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Abstract: This paper discusses the effect of the chemical structure of sulfonated poly(aryl ether
sulfone) on the performance of composite nanofiltration membranes. The composite nanofiltration
membranes were fabricated by coating sulfonated poly(aryl ether sulfone) solution onto the top
surface of poly(phthalazinone ether sulfone ketone) support membranes. Three kinds of sulfonated
poly(aryl ether sulfone)s with different amounts of phthalazinone moieties, namely, sulfonated
poly(phthalazinone ether sulfone) (SPPES), sulfonated poly(phthalazinone biphenyl ether sulfone)
(SPPBES), and sulfonated poly(phthalazinone hydroquinone ether sulfone)s (SPPHES), were used
as coating materials. The solvents used in preparing the coating solution were investigated and
optimized. The separation properties, thermal stability, and chlorine resistance of composite
membranes were determined. The structures and morphologies of membranes were characterized
with FTIR and SEM, respectively. The membrane prepared from SPPES with more phthalazinone
moiety groups showed high water flux and salt rejection. The salt rejection of composite membranes
followed the order SPPES > SPPHES > SPPBES. The rejection of the three composite membranes
decreased slightly with the solution temperature rising from 20 to 90 ◦C, while the composite
membrane with SPPES as the active layer showed a higher increase in flux than others. The results
indicate that SPPES composite membranes show better thermal stability than others.

Keywords: sulfonated poly(aryl ether sulfone); phthalazinone; structure; composite
membranes; nanofiltration

1. Introduction

Access to secure, sustainable sources of fresh water is one of the urgent needs in this century [1,2].
Membrane separation technology, as a method for wastewater treatment, is considered as an
economical and environmentally friendly process. The technology has attracted increasingly more
attention because of its low energy consumption, more competitive operating cost, and separation
without phase change. Desalination by means of membranes appears to be an environmentally
low-impact and energy-efficient route to produce fresh water [3–6].

As one of the membrane separation processes, nanofiltration (NF) can be applied in various
industrial fields because it can remove multivalent salts and organic solutes with low molecular
weight [7–11]. NF membranes show lower rejection ability against monovalent metal ions than the
multivalent ones. NF also has some advantages, such as low maintenance and operation cost, high
rejection against multivalent metal ions, high flux, and low operational pressure [12–16]. Most NF
membranes are composite membranes consisting of a porous substrate and a top-separating layer.
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The chemistry and performance of the two parts of composite membranes can be independently
optimized to maximize the membrane performance [17]. The top-separating layer plays an important
role in the selectivity and permeability of composite membranes, and it is usually prepared from
charged polymer materials via different methods such as dip-coating, interfacial polymerization, and
so on [18–21]. Suffering from the limitation of thermal stability of common polymers, most polymer
composite membranes can only be applied below 50 ◦C. To prepare thermally stable membranes,
membrane materials with high thermal resistance should be used.

A kind of poly(aryl ether)s containing phthalazinone moiety groups, including poly(phthalazinone
ether sulfone) (PPES), poly(phthalazinone ether sulfone ketone)s (PPESK), poly(phthalazinone biphenyl
ether sulfone)s (PPBES), and poly(phthalazinone hydroquinone ether sulfone)s (PPHES), were synthesized
from 4-(4-hydroxyphenyl)-2,3-phthalazin-1-one (DHPZ) [22,23]. Sulfonated poly(aryl ether sulfone), such
as SPPES, SPPBES, and SPPHES, were prepared from PPES, PPBES, and PPHES, respectively [24–26].
The chemical structure of SPPES, SPPBES, SPPHES are shown in Figure 1. These polymers exhibit
outstanding thermal stabilities and excellent comprehensive properties and are considered as promising
membrane materials. In our previous work, composite nanofiltration membranes were fabricated from
sulfonated PPESK and SPPBES [27,28], and the effects of coating condition on the membrane performance
were investigated. The primary properties of nanofiltration membranes are salt retention and water
permeability, which depend on the polymer structure and properties of the top-separating layer [29,30].
However, a comparison and analysis of the relationship between the polymer structure and sulfonated
poly(aryl ether sulfone) membrane performance has not yet been made.

