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Abstract: BaZr0.9Y0.1O3-δ (BZY10), a promising proton conducting material, exhibits p-type
conduction under oxidative conditions. Holes in BZY10 are of the small polaron type. However,
there is no clear understanding at which places in the lattice they are localized. The main objectives
of this work were, therefore, to discuss the nature of electronic defects in BZY10 on the basis of the
combined measurements of the thermo-EMF and conductivity. Total electrical conductivity and
Seebeck coefficient of BZY10 were simultaneously studied depending on partial pressures of oxygen
(pO2), water (pH2O) and temperature (T). The model equation for total conductivity and Seebeck
coefficient derived on the basis of the proposed defect chemical approach was successfully fitted to
the experimental data. Transference numbers of all the charge carriers in BZY10 were calculated.
The heat of transport of oxide ions was found to be about one half the activation energy of their
mobility, while that of protons was almost equal to the activation energy of their mobility. The results
of the Seebeck coefficient modeling indicate that cation impurities, rather than oxygen sites, should
be considered as a place of hole localization.
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1. Introduction

Perovskite-type yttrium-doped barium zirconate BaZr0.9Y0.1O3-δ (BZY10) is a well-known proton
conducting material promising for intermediate-temperature electrochemical applications due to
high proton conductivity and good chemical stability [1–4]. The defect chemistry of BZY10, which
is of key importance for understanding its conductivity, was studied using a number of techniques
such as thermogravimetry (TGA) in water vapour containing atmosphere [2,3,5,6], conductivity
measurements under wide range of conditions [4,5,7], quasi-elastic neutron scattering (QENS) [8,9],
nuclear magnetic resonance (NMR) [10], X-ray absorption spectroscopy (XAS) [11] and computer
simulations [12–15]. As a result, the nature of proton defects in BZY10 is relatively well studied [16,17].
However, this is definitely not the case concerning electronic defects. Indeed, it is well known that
under certain conditions BZY10 exhibits significant hole-type electronic conductivity comparable
to, or even exceeding, the ionic one [5–7]. This p-type conductivity arises due to the partial filling
of oxygen vacancies, created through Y-doping, by oxygen under an oxidizing atmosphere [18–20].
In our previous paper [21] we showed that holes in BZY10 are of the small polaron type and exhibit
rather strong trapping by some acceptor impurity. Besides yttrium dopant cations, various 3d-metal
cations, small amounts of which are always present in any material and are sometimes intentionally
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introduced during the synthesis as sintering aids [22–24], may act as a hole trap. So far, however, it is
not clear on which positions in the lattice that the non-trapped holes are localized. The assumption
that the holes are associated with the oxygen sites is consistent with the results of BZY10 electronic
structure calculations [25] and in line with the conclusions of Schirmer and others [26] and references
therein, in regards to the nature of holes in the great number of different oxide materials. However, the
hypothesis that the holes are localized on the impurity ions is also quite plausible, taking into account
the rather small concentration of holes present in BZY10. In this respect, it is worth noting that the
thermoelectric behaviour of BaZr1-xYxO3-d proton conducting oxides has not been studied and discussed
in detail so far, contrary to electrical conductivity, although thermoelectric power measurements were
shown to provide valuable data necessary for elucidating the nature of defects and charge transfer in
case of the state-of-the-art oxide ion conductors and mixed conductors [27–34]. Therefore, combining
the thermo-EMF and conductivity measurements should advance the understanding of both defect
chemistry and charge transfer in proton conductors.

Therefore, the main objectives of this work are (i) to study the thermoelectric behaviour of proton
conducting oxide BZY10 and its electrical conductivity in the wide range of temperatures (T), oxygen
(pO2) and water vapour (pH2O) partial pressures, and (ii) to discuss the nature of electronic defects in
BZY10 in the light of these measurements.

