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Surface Thermodynamics Analysis

Surface tension components are calculated by the extended Young equation (Hoek and Agarwal,
2006):
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where 0 is the contact angle, }/T °T is the total surface tension, }/L " is the Lifshitz-van der Waals

component, ¥" is the acid-based surface tension component, and ¥* and ¥~ are the electron-

acceptor and electron-donor components, respectively. The subscripts s and [ represent the solid
surface and the liquid, respectively.
With the equations above, the adhesion free energy (AG!% ) between initial fouling layer and

Tot

cop) between foulants are evaluated with the following

membrane and the cohesion free energy (AG

equations (Wang et al., 2013):
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where d| is a minimum equilibrium cut-off distance (d,=0.158 nm), €€, is the permittivity of
the sludge suspension, & is the surface zeta potential of membrane (subscript m) and foulants
(subscript f), Kis the inverse Debye screening length, N, is the Avogadro number (6.0x10% mol-)
and [ is the ionic strength (mol/L), &, is the vacuum permittivity (8.85x1012 CV-'m™), &, is the

Membranes 2019, 9, 121; doi: 10.3390/membranes9090121 www.mdpi.com/journal/membranes



Membranes 2019, 9, 121 2 of 4

relative permittivity of the background solution (80 for water), e is the elementary charge (1.60x10-1

C), K,is Boltzmann constant (1.38x10-2 J/K), T is the absolute temperature (K).
The free interaction energy (AG_, ) between two identical surfaces in water can be considered

as an indicator of surface hydrophobicity/hydrophilicity. The AG_ can be calculated as Equation
(8) (Hong et al., 2014):
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Extended DLVO Theory

The calculations of AG*®, AG" and AG"" between initial fouling layer and membrane

surface at separation distance (d) are calculated as Equations (9)—(11) (Lin et al., 2014; Chen et al.,
2015; Cai et al., 2016).
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The calculations of U fv:,Vn , U f‘ﬁl , U f‘fm and U ;an between initial fouling layer and membrane

surface at separation distance (d) are calculated as Equations (12)—(15) (Lin et al., 2014; Chen et al.,
2015; Cai et al., 2016).
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f(r,0) = zsin(arcos@/2z+ @) (16)

where D is the closest distance between a particle and membrane surface; R is the particle radius; z is
the roughness of membrane surface; r is the radius of differential circular ring on particle surface; d0
is the differential angle of the differential circular arc in the circular ring, ¢ is assumed to be zero for
simplicity in this study.

The double integrals were estimated through composite Simpson’s rule (Lin et al., 2014; Chen et
al., 2015; Cai et al., 2016).
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where certain point x1 =4, xi=x1+ih (i1, 2,..., 2m+1) and y1="b, yi = y1+jk (=1, 2,..., 2n+1) were used to
subdivide the interval [4,b] of variable x and the interval [c,d] of variable y in a double integral,
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respectively (h = (b-a)/2m), and k = (d-c)/2n), and m and n are the number of segments for the variable

interval of x and y, respectively.
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Figure S1. EEM fluoreacence spectra of EPS extracted from the initial fouling layer on membrane with
no flux (0 L/m?h) and normal flux (10 L/m?h).
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