In this work, a systematic study on sulfonated poly(aryl ether sulfone) nanofiltration membranes
was performed to demonstrate the effect of chemical structure on membrane performance.
The composite membranes were fabricated from sulfonated poly(aryl ether sulfone)s with different
amounts of phthalazinone moieties and a similar degree of sulfonation. Scanning electron microscopy
(SEM) and attenuated total reflectance infrared spectroscopy were used to characterize the structures
and morphologies of the membranes. Separation properties, chlorine resistance, and thermal stability
of the membranes prepared from different sulfonated poly(aryl ether sulfone)s were investigated.
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2. Experiment

2.1. Materials and Instrument

PPESK was provided by Dalian New Polymer Co. (Dalian, China). SPPES, SPPBES, and SPPHES
were synthesized according to the method previously reported [24–26]. SPPBES was obtained from
the sulfonation of PPBES synthesized with the monomer ratio of DHPZ to biphenol (BP) of 6:4, and
SPPHES was obtained from the sulfonation of PPHES synthesized with the monomer ratio of DHPZ
to hydroquinone (HQ) of 4:6. The degree of sulfonation (DS) for each sulfonated poly(aryl ether
sulfone) was in the range of 0.82–0.87. Ion exchange capacities of SPPES, SPPBES, and SPPHES were
1.67 mmol/g, 1.70 mmol/g, and 1.81 mmol/g, respectively. Ethanol, ethylene glycol monomethyl
ether (EGME), 1,4-dioxane (DO), and acetone were all analytical grade and used directly. Na2SO4,
MgSO4, NaCl, and MgCl2 were used to characterize the separation properties of membranes as solutes.
A DDS-11A electrical conductivity instrument (Shanghai Leici Instrument, Shanghai, China) was used
to determine the salt concentrations. A flat-sheet dead-end membrane cell with an effective volume of
550 mL was used to evaluate the performance of the composite membrane.

2.2. Solubilities of the Polymers

An amount of 0.01 g dry polymers (PPESK, SPPES, SPPBES, SPPHES) were immersed into 1 mL
solvents at room temperature for 2 h, and the solubility of polymers was then observed.

2.3. Membrane Preparation

Composite membranes were fabricated following the same procedure as described in our previous
work [28]. A 2 wt.% solution of sulfonated poly(aryl ether sulfone) in different solvent systems was
prepared and filtered. PPESK ultrafiltration membrane with molecular weight cut-off of 10,000 Da
was used as a substrate. The PPESK membrane was tapped on glass, and the sulfonated copoly(aryl
ether sulfone) solution was then dropped on its surface. After the excess solution at the membrane
surface was removed by holding the membrane vertically, the membrane was cured at 90 ◦C for 30
min. The resulting sulfonated poly(aryl ether sulfone) composite membrane was stored in deionized
(DI) water before test.

2.4. Morphology and Structure

The morphologies of composite membranes were observed with SEM. The dried membrane
samples were immersed into liquid nitrogen and fractured. After the samples were sputtered with gold,
they were transferred to the SEM (QUANTA 450, FEI Company, Hillsboro, OR, USA) and measured.

Fourier transform infrared (FTIR) spectroscopy of PPESK and sulfonated poly(aryl ether sulfone)
membranes were collected with a Nicolet-20DXB spectrometer (Nicolet Instrument Corporation,
Madison, WI, USA) using attenuated total reflectance technique.

2.5. Water Flux and Salt Rejection

The performance of the resulting composite membranes was measured using a dead-end filtration
set-up. First, membranes were prepressured at 1.2 MPa for half an hour with DI water. After that,
flux and salt rejection were determined with 1.0 g/L salt aqueous solution under 1.0 MPa at ambient
temperature. The flux was obtained by the following equation:

F = Q/(At)

where F is the permeate flux (L/(m2·h)), A is the effective area of the membrane (m2), Q is the volume
of permeate solution (L), and t is the time (h).
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The salt rejection (R) was calculated with following equation:

R = (1 − Cp/Cf) × 100%

where Cp and Cf are the salt concentrations in permeate and feed solution, respectively. The salt
concentrations were obtained by determining the electrical conductance with a DDS-11A conductance
meter (Shanghai Leici Instrument Co., Ltd., Shanghai, China). All of the test processes were repeated
three times, and the average values were obtained.