2. Materials and Methods

The powder sample of BZY10 was prepared by means of glycerol-nitrate method described
elsewhere [15]. High-purity BaCO3 (99.99%, Lanhit, Moscow, Russia), Zr(OH)2CO3 (99.9%, ChMZ,
Glazov, Russia) and Y2O3 (99.99%, Lanhit, Moscow, Russia) were used as starting materials. The BZY10
powder was calcined three times at 1100 ◦C in air. As-prepared powder was pressed at 154–160 MPa
into tablets 20 mm in diameter and then sintered at 1500 ◦C for 24 h in air with 100 ◦C/h as a
heating/cooling rate. Before the sintering procedure, green tablets were covered by the sacrificial
powder of the same chemical composition in order to prevent Ba loss due to volatility of its oxide at
high temperatures. The relatively moderate sintering temperature was chosen because of the same
reason. Rectangular bars of 20 × 3 × 3 mm3 for the conductivity and Seebeck coefficient measurements
were cut from the tablets sintered accordingly. The as-obtained bars had 85–90% relative density.
The residual porosity promoted sample equilibration with the gas phase, as discussed in detail by
Wang and Virkar [16]. This significantly reduced the time necessary for the sample equilibration and,
consequently, allowed for obtaining reproducible equilibrium values of all the properties studied in
this work.

The phase composition of the sample prepared accordingly was studied by means of X-ray
diffraction (XRD) using an XRD 7000 diffractometer (Shimadzu, Kyoto, Japan). The XRD (Cu Kα

radiation) showed no indication for the presence of a second phase in the as-prepared powder of BZY10.
Electrical conductivity was measured by a 4-probe dc method using an original homemade

setup [21] equipped with an yttria-stabilized zirconia (YSZ) electrochemical oxygen pump and sensor.
The Seebeck coefficient was measured simultaneously in the same setup by placing the sample in the
moderate temperature gradient, around 10–15 ◦C. The uncertainties in the total conductivity and the
Seebeck coefficient did not exceed ±5% and ±10 µV/K, respectively. The measurements were carried
out depending on T, pO2 and pH2O.

Water uptake of as-prepared BZY10 was measured by the thermogravimetric technique (TG) [35].
The measurements were carried out in the temperature range 25–900 ◦C in the atmosphere of air
(log(pO2/atm) = −0.677) or nitrogen (log(pO2/atm) = −4.5) and in the range of water vapor partial
pressure (−1.73 ≤ log(pH2O/atm) ≤ −4.0).

The atmosphere employed in the thermo-EMF, conductivity and TG measurements was dried by
circulating the gas through the column filled with pre-annealed zeolites. The residual water vapor
pressure was found to be log(pH2O/atm) = −4.0. The humidity of the gas (i.e., pH2O) was measured
using the original unit on the basis of the H2O-sensor BME-280 (Bosch, Stuttgard, Germany).
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3. Results and Discussion

The XRD pattern of the as-prepared single-phase BZY10 was indexed using the cubic Pm3m
space group and is shown in Figure 1 along with the Rietveld refinement results. The refined value
of BZY10 lattice parameter, a = (4.2075 ± 0.0001) Å, is in good agreement with its values reported
previously [1–5,7].
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Figure 1. Rietveld refined XRD pattern of BZY10 sample slowly (~100 ◦C/h) cooled from 1500 ◦C to
room temperature in dry air (log(pH2O/atm) = −4.0): Observed X-ray diffraction intensity (points) and
calculated curve (line). The bottom curve is the difference of patterns, yobs-ycal, and the small bars
indicate the angular positions of the allowed Bragg reflections

The total conductivity and Seebeck coefficient of BZY10 were measured as a function of pO2,
pH2O and T in the ranges −18 ≤ log(pO2 /atm) ≤ −0.67, −4 ≤ log(pH2O /atm) ≤ −1.73 and 688 ≤ T (◦C)
≤ 1038. As an example, the results obtained at log(pH2O /atm) = −1.73 are shown in Figure 2.

