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S1. OCT images 

By utilizing a single-crystal fiber light source, ApolloVue S100 provides high-axial resolution 

around one micron. Ti:sapphire crystal is a popular laser gain medium and also famous as the light 

source for high-resolution optical coherence tomography. By drawing the Ti:sapphire crystal into a 

fiber structure and pumping with laser diodes, broadband fluorescence emission with 

near-Gaussian line shape can be generated [S1]. Since the radiance is more than one order higher 

than conventional broadband spatially-incoherent light sources, FF-OCT imaging speed can also be 

improved with the compact and low-cost Ti:sapphire crystal fiber light source. On the other hand, 

the FF-OCT configuration is suitable for a high-resolution design due to the dynamic focusing 

method. In a high-NA (numerical aperture) OCT system, the short depth of focus range usually 

limits the depth scanning range to less than 100 m but not due to the scattering of the sample. 

However; in the FF-OCT system, the focus plane is dynamically moved to match the coherence 

plane during the time-domain optical path scanning. The dynamic focusing scanning maintains the 

lateral resolution in the depth scanning range. Combining the single-crystal fiber light source and 

dynamic focus scanning, ApolloVue S100 (Fig. S1) can provide three-dimensional in-vivo cellular 

images for monitoring the pathologic features of tissue. 
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Figure S1. ApolloVue S100 

For in-vivo measurement, the scanning speed is important for clinical efficiency to shorten the 

examining time and avoid motion blur of image. Medical devices based on reflectance confocal 

microscopy, two-photon microscopy and FF-OCT are commercially available for high-resolution 

en-face imaging in real time. However, in order to explore the cross-sectional structure of tissue, the 

transverse scanning scheme is not efficient. For many clinical applications, cross-sectional image can 

observe the distribution of tissue layers which is also similar to the direction of biopsy. The 

commercial Fourier-domain OCT could provide high-speed cross-sectional imaging, but all of them 

do not have adequate resolution to monitor skin diseases. The limitation of scanning speed for an 

FF-OCT system comes from the radiance of a light source and the frame rate of the camera. In this 

parallel detection scheme, conventional broadband light source with low spatial coherence is 

preferred because of lower cost and less coherent crosstalk [S2]. But since the radiance of 

spatially-incoherent light sources like incandescent lamps and light emitting diodes is relatively low, 

spatially-coherent and high-radiance light sources like supercontinuum sources are used in some 

high-speed application [S3]. Once the illumination is sufficient, the detection should also fast enough 

to receive all the back-scattered light from tissue. Since the frame rate of the camera is proportional 

to the number of pixels activated, the camera frame rate can be increased by setting a region of 

interest (ROI). An OCM for high-speed en-face imaging with a ROI is recently reported [S4].  

In order to realize the cross-sectional scanning in the FF-OCT scheme, ApolloVue S100 shape 

the illumination to a line to increase the radiance and just active several lines of the two-dimensional 

camera to increase the frame rate. This method preserves a high-resolution feature of an FF-OCT but 

provides a cross-sectional scan with a decent speed for in-vivo measurement. The transverse 

scanning for en-face imaging is also contained in the ApolloVue S100 for laterally exploring the 

tissue. Compare to traditional full-field OCT or confocal microscopy, the cross-sectional image can 

be shown in real-time without reconstruction after whole volume is scanned. With a simple optical 

switch, user can switch between two modes to improve the efficiency of lesion examination and 

gather more structure information. 

The FF-OCM setup can be breakdown into two parts. The first part is the illumination system 

consisted of the diode-pumped Ti:sapphire crystal fiber light source and the illumination optics. The 

second part is the imaging system consisted of a Mirau interferometer, a projection lens and a 

two-dimensional camera (Photonfocus MV1-D1024E-160). The core size of the crystal fiber is around 

18 μm, and the broadband fluorescence emission was collected by an objective lens (NA=0.75). The 
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corresponding axial resolution is measured to be 1.3 μm in the tissue. Since the emitting area (about 

the core size of the crystal fiber) is small, the etendue of the crystal fiber light source is more than two 

orders smaller than conventional incandescent lamps and light emitting diodes. 