2.6. Thermal Stability and Chlorine Resistance

To investigate the thermal stability of sulfonated poly(aryl ether sulfone) composite membranes,
the separation properties of the membranes were tested with 1.0 g/L salt aqueous solution under a
pressure of 1.0 MPa at the elevated operating temperature from 20 to 90 ◦C. In each step, the operating
temperature was kept constant for at least 30 min.

To investigate chlorine resistance of membranes, sulfonated poly(aryl ether sulfone) composite
membranes were immersed into 0.2 g/L sodium hypochlorite solution for 10 days. The membrane
sample was taken out and washed with DI water at an interval of 2 days, then the solution flux and
rejection were determined with 1.0 g/L Na2SO4 as feed solution under 1.0 MPa at room temperature.

3. Results and Discussion

3.1. Effect of Solvents Used in the Coating Solutions

For preparation of composite membranes by dip-coating method, the solvents used in the coating
solution should dissolve the coating materials and not damage the substrate membranes. The solubility
of polymers in solvents can be evaluated by solubility parameters. Bagley et al. [31] reported that
the effect of polar solubility parameter (δd) and dispersion solubility parameter (δp) was very similar,
but the effect of hydrogen bonding solubility parameter (δh) was completely different. Therefore, the
introduced volume solubility parameter (δv) is defined as follows:

δv =
√

δ2
d + δ2

p (1)

∆δ =

√
(δv1 − δv2)

2 + (δh1 − δh2)
2 (2)

where δd, δp, and δh refer to dispersion, polar, and hydrogen bonding components of the solubility
parameter, respectively; subscripts 1 and 2 refer to polymer and solvent, respectively; and ∆δ is the
difference in solubility parameter between the polymer and the solvent. The smaller the ∆δ value,
the better is the solubility of the polymer in the solvent. Generally speaking, polymer can be dissolved
in the solvent when ∆δ value is less than 5 MPa1/2 [32]. The solubility parameter of PPESK and
sulfonated poly(aryl ether sulfone)s were calculated according to our previous work [33] and are
shown in Table 1. Sulfonated poly(aryl ether sulfone) showed higher δh than PPESK, while the δv

was comparable. Based on Equations (1) and (2), the difference in solubility parameter between
solvent and polymer were obtained and are listed in Table 2. For the solvent systems, including
EGME, EGME + acetone (5:1), EGME + DO (4:1), and EGME + ethanol (4:1), the ∆δ values between
solvent and sulfonated poly(aryl ether sulfone) were less than or close to 5 MPa1/2. For the same
solvent, the ∆δ value showed the order SPPHES < SPPBES ≤ SPPES. However, the difference in
∆δ value was no more than 0.6 MPa1/2. This indicated that there was no significant change on the
solubility of sulfonated poly(aryl ether sulfone). The ∆δ values between solvent and PPESK were
more than 7.3 MPa1/2, indicating that PPESK showed poor solubility in these solvents. The results
were confirmed by the solubility test. From Table 3, it can be seen that SPPES, SPPBES, SPPHES were
soluble in the four solvents, and PPESK was insoluble in them. Therefore, these solvent systems could
be used as solvents to prepare the coating solution.
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Table 1. Solubility parameters of poly(phthalazinone ether sulfone ketone)s (PPESK) and sulfonated
poly(aryl ether sulfone)s.

Polymer δd/MPa1/2 δp/MPa1/2 δh/MPa1/2 δv/MPa1/2

PPESK 20.4 5.7 7.8 21.2
SPPES (DS = 0.87) 20.0 7.3 11.9 21.3

SPPBES (DS = 0.85) 19.4 7.1 11.6 20.6
SPPHES (DS = 0.82) 19.1 7.8 12.1 20.6

Table 2. Comparison of solubility parameters between sulfonated poly(aryl ether sulfone)s, PPESK,
and solvents.