Table 1. Fitted parameters of Equation (4)

Charge Carrier Pre-Exponential Factor 1, S·cm−1 Activation Energy 1, eV R2

Oxide ion 25.43 ± 13.00 1.42 ± 0.01
0.997Hole 10.42 ± 3.00 0.73 ± 0.05

Proton (1.47 ± 0.60)·10−3 0.02 ± 0.09
1 Uncertainties are given as two standard deviations as obtained by fitting procedure.
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Figure 2. Total conductivity (a) and Seebeck coefficient (b) of BZY10 measured at log(pH2O/atm)
= –1.73 as a function of T and pO2. Points-experimental results, solid lines-calculation according to
Equation (4) with parameters given in Table 1.
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As seen, the total conductivity behavior is typical of many proton-conducting oxides, with a
characteristic slope of 1/4 corresponding to a p-type contribution under oxidizing conditions and
almost pO2-independent ionic part. The ionic contribution was found to possess the pH2O dependence
with a characteristic slope of 1/2 under reducing atmosphere. At the same time, the Seebeck coefficient
is positive and grows with decreasing pO2 under oxidizing atmosphere. Under reducing conditions
(pO2 < 10−5), it drops abruptly, becoming negative, and increases upon subsequent pO2 decrease.
It is also to be emphasized that within the pO2 range of 10−10–10−5 atm it was impossible to obtain
stable values of Seebeck coefficient. The reason for both the abrupt change and the instability of
Seebeck coefficient mentioned above is most probably related to the fact that the heterogeneous part
of the thermo-EMF is strongly dependent on the chemical potential of oxygen in the surrounding
atmosphere [27,31,33,34]. The chemical potential, in turn, is determined by gaseous O2 under oxidizing
conditions (10−5

≤ pO2 ≤ 0.21 atm) and by the H2/H2O chemical equilibrium under reducing atmosphere
(at pO2 lower then ~10−10 atm). Thus, it is difficult to achieve stable and well-defined chemical potential
of oxygen in the intermediate pO2 range and, consequently, it is also practically impossible to get
reliable values of the Seebeck coefficient. Therefore, in order to analyze the behaviour of sample’s
thermoelectric power and to see its overall trend vs. pO2, one needs to normalize the Seebeck coefficient
measured in H2/H2O atmosphere against that obtained under the O2/N2 atmosphere. It can be easily
shown [27,31,33,34] that the difference between the coefficients measured at the same pO2 under O2/N2

atmosphere, Q1, and in the H2/H2O gas mixture, Q2, is equal to:

Q1 −Q2 = −
tO + tH

2F

∆ f H
◦

H2O

T
(1)

where tO and tH, ∆ f H
◦

H2O and F are transference number of oxide ions and protons, and standard
formation enthalpy of gaseous water and Faraday constant, respectively. Therefore, transference
numbers of ionic species in BZY10 are required to perform this normalization procedure. In order
to calculate them it is necessary to separate contributions of all the charge carriers (their partial
conductivities) to the total conductivity of BZY10. At relatively high temperatures, employed in this
work, holes and protons are minority defects and, therefore, the charge neutrality condition for BZY10
can be written as

[
Y/

Zr

]
= 2

[
V••O

]
. As a result, concentrations of holes and protons can be expressed

as [21]:
p = K·p1/4

O2
,
[
OH•O

]
= K/

·p1/2

H2O (2)

where K and K/ are proportionality constants which can be related to the equilibrium constants
corresponding to the defect reactions describing the formation of the charge carriers, as discussed
in [21]. Since holes were shown in our previous work [21] to exhibit strong trapping by acceptor
impurities, most probably by the dopant, Y/

Zr, therefore, p in the Equation (2) denotes the concentration
of ‘free’, non-trapped small polaron holes. These considerations finally result in the following equation
for the total conductivity:

σ = σO + σ
◦

p·p
1/4

O2
+ σ

◦

H·p
1/2

H2O (3)

where σO, σ
◦

p and σ
◦

H are oxide ion conductivity, hole conductivity at pO2 = 1 atm and proton
conductivity at pH2O=1 atm, respectively. Each of these conductivities, in turn, is thermally activated
and, as a consequence, can be represented using Arrhenius-type equation. This leads to the Equation (4)
which can be fitted to the experimental data on total conductivity of BZY10:

σ = A· exp
(
−

EA, O

RT

)
+ B· exp

(
−

EA, p

RT

)
·p1/4

O2
+ C· exp

(
−

EA, H

RT

)
·p1/2

H2O (4)

where A, B and C are corresponding pre-exponential factors and EA,O, EA,p and EA,H are activation
energies of oxide ion, hole and proton conduction, respectively. A 4D-fitting procedure was used
since total conductivity depends on three independent parameters—T, pO2 and pH2O, as follows
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from Equation (4). This allowed fitting all the data on total conductivity of BZY10 simultaneously.
The fitting results are summarized in Table 1 and, as an example, are shown in Figure 3 as 3D-plots at
two temperatures −1038 and 838 ◦C, and in Figure 2 as a 2D-plot at log(pH2O/atm) = −1.73.Membranes 2019, 9, x FOR PEER REVIEW 5 of 11 
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given in Table 1.

Interestingly, the activation energy of proton conduction was fitted as equal to zero within the
uncertainty limits, as seen in Table 2. The reason for this is, obviously, two counteracting trends:
The increase in thermally activated mobility of protons with temperature and simultaneous decrease
in their concentration due to dehydration (see Appendix A). The activation energy of proton mobility
in BZY10 was reported to be about 0.44 eV [2,3,36]. Combining this value with the activation energy
given in Table 1 allows estimating the hydration enthalpy as about −0.84 eV or −81 kJ·mol−1, which is
in excellent agreement with values reported in literature [2,3,5,37] and determined by us from the TGA
results (see Appendix A). The parameters given in Table 1 allow calculation of partial conductivities
and transference numbers of all charge carriers in BZY10. Examples of such calculations are shown in
Figure 4 where transference numbers are presented as a function of pO2 and pH2O at 1038 ◦C.
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Figure 4. Transference numbers of charge carriers in BZY10 depending on pO2 and pH2O at 1038 ◦C.

As seen, BZY10 is mainly ionic conductor (with dominating proton conductivity under wet
atmosphere and oxide ion conductivity under dry atmosphere) at elevated temperatures under reducing
conditions, whereas the hole conductivity dominates under oxidizing conditions. This conclusion is in
agreement with similar observations of others [5–7].

Using the calculated transference numbers, it is possible to perform the normalization procedure
described above for Seebeck coefficient. Thermodynamic data necessary for calculation according to
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Equation (1) were taken from [38]. The as-normalized Seebeck coefficient is shown in Figure 5 as a
function of pO2 at different temperatures and at log(pH2O/atm) = −1.73.Membranes 2019, 9, x FOR PEER REVIEW 6 of 11 

 

 
Figure 5. Normalized Seebeck coefficient of BZY10 vs. pO2 at log(pH2O/atm) = −1.73. 
Points-experimental data, lines-result of the fit of Equation (5). 

Normalized Seebeck coefficient of the proton conductor can be represented [39] as: 𝑄 = 𝑡 𝜃 + 𝑡 𝜃 + 𝑡 𝜃 + 𝑡 + 𝑡4𝐹 𝑆° − 𝑅lnp + 𝑡2𝐹 −𝑆° + 𝑅lnp  (5) 

where θp, θO and θH are partial Seebeck coefficients of holes, oxide ions and protons, respectively. 
These partial contributions may be defined by the following equation [27,39]: 𝜃 = 1𝑧 𝐹 𝑠 + 𝑞∗𝑇  (6) 

where 𝑠  is partial molar entropy of charge carrier and 𝑞∗—its heat of transport. The calculation of 𝑠  allows obtaining the following expressions for partial Seebeck coefficients [27,31,39,40]: 𝜃 = 𝑅𝐹 ln 𝑁 − 𝑝𝑝 + 𝑞∗𝑅𝑇  (7) 

