathway Explorer. We feel that the results may
therefore not translate into other healthcare systems until there is accurate external validation.

In summary, the WATSON Trauma Pathway Explorer has three applications. Firstly,
WATSON strives to be an educational tool, helping to show young residents the correlation
between predictive values and outcomes, in particular, early death, SIRS, and sepsis.
Secondly, the visual analytics tool can trigger research, because it has the potential to reveal
clinical relations or observations that have not been understood so far. Furthermore, it
brings new insights into old parameters and might lead to new interpretations [1]. For
example, in research into cancer pathway signalling, WATSON suggested connections that
would otherwise not have been considered [42]. Finally, the WATSON Trauma Pathway
Explorer could act as a supporting tool in clinical decision-making. However, the visual
analytics tool is not meant to be a piece of advice, and no clinical recommendation about
the current patient is made.

Our findings show how big data-based systems have the potential to improve or
replace established scores and to give us a deeper understanding of clinical relations in
traumatology. This visual analytics tool, a variant of AI, will provide the foundation for
personalized medicine in polytrauma patients.
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