Solvent δd/MPa1/2 δp/MPa1/2 δv/MPa1/2 δh/MPa1/2
∆δ/MPa1/2

SPPES SPPBES SPPHES PPESK

EGME 16.2 9.2 18.6 16.4 5.2 5.2 4.7 9.0
EGME + acetone (5:1) 16.1 9.4 18.6 14.8 4.0 3.8 3.4 7.5

EGME + DO (4:1) 16.8 7.7 18.5 14.6 3.9 3.7 3.3 7.3
EGME + ethanol (4:1) 16.1 9.1 18.5 17.0 5.8 5.8 5.3 9.6

Table 3. Solubility of PPESK and sulfonated poly(aryl ether sulfone)s.

Solvent PPESK SPPES (0.87) SPPBES (0.85) SPPHES (0.82)

EGME − + + +
EGME + acetone (5:1) − + + +

EGME + DO (4:1) − + + +
EGME + ethanol (4:1) − + + +

Solubility: + soluble; − insoluble.

Hamza et al. [34] reported that solvents used in preparing the coating solution had a great effect
on the performance of composite membranes. To investigate the effect of solvents on the membrane
performance, EGME, EGME + acetone (5:1), EGME + DO (4:1), and EGME + ethanol (4:1) were
used as the coating solvents to prepare sulfonated poly(aryl ether sulfone) composite membranes.
The performance of composite membranes for a 1.0 g/L Na2SO4 feed solution was measured, and the
results are shown in Table 4. SPPES composite membrane prepared from EGME + acetone (5:1) as the
solvent had the highest Na2SO4 rejection (90%), SPPBES composite membrane fabricated from EGME
as the solvent had the highest Na2SO4 rejection (86%), and SPPHES composite membrane prepared
from EGME + DO (4:1) as the solvent had the highest Na2SO4 rejection (87%), However, composite
membranes prepared from these solvents showed relatively low fluxes. With EGME + ethanol (4:1)
as the solvent, the Na2SO4 rejection of SPPES membrane was 88%, and the flux was 55 L/(m2·h),
while the SPPHES membrane showed 85% Na2SO4 rejection. With sulfonated poly(aryl ether sulfone)
composite membranes prepared with EGME + ethanol (4:1) as the solvent, the composite membranes
showed high rejection and flux. The rejection of composite membranes ranged from 81% to 88%, and
the flux of composite membranes was in the range of 45–55 L/(m2·h).

Table 4. Effect of solvents used in the coating solution.

Solvents
SPPES SPPBES SPPHES

R/% F/(L/(m2·h)) R/% F/(L/(m2·h)) R/% F/(L/(m2·h))

EGME + acetone (5:1) 90 32 80 59 74 50
EGME + DO (4:1) 85 50 80 43 87 31

EGME + ethanol (4:1) 88 55 81 50 85 45
EGME 80 64 86 16 80 50
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3.2. Separation Performance of Sulfonated Poly(aryl ether sulfone) Composite Nanofiltration Membrane

EGME + ethanol (4:1) was selected as the solvent for preparing sulfonated poly(aryl ether sulfone)
solutions. Composite membranes were fabricated from these solutions. The membrane performance
for 1.0 g/L of different salt solutions was tested under 1.0 MPa pressure. The test results are shown
in Table 5. The average pure water flux (PWF) was 70 L/(m2·h), 69 L/(m2·h), and 60 L/(m2·h) for
the SPPES, SPPBES, and SPPHES membranes, respectively. In addition, it was observed that SPPES
composite membrane showed high salt rejection as well as high pure water flux. It is known that the
permselectivity of composite membranes mainly depends on the active layer [35]. Compared with
SPPBES and SPPHES, SPPES containing more phthalazinone moiety groups had more free volume
and thus enhanced the permeability of SPPES composite membranes. Experimental results revealed
that the salt rejection of composite membranes followed the sequence SPPES > SPPHES > SPPBES.
The salt rejection decreased in the order Na2SO4 > MgSO4 > NaCl > MgCl2 for composite membranes
thus prepared. This is because the rejection of composite membranes is mainly influenced by Donnan
effect. The sulfonic acid groups on the surface of composite membranes are negatively charged.
The negatively charged groups show higher exclusion effect of divalent anions than monovalent
ones and higher absorption of divalent cations than monovalent ones. Therefore, the rejection for
divalent anion is higher than for monovalent anion, while the rejection for cations is in the reverse
order. This sequence agrees with the Donnan characteristic of salt rejection for a negatively charged
membrane [18].