The system configuration is shown in Fig. S2. For the ease of application, the fluorescence from 

the Ti:sapphire crystal fiber is coupled into a multimode fiber (Thorlabs FG105LCA) before entering 

the illumination optics. The illumination optics contains an achromatic collection lens and a second 

lens mounted on a dual-position slider (Thorlabs ELL6K). The system can be switched between en 

face mode and cross-sectional (B-scan) mode by changing the state of the slider. In the en-face mode, 

the second lens is a spherical field lens imaging the fiber tip to the rear focal plane of the objective 

lens, and the sample is illuminated with an oblique illumination scheme. In the B-scan mode, the 

second lens is switched to a cylindrical lens and the field of illumination (FOI) is in elliptical shape. 

With the Mirau configuration, the path-length scanning and dynamic focusing is simultaneously 

performed by translating the whole interferometer. The OCM images are then generated by 

demodulating the image sequence recorded by the camera. With a customized immersion-type 

objective lens (NA=0.8), the lateral resolution is about 1 μm. The immersion liquid was chosen to 

minimize the walk-off between the confocal and coherent gate to maintain the lateral resolution 

within the scanning range. An en face image is acquired with a frame rate of 11 Hz. 

 

Figure S2. The schematic diagram of the Mirau-type OCM. PBS: polarization-sensitive beamsplitter. 

QWP: quarter-wave plate. Yellow ray: illumination ray. Pink ray: imaging ray. 

While switching to the B-scan mode, the camera switches the ROI to a strip of the sensor to 

improve the frame rate. The motion of slider and the control of camera are synchronized so that the 

whole switching process is less than one second which is practical for clinical use. The number of 

lines is chosen so that the virtual slice thickness is a few microns, comparable to the typical thickness 

of histological sections. By activating multiple lines of pixels, closely adjacent B-scans can be 

acquired simultaneously, and the speckle noise in the image can be suppressed with spatial 

compounding [S5]. To maximize the radiant flux per pixel, the elliptical FOI shall match the shape of 

the strip ROI. With paraxial approximation and optical invariant, one can estimate the minimum 

width of illumination field 𝜙𝐹𝑂𝐼,𝑚𝑖𝑛 (without losses) as: 

𝜙𝐹𝑂𝐼,𝑚𝑖𝑛 ≅ (𝜙𝑠𝜃𝑠) (𝑛𝑜𝜃𝑜)⁄                                (s1) 

where 𝑛𝑜 is the average refractive index in the objective space, and 𝜃𝑜 is the maximum marginal 

ray angle in the objective space, limited by the NA of the objective lens. The 𝜙𝑠 and 𝜃𝑠 is the width 

and emitting angle of the light source, and the product of them is the one-dimensional etendue. 

Since a smaller etendue is required to generate narrower FOI, the B-scan imaging speed and 

signal-to-noise ratio (SNR) is dependent on the radiance instead of total power of light source. With 

the high-radiance Ti:sapphire crystal fiber light source, the 𝜙𝐹𝑂𝐼,𝑚𝑖𝑛  is in the order of tens of 

microns. Since the radiant flux per pixel is much higher in B-scan mode, the integration time of the 
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camera can be much reduced without loss of SNR. The integration time is one order less than in en 

face mode, and the axial scanning speed is 85 μm/second in this preliminary study.  

AMO FF-OCT is a contact imaging system with a guiding system which provides wide-range 

real-time color imaging to guide OCT measurement on precise position. While a measurement 

starts, the cart can be moved to the patient and adjust the height by lifter which covers sitting and 

lying positions. Then, user can precisely align the probe to a lesion by moving the arm with the 

guiding video which is shown on monitor. Once the lesion is aligned, user can switch the system 

from guiding mode to OCT modes and perform OCT scans and save the images. After the scans, 

user can switch back guiding mode for next position. The modes can be selected through the buttons 

on the probe, the pedal or the computer. OCT images and the scanning positions on the guiding 

image will be recorded simultaneously for following up the lesion. 