𝜃 = − 𝑅2𝐹 �̅� ( )𝑅 + ln 𝑉••3 − 𝑉•• − 𝑂𝐻• + 𝑞∗𝑅𝑇  (8) 

𝜃 = 𝑅𝐹 �̅� ( )𝑅 + ln 3 − 𝑉•• − 𝑂𝐻•𝑂𝐻• + 𝑞∗𝑅𝑇  (9) 

where N is a number of positions available for holes, �̅� ( )  and �̅� ( )  are vibrational 
contributions to the entropy of oxide ions and protons, respectively. According to Tsidilkovsky et al. 
[39,40], vibrational contribution to the chemical potential of an ionic species (oxide ions or protons) 
can be estimated in the harmonic approximation as follows: 

Δ𝜇 ,( ) = 𝑅𝑇 ln 2 sinh ℏ𝜔2𝑘𝑇  (10) 

where ωi —vibration frequency of proton or oxide ion. In this model, the following set of three 
frequencies is used for both protons and oxide ions: 𝜔 (cm ) = 3400, 960, 960  and 𝜔 (cm ) = 550, 250, 250 , respectively [39,40]. The vibrational contribution to the entropy of 
ionic charge carriers can then be calculated as follows: 

Δ�̅� ,( ) = − 𝜕Δ𝜇 ,( )𝜕𝑇 = −𝑅 ln 2 sinh ℏ𝜔2𝑘𝑇 + 𝑅𝑇 ℏ𝜔 cosh ℏ𝜔2𝑘𝑇2𝑘𝑇  (11) 

Equations (7)–(11) were substituted into Equation (5). The concentration of holes was taken as 𝑝 = exp ∆ ° − ∆ ° 𝑝  , where ∆𝑆°  and ∆𝐻°  are standard entropy and enthalpy of hole formation, 

respectively. The concentration of protons was calculated from the results of the separate TGA 
experiment (see Appendix A). Finally, when all the necessary terms were substituted to Equation (5), 

Figure 5. Normalized Seebeck coefficient of BZY10 vs. pO2 at log(pH2O/atm) = −1.73.
Points-experimental data, lines-result of the fit of Equation (5).

Normalized Seebeck coefficient of the proton conductor can be represented [39] as:

Q = tpθp + tOθO + tHθH +
tO + tH

4F

(
S
◦

O2
−RlnpO2

)
+

tH

2F

(
−S

◦

H2O + RlnpH2O

)
(5)

where θp, θO and θH are partial Seebeck coefficients of holes, oxide ions and protons, respectively.
These partial contributions may be defined by the following equation [27,39]:

θi =
1

ziF

(
si +

q∗i
T

)
(6)

where si is partial molar entropy of charge carrier and q∗i —its heat of transport. The calculation of si
allows obtaining the following expressions for partial Seebeck coefficients [27,31,39,40]:

θp =
R
F

(
ln

N − p
p

+
q∗p
RT

)
(7)

θO = −
R
2F

 sO(vibr)

R
+ ln

[
V••O

]
3−

[
V••O

]
−

[
OH•O

] + q∗H
RT

 (8)

θH =
R
F

 sH(vibr)

R
+ ln

3−
[
V••O

]
−

[
OH•O

][
OH•O

] +
q∗O
RT

 (9)

where N is a number of positions available for holes, sO(vibr) and sH(vibr) are vibrational contributions to
the entropy of oxide ions and protons, respectively. According to Tsidilkovsky et al. [39,40], vibrational
contribution to the chemical potential of an ionic species (oxide ions or protons) can be estimated in
the harmonic approximation as follows:

∆µi,(vibr) = RT
3∑

i=1

ln
(
2sinh

[}ωi
2kT

])
(10)

where ωi—vibration frequency of proton or oxide ion. In this model, the following set of three
frequencies is used for both protons and oxide ions: ωH