Table 5. Separation performance of sulfonated poly(aryl ether sulfone) composite membrane.

Membrane PWF/(L/(m2·h))
R/%

Na2SO4 MgSO4 NaCl MgCl2

SPPES 70 85 53 47 14
SPPBES 69 77 31 20 10
SPPHES 60 80 38 35 14

3.3. Performance of Composite Membranes with Different Selective Layers at Increasing Solution Temperature

To investigate the thermal stability of membranes, the main method is to evaluate their separation
properties under various temperatures of feed solutions. Solute rejection and flux of polymer
membranes is related to the mobility of the macromolecular chain. Molecular chains of polymers
become more flexible and their shapes became easier to change as solution temperature rises.
The molecular chain is more sensitive to temperature, and the membrane pore is more likely to
change under hydraulic pressure at an elevated solution temperature [35].

To investigate the effect of the top-separating layer structure on the thermal stability of the
composite membrane, the separation properties of the composite membranes were measured when
the operating temperature was increased from 20 to 90 ◦C. The effect of operating temperature on
the properties of the three membranes is shown in Figures 2–4. As shown in Figure 2, there was
a slight change in Na2SO4 rejection of SPPES membrane from 86.0% to 82.9% when the solution
temperature increased from 20 to 90 ◦C, while the flux increased 4.1 times. In Figures 3 and 4, a similar
tendency for rejection of membranes with the same operating condition can be observed, and the
difference of the rejection of each membrane was less than 3.2%. With the solution temperature rising
from 20 to 90 ◦C, the flux of SPPBES membrane and SPPHES composite membrane increased 3 times
and 3.1 times, respectively. This indicates that the composite membranes with different sulfonated
poly(aryl ether sulfone)s as the active layer show good thermal stability. As the solution temperature
increased, the composite membrane with SPPES as active layer showed a higher increase in flux
than the others. This was mainly because sulfonated poly(aryl ether sulfone)s with similar degree of
sulfonation (SPPES, SPPBES, and SPPHES) were prepared from PPES, PPBES, and PPHES. The glass
transition temperature of PPES, PPBES, and PPHES is 305, 273, and 233 ◦C, respectively [22,23]. Due



Membranes 2019, 9, 6 7 of 12

to containing the most phthalazinone moiety groups in the polymer chains, PPES showed the highest
thermal stability among them. Although the glass transition temperature of sulfonated poly(aryl ether
sulfone)s could not be determined due to the decomposition of sulfonic acid groups over 250 ◦C, it
can be concluded that SPPES should have the highest thermal stability among the three sulfonated
polymers. Compared with SPPBES and SPPHES, the motion of the molecular chain of SPPES and the
structural change of composite membranes were more limited at a high temperature, while the viscosity
of water greatly decreased with an increase in solution temperature, leading to the increase in flux.
SPPES composite membrane showed better thermal stability than SPPBES and SPPHES membranes.
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3.4. Chlorine Resistance of Sulfonated Poly(aryl ether sulfone) Composite Membranes

Chlorine resistance of membranes is a very important parameter for nanofiltration applications.
To investigate chlorine resistance of membranes, the stability of sulfonated poly(aryl ether sulfone)
composite membranes in 0.2 g/L sodium hypochlorite solution was evaluated. The results are shown
in Figure 5. After being immersed in sodium hypochlorite solution for 10 days, the solution flux of
SPPES, SPPBES, and SPPHES composite membranes decreased 1.0, 1.3, and 2.7 L/(m2·h), and the
rejection of SPPES, SPPBES, and SPPHES membranes decreased 1.5%, 1.7%, and 0.9%, respectively.
There was no significant difference in the chlorine resistance of the prepared composite membranes.
The results indicate that all three sulfonated poly(aryl ether sulfone) composite membranes show good
chlorine resistance and are superior to polyamide commercial composite membranes.
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Although these sulfonated poly(aryl ether sulfone) composite membranes show high thermal 
stability and chlorine resistance, they show relative lower flux than those of polyamide commercial 
composite membranes [20,21]. Further work is under way to improve the flux of sulfonated poly(aryl 
ether sulfone) composite membranes. 