The OCT is a noninvasive optical imaging modality and has been widely used to diagnose 

ophthalmic diseases in the clinic [S6-S11]. With the use of an interferometry technique, the OCT can 

differentiate the back-scattered light from different layers within the sample and reconstruct the 

microstructure of a tissue. In this study, the ApolloVue S100 OCT system was used for the in vivo 

imaging of the microstructure of the skin and was based on the full-field OCT configuration 

[S12-S17]. The detailed experimental setup is shown in the Supplementary Information S1. Figure 

S3(a) is an image of the back of the hand of a patient with AD, in which the red box indicates the area 

with AD, while the blue box shows the patient’s normal skin area. In Figure S3(b), a horizontal black 

line was evident at the position where the red arrow points, which is the transparent layer of the 

normal skin. Compared with the blue horizontal line marked in Figure S3(d), the black line fell on 

the same horizontal surface, and the stratum corneum was evenly distributed above the transparent 

layer. The skin lesions could be observed in Figure S3(c), in which the transparent layer is shown by 

the red arrow. Comparing the left and right sides of the blue horizontal lines in Figure S3(c) shows a 

drop on the right, which shows the stratum corneum of the diseased skin, and thickening was 

observed in the right area [S18]. Figure S4(a) is an image of the back of a patient with Pso, and the 

red box indicates the area with Pso. The blue box shows the patient’s normal skin area. As shown in 

Figures S4(b) and S4(c), a vertical blue scale line was marked between the blue horizontal line and 

the skin surface. The height of the scale line represents the total thickness of each layer. Figure S4(b) 

shows the normal distribution of the stratum corneum, transparent layer, and granular layer in the 

normal skin area of the patient with Pso. Compared with Figure S4(c), the uppermost layer of the 

stratum corneum showed only a thickening, which squeezed the distribution of the lower layers. 

Therefore, the area pointed by the red arrow in Figure S4(c) was slightly squeezed by the 

development of the white area, which was selected by the dashed blue box as a slightly white image 

[S19]. Figure S5(a) is an image of the arm of a patient with skin lymphoma. The red box indicates the 

area with skin lymphoma cancer, while the blue box indicates the patient’s normal skin area. Figure 

S5(b) shows the normal distribution of the stratum corneum, transparent layer, and granular layer in 

the normal skin area of the patient with skin lymphoma. The three blue vertical scale lines in Figure 

S5(c) indicate the different thicknesses of the stratum corneum of the diseased skin. Comparison of 

Figures S5(b) and S5(c) shows that the stratum corneum was abnormally thickened as shown by the 

three red arrows [S20]. 
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Figure S3. (a) Back of the hand of a patient with AD. The red box selects the area with AD, while the 

blue box selects the patient’s normal skin area. OCT images of the (b) normal skin and (c) the area of 

onset AD. 

 

Figure S4. (a) Back of a patient with Pso. The red frame selects the area with Pso, while the blue 

frame selects the patient’s normal skin area. OCT images of the (b) normal skin area and (c) the 

affected skin area. 
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Figure S5. (a) Arm of a patient with skin lymphoma. The red box selects the area with skin 

lymphoma cancer, while the blue box circle selects the patient’s normal skin area. OCT images of the 

(b) normal skin and (c) affected skin. 

S2. Image data amplification 

Due to the difference in the number of patients in each case, the number of images is uneven. 

We use data augmentation. Data augmentation can be used to teach the model about the invariance 

of images in the data [S21]. To a certain extent, the neural network can maintain the important 

symmetry, which can improve the performance of the neural network, and avoid overfitting, so 

that the model can achieve a better generalization effect, as shown in the Figure S6. 



J. Clin. Med. 2020, 9, x FOR PEER REVIEW 7 of 14 

 

 

Figure S6. Image data amplification 

S3. Single Shot MultiBox Detector 

The SSD model is based on the VGG16 architecture and adds Conv4_3, Conv7, Conv8_2, 

Conv9_2, Conv10_2, Conv11_2 convolutional layers for image multi-scale feature extraction [S22]. 

The SSD model will set default boxes of different scales or aspect ratios for each target, and each 

pre-selection box will have an independent predicted value. These predicted values are mainly 

divided into two parts. 

(1) Confidence of each category 

The background that is not framed in the image is also regarded as a category. For example, if 

the detection target has c categories, the SSD actually needs to predict c+1 confidence levels, one of 

which refers to the part that does not contain the target or belongs to the background. The category 

with the highest confidence is the category to which the bounding box belongs, so the predicted 

bounding boxes are based on these preselected boxes. 