(
cm−1

)
= {3400, 960, 960} and ωO

(
cm−1

)
=
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{550, 250, 250}, respectively [39,40]. The vibrational contribution to the entropy of ionic charge
carriers can then be calculated as follows:

∆si,(vibr) = −

(
∂∆µi,(vibr)

∂T

)
= −R

3∑
i=1

ln
(
2sinh

[}ωi
2kT

])
+ RT

3∑
i=1

}ωi cosh
[}ωi

2kT

]
2kT2 (11)

Equations (7)–(11) were substituted into Equation (5). The concentration of holes was taken as

p = exp
(

∆S
◦

p
R −

∆H
◦

p
RT

)
p1/4

O2
, where ∆S

◦

p and ∆H
◦

p are standard entropy and enthalpy of hole formation,

respectively. The concentration of protons was calculated from the results of the separate TGA
experiment (see Appendix A). Finally, when all the necessary terms were substituted to Equation (5),
the Seebeck coefficient was expressed as a function Q = f

(
T, pO2, q∗p, q∗O, q∗H, ∆S

◦

p, ∆H
◦

p, N
)
.

The unknown parameters: q∗p, q∗O, q∗H, ∆S
◦

p and ∆H
◦

p were determined by fitting Equation (5) to the data
on normalized Seebeck coefficient vs. T and pO2 at fixed log (pH2O/atm) = –1.73, i.e., a 3D-fitting
procedure was employed and all the data were treated simultaneously. The results of the fit are
summarized in Table 2 and shown in Figure 5 as 3D- and 2D-plots. It is to be noted that strong
correlation between the values of ∆S

◦

p and q∗p was found during the fitting procedure, therefore, q∗p was
set equal to zero which seems to be the common assumption in the case of small polarons [28–30].

Table 2. Fitted parameters of Equation (5).

Charge Carrier Heat of Transport, eV * ∆S
◦

p, J·mol−1
·K−1* ∆H

◦

p, kJ·mol−1* R2

Oxide ion 0.73 ± 0.03 34.6 ± 1.4 (N = 2.95) 0.74 ± 0.04
(does not depend on N) 0.990Hole 0 ** 6.5 ± 1.4 (N = 0.1)

Proton 0.43 ± 0.10 −12.3 ± 1.4 (N = 0.01)

* Uncertainties are given as two standard deviations as obtained by fitting procedure. ** q∗p was arbitrarily set equal
to zero (please, see the explanation in the text)

Furthermore, parameters N and K = exp
(

∆S
◦

p
R −

∆H
◦

p
RT

)
are also strongly interdependent, since both

of them enter in the same part of Equation (7): N—in the numerator and K—both in the numerator and
denominator. As seen in Table 2, fitting leads to different values of ∆S

◦

p parameter depending on the
particular value of N selected. At the same time, the enthalpy ∆H

◦

p obtained during the fitting procedure
is always the same irrespective of a value of N. Therefore, additional assumptions on the particular
value of N are needed in order to evaluate K and then to estimate the concentration of non-trapped
holes according to Equation (2). This calculation sequence allows for some speculation on the possible
sites available for holes. Indeed, both the charge neutrality condition employed,

[
Y/

Zr

]
= 2

[
V••O

]
,

and excellent quality of fit of Equation (4) to the total conductivity data of BZY10 may imply that holes,
either trapped or ‘free’, are minority charge carriers, i.e., that their concentration is expected to be
very small. At the same time, fitting Equation (5) under assumption that N =

[
O×O

]
= 2.95, which

means that holes are associated with oxygen sites, leads to a large positive value of ∆S
◦

p parameter (see
Table 2) and, in combination with ∆H

◦

p = 0.74 eV, to abnormally large value of constant K: for example,
K = 0.092 at 1038 ◦C. This results in extraordinarily large concentration of non-trapped holes, e.g.,
p = 0.062 at pO2 = 0.21 atm. A much better agreement with physical meaning is obtained when setting
lower values of N, for example, at N = 0.1 one can obtain K = 3.12 × 10−3 and p = 0.0021 at 1038 ◦C
and pO2 = 0.21 atm. It may well be that an even significantly lower value of N is not unreasonable.
Therefore, these simple calculations do not indicate in favor of oxygen sites as a place for localization
of holes, contrary to the common belief [25,26,41–46]. It seems more likely that the holes are localized
on the cation impurities, especially taking into account that significantly different conductivity values
were reported for BZY10 by different authors [7,47]. Indeed, different acceptor impurity concentrations
may be responsible for such scatter in the reported conductivity values. In order to understand the
nature of holes in more detail, it would be of interest to prepare a number of samples with a controlled
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amount of some selected impurities and then measure and compare their properties. This work is in
progress now.

It is also worth mentioning that for the oxide ions the heat of transport is about one half their
activation energy of mobility (see Table 1), whereas for the protons these values are almost the same.

4. Conclusions

The sample of BZY10 proton conducting electrolyte was prepared and its electrical conductivity
and Seebeck coefficient were studied in the wide range of conditions. Conductivity as a function of pO2,
pH2O and T was successfully fitted by the model equation derived on the basis of the defect chemical
approach. The fitted model parameters allowed calculation of the transference numbers of all the
charge carriers involved. The Seebeck coefficient of BZY10, measured under a reducing atmosphere,
was normalized to that measured under oxidative conditions in order to account for the shift in
heterogeneous part of thermo-EMF when going from N2/O2 to H2/H2O gas mixture. Normalized
Seebeck coefficient of BZY10 as a function of pO2, pH2O and T was fitted by the appropriate model
equation containing the weighted sum of partial Seebeck coefficients of each charge carrier and
heterogeneous part that depends on the chemical potential of oxygen and water vapor. The heats
of transport of oxide ions and protons were found to be about one half of the activation energy of
mobility and almost equal to that, respectively. Fitting results of the Seebeck coefficients also revealed
that oxygen sites do not seem to be responsible for the formation of small polaron holes, rather, some
cation impurities should be considered.

Author Contributions: Conceptualization and methodology, D.T. and I.I.; investigation, I.I., D.M. and V.S.;
writing-original draft preparation, D.T. and A.Z.; supervision, A.Z.
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publish the results.

Appendix A

Hydration of the BZY10 sample was studied by TG. The as-measured water content in the sample
is shown in Figure A1 at log(pH2O/atm) = −1.76 as a function of temperature.
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Hydration of BZY10 can be described using the following quasichemical reaction [2,3] written
using Kröger-Vink notation:

H2O + V••O + O×O � 2OH•O (A1)



Membranes 2019, 9, 120 9 of 11

with equilibrium constant

Khydr = exp

∆S
◦

hydr

R
−

∆H
◦

hydr

RT

 =
[
OH•O

]2

pH2O
[
V••O

][
O×O

] (A2)

where ∆S
◦

hydr and ∆H
◦

hydr are standard entropy and enthalpy of BZY10 hydration, respectively. Taking
into account charge balance and mass balance conditions [2,3] the following solution of the Equation (A2)
can be obtained:[

OH•O
]
= 2nH2O = −

2.95
4

KhydrpH2O +
1
4

√
8.7025·K2

hydrp
2
H2O + 2.36·KhydrpH2O (A3)

Equation (A3) was fitted to the experimental data on the water uptake of BZY10 in order to determine
∆S

◦

hydr and ∆H
◦

hydr. The results of the fit are summarized in Table A1 and shown in Figure A1.

Equation (A3) with fitted ∆S
◦

hydr and ∆H
◦

hydr was used to calculate concentration of protons in
BZY10 in order to estimate partial ionic Seebeck coefficients of protons and oxide ions according to
Equations (8) and (9).

Table A1. Fitted parameters of Equation (A3).

∆H
◦

hydr, kJ·mol−1* ∆S
◦

hydr, J·mol−1K−1* R2

−79 ± 2 −91 ± 2 0.992

* Uncertainties are given as two standard deviations as obtained by fitting procedure.
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