(2) Positioning of the bounding box 

In each feature map cell, what the model predicts is not the absolute coordinates of the 

bounding box in the image, but the offset between the bounding box and the preselected box. Each 

detected bounding box is relative to a preselection box, which does not exactly match the actual size 

of the object. Therefore, a zoom factor is needed to predict the size difference between the bounding 

box and the preselected box, and the zoom factor is used to calculate the true size of the bounding 

box in the image. Assume that the position of the preselection box is represented by d = 

(𝑑𝑐𝑥, 𝑑𝑐𝑦, 𝑑𝑤 , 𝑑ℎ). The corresponding bounding box position is represented by b = (𝑏𝑐𝑥, 𝑏𝑐𝑦, 𝑏𝑤, 𝑏ℎ). 

The scaling factor is represented by l = (𝑙𝑐𝑥, 𝑙𝑐𝑦, 𝑙𝑤 , 𝑙ℎ). Where (cx, cy, w, h) respectively represent the 

center coordinates and width and height of the bounding box. The purpose of these assumptions is 

to make the bounding box match the preselection box, that is, b ≈ d. The method is to first align the 

center coordinates of the bounding box with the center coordinates of the preselection box. It means 

to "translate" the center point of the bounding box to the center point of the preselection box, as 

shown in equations s2 and s3. Then the size of the bounding box is "zoomed" to be close to the 

preselected box, such as equations s4 and s5. Through the above translation transformation and scale 
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scaling, the bounding box can be infinitely close to the preselected position. This method is called 

border regression.  

𝑏𝑐𝑥 =  𝑑𝑤𝑙𝑐𝑥 + 𝑑𝑐𝑥                  (s2) 

 

𝑏𝑐𝑦 =  𝑑ℎ𝑙𝑐𝑦 + 𝑑𝑐𝑦                  (s3) 

 

𝑏𝑤 = 𝑑𝑤exp(𝑙𝑤)                   (s4) 

 

𝑏ℎ = 𝑑ℎexp(𝑙ℎ)                    (s5) 

 

In the process of training the model, we must first determine how the ground truth in the 

training image matches the preselection box. Here, the IOU value (Intersection-over-union, also 

known as Jaccard overlap) in the MultiBox is used to calculate the matching degree between the 

preselection box and the ground truth. Each ground truth box corresponds to a unique preselection 

box, and the bounding box corresponding to the preselection box will be responsible for predicting it. 

IOU is between 0 and 1. The larger the value, the higher the matching degree between the 

preselection box and the ground truth. In an ideal situation, the IOU of the prediction box and 

ground truth is 100%. Figure S7 is the flow chart of preselection box matching ground truth. There 

are two main matching principles: 

(1) The first principle: For each ground truth in the picture, find the preselection box with the 

largest IOU, then the preselection box is matched with it, which can ensure that each ground truth 

must match a certain preselection box. The preselection box that matches the ground truth is positive 

samples. On the contrary, if a preselection box does not match any ground truth, it matches the 

background, and it is a negative sample [S23]. 

(2) The second principle: For the remaining unmatched pre-selection boxes, if the IOU value of 

a certain ground truth is greater than a certain threshold (usually 0.5), then the remaining 

pre-selection boxes are also matched with the ground truth, which means a certain ground truth 

may match multiple preselection boxes. This is possible, because a preselection box can only match 

one ground truth. If multiple ground truths and a certain preselection box IOU are greater than the 

threshold, then the preselection box is only preselected with the largest IOU Box to match. 

The second principle must be carried out after the first principle. First, it is necessary to ensure 

that a certain ground truth must have a preselection box to match it. Due to the large number of 

preselected boxes, the maximum IOU of a certain ground truth must be greater than the threshold. 
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Figure S7. Preselection box and real matching flow chart 

The SSD loss function is divided into location error (localization loss, loc) and confidence error 

(confidence loss, conf).      

(1) localization loss, loc 

It is used to calculate the error between the preselection box and the ground truth position 

information. The definition is as shown in equation S6, and the smooth L1 loss is used [S24]: 

 

𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔)=∑ ∑ 𝑥𝑖𝑗
𝑘

𝑚∈{𝑐𝑥,𝑐𝑦,𝑤,ℎ}
𝑁
𝑖∈𝑃𝑜𝑠 smoothL1(𝑙𝑖

𝑚 − �̂�𝑗
𝑚)   (S6) 

 

The preselection box, like ground truth, uses the border regression mentioned earlier to match, 

but because what needs to be calculated now is the position error of the two. So the calculation result 

is no longer the position of the ground truth, but the offset between the preselection box and the 

ground truth.In formula S6, suppose that the 4 values of the prediction result output are the 

predicted value of the preselection box (𝑙𝑖
𝑐𝑥, 𝑙𝑖

𝑐𝑦
, 𝑙𝑖

𝑤 , 𝑙𝑖
ℎ). The purpose is to first calculate the offset 

(�̃�𝑗
𝑐𝑥, �̃�𝑗

𝑐𝑦
, �̃�𝑗

𝑤 , �̃�𝑗
ℎ ) between the preselected boxes  𝑑𝑖  =  (𝑑𝑖

𝑐𝑥, 𝑑𝑖
𝑐𝑦

, 𝑑𝑖
𝑤 , 𝑑𝑖

ℎ ) and ground truth 𝑔𝑗  = 

(𝑔𝑗
𝑐𝑥, 𝑔𝑗

𝑐𝑦
, 𝑔𝑗

𝑤 , 𝑔𝑗
ℎ). Then use the smooth L1 of formula S6 to calculate the error between the two, such 

as formula S7 and S8. Using the "first translation" of boundary regression, the formula can be written 

in the form of equations S2 and S3. But the goal is to calculate the offset, so the formula is rewritten 

into the form of formula S7 and S8. In a similar way, formulas S9 and S10 can be obtained, which 

convert the exponential function into a logarithmic function to ensure that the value in log is greater 

than zero. 

�̂�𝑗
𝑐𝑥 = (𝑔𝑗

𝑐𝑥 − 𝑑𝑖
𝑐𝑥) /𝑑𝑖

𝑤                (S7) 

�̂�𝑗
𝑐𝑦

= (𝑔𝑗
𝑐𝑦

− 𝑑𝑖
𝑐𝑦) /𝑑𝑖

ℎ                (S8) 
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�̂�𝑗
𝑤 = log ( 

𝑔𝑗
𝑤

𝑑𝑖
𝑤 )                      (S9)  

 �̂�𝑗
ℎ  = log ( 

𝑔𝑗
ℎ

𝑑𝑖
ℎ )                      (S10) 

 

smoothL1(𝑥) = {
0.5𝑥2         𝑖𝑓 |𝑥| < 1

|𝑥| − 0.5      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (S11) 

 

(2) confidence loss, (conf) 

The definition is as shown in formula S11 using softmax loss: 

 𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) = − ∑ 𝑥𝑖𝑗
𝑘𝑁

𝑖∈𝑃𝑜𝑠 𝑙𝑜𝑔(�̂�𝑖
𝑝

) − ∑ 𝑙𝑜𝑔(�̂�𝑖
𝑜)𝑖∈𝑁𝑒𝑔  (S12) 

， �̂�𝑖
𝑝

=
exp(𝑐𝑖

𝑝
)

∑ exp(𝑐
𝑖
𝑝

)𝑝
 

In formula S12, �̂�𝑖
𝑝represents the confidence level of the target of p categories in the i-th 

preselection box. The term " − ∑ 𝑥𝑖𝑗
𝑘𝑁

𝑖∈𝑃𝑜𝑠 𝑙𝑜𝑔(�̂�𝑖
𝑝

)” indicates that there is a confidence score of the 

positive sample that matches the ground truth. Multiply the probability of a target by the confidence 

of the target to get the confidence score of the target. So it takes into account the probability of the 

target and the target category. The term " − ∑ 𝑙𝑜𝑔(�̂�𝑖
𝑜)𝑖∈𝑁𝑒𝑔 ” indicates the confidence of the negative 

sample that does not match the ground truth. In SSD, the background is a special category, so the 

negative sample will match the background, then the target category will not be considered. If you 

only consider whether the target exists, add the confidence of the positive and negative samples to 

get the confidence loss of formula S12.  

After understanding the two error categories, you can define the loss function of the SSD. The 

loss function is defined as the weighted sum of the location error (localization loss, loc) and the 

confidence error (confidence loss, conf) [S25], and the calculation is as shown in equation S13. 

𝐿(𝑥, 𝑐, 𝑙, 𝑔) = 
1

𝑁
 (α𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐)+ α𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔))       (S13) 

 

where N is the number of positive samples of the preselection box. Here 𝑥𝑖𝑗
𝑝

∈{1,0} is an indicator 

parameter.When 𝑥𝑖𝑗
𝑝  =1, it means that the i-th preselection box matches the j-th ground truth, and 

the category of ground truth is p. c is the category confidence prediction value, l is the location 

prediction value of the bounding box corresponding to the preselection box, and g is the location 

parameter of the ground truth. This definition meets the requirements of model training. 

The key feature of the proposed model is its at least one order of magnitude higher number of a 

priori boxes with different positions, scales, and aspect ratios than existing methods and the output 

of multiscale convolutional bounding boxes by using multiple feature maps [S26, S27]. These 

characteristics indicate that the model needed not learn too complex image boundary features, and 

the model could be efficiently trained to place a bounding box on the affected space. All the layers 

(filters) of the SSD were finetuned by using random gradient descent. 

The model setting can select multiple rectangular a priori boxes of different sizes and positions, 

but the generated prediction results by the model often only need a few bounding boxes to match 

the ground truth. Thus, the SSD needs to be able to match or eliminate redundant a priori boxes. The 

matching principle between a priori box and ground truth are defined as follows. First, how the 

ground truth in the training image matched the prior box was determined. Here, the IOU value was 

used to calculate the degree of matching between the prior box and ground truth [S28]. This process 

ensured that each ground truth corresponded to a unique a priori box, and the bounding box 

corresponding to the matching a priori box would be responsible for its prediction. The IOU value 

was between 0 and 1. The larger the value, the higher the matching degree between the a priori box 

and the ground truth would be. In an ideal situation, the IOU of the prediction box and the ground 

truth is 100%. Figure S8 shows a schematic diagram of the principle of a priori box matching with the 

ground truth. The green box is the ground truth, the multiple red boxes are the a priori boxes, and 

the blue box is the bounding box that finally matches the ground truth. As shown in Figure S8(a), the 

SSD formed multiple a priori boxes to match the ground truth. Two main matching principles were 

considered. The first principle was to find the a priori box with the largest IOU for each ground truth 
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in the picture. The matching of the check box could ensure that each ground truth should match a 

certain a priori box, as shown in Figure S8(d). The a priori box that matched the ground truth was 

called a positive sample. After identification as the positive sample, the box became a bounding box. 

However, if a prior box did not match any ground truth, then the a priori box could only match the 

background and was considered as a negative sample [Figure S8(b)]. Very few ground truth areas 

but many a priori boxes were found in the images. If only the first principle was matched, many a 

priori boxes would be considered as negative samples, and the ratio of positive and negative 

samples would be extremely unbalanced. Thus, the second principle was needed. For the remaining 

unmatched a priori boxes, if the IOU value of a ground truth was greater than a certain threshold 

(usually 0.5), then the a priori box was also matched with the ground truth, as shown in Figure S8(c). 

This phenomenon indicates that a certain ground truth may match multiple prior boxes. Conversely, 

an a priori box could only match one ground truth. If multiple ground truths and a certain a priori 

box IOU were greater than the threshold, then the a priori box was only matched with the a priori 

box with the largest IOU. Figure S8(e) shows that the final output bounding box (the SSD final 

prediction result output) also complies with the first and second principles. After using the SSD to 

learn the training image set, 300 independent test images were used to evaluate the performance of 

the trained model. When the model detector detected skin lesions from the input data of the test 

image, the disease name (Pso, AD, MF, and Normal) and a rectangular frame in the skin image were 

displayed to surround the lesion area and analyze the evaluation results with the following 

indicators: recall, precision, and F1-score. 
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Figure S8. A schematic diagram of the principle of a priori box matching ground truth. The green 

box in the skin image is the ground truth, the multiple red boxes are the a priori boxes, and the blue 

box is the bounding box that finally matches the ground truth. Figure S8(a) shows the matching of 

multiple prior boxes with the ground truth, S8(b) shows the negative samples that do not meet the 

first principle during the matching process, and S8(c) shows the positive samples that meet the first 

principle and will become a bounding box. Figure S8(d) is a positive sample that does not conform to 

the first principle but conforms to the second principle. This box will also subsequently become a 

bounding box. Figure S8(e) is the final output bounding box, which conforms to the first and second 

principles, and the final output of the SSD prediction result. 
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