3.5. Fourier Transform Infrared Spectroscopy of Sulfonated Poly(aryl ether sulfone) Composite Membranes 

Figure 6 illustrates the FTIR spectra of PPESK substrate and SPPES, SPPBES, and SPPHES 
composite membranes between 800 and 2000 cm−1. As shown in Figure 6, the peak exhibited at 1660 
cm−1 confirmed the appearance of aromatic carbonyl C=O in PPESK, SPPES, SPPBES, and SPPHES. 
The peak at 1587 cm−1 can be considered as a C=C in the benzene skeleton. The strength of the peak 
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the content of phthalazinone moiety groups in these polymers deceased in the same order. A new 
absorption at 1024 cm−1 appeared in the spectra of SPPES, SPPBES, and SPPHES composite 
membranes, while it was absent in the spectrum of PPESK. The peak can be attributed to the 
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nanofiltration membranes can be successfully fabricated by coating sulfonated poly(aryl ether 
sulfone) on PPESK ultrafiltration support membrane. 
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Although these sulfonated poly(aryl ether sulfone) composite membranes show high thermal
stability and chlorine resistance, they show relative lower flux than those of polyamide commercial
composite membranes [20,21]. Further work is under way to improve the flux of sulfonated poly(aryl
ether sulfone) composite membranes.

3.5. Fourier Transform Infrared Spectroscopy of Sulfonated Poly(aryl ether sulfone) Composite Membranes

Figure 6 illustrates the FTIR spectra of PPESK substrate and SPPES, SPPBES, and SPPHES
composite membranes between 800 and 2000 cm−1. As shown in Figure 6, the peak exhibited at
1660 cm−1 confirmed the appearance of aromatic carbonyl C=O in PPESK, SPPES, SPPBES, and
SPPHES. The peak at 1587 cm−1 can be considered as a C=C in the benzene skeleton. The strength
of the peak at 1660 cm−1 decreased in the order of PPESK = SPPES > SPPBES > SPPHES. This was
mainly because the content of phthalazinone moiety groups in these polymers deceased in the same
order. A new absorption at 1024 cm−1 appeared in the spectra of SPPES, SPPBES, and SPPHES
composite membranes, while it was absent in the spectrum of PPESK. The peak can be attributed to
the characteristic absorption of O=S=O in sulfonic acid groups [28]. The results indicate that composite
nanofiltration membranes can be successfully fabricated by coating sulfonated poly(aryl ether sulfone)
on PPESK ultrafiltration support membrane.
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3.6. Morphological Structure of the Sulfonated Poly(aryl ether sulfone) Composite Membranes

SEM images of the cross section and surface of SPPES, SPPBES, and SPPHES composite
membranes are shown in Figure 7. SPPES, SPPBES, and SPPHES composite nanofiltration membranes
took on a composite structure, namely, a thin active layer appearing on the porous PPESK support
membrane. The effective thickness of the skin layer of the composite membranes was approximately
0.5 µm. The top surface feature of the three composite membranes appeared to be dense and smooth.
There was no obvious difference in the morphologies between SPPES, SPPBES, and SPPHES composite
nanofiltration membranes. The morphologies of the membranes illustrated that the composite
membranes with dense separating layer were successfully fabricated on the substrate.Membranes 2018, 8, x FOR PEER REVIEW  10 of 12 
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Figure 7. The morphologies of composite membrane. (a1,b1,c1) are the cross sections of SPPES, SPPBES,
and SPPHES, respectively, at 8000×. (a2,b2,c2) are the cross sections of SPPES, SPPBES, and SPPHES,
respectively, at 60,000×. (a3,b3,c3) are the surface of SPPES, SPPBES, and SPPHES, respectively.

4. Conclusions

Composite membranes were prepared using sulfonated copoly(aryl ether sulfone) with different
amounts of phthalazinone moieties (SPPES, SPPBES, SPPHES) as the selective layer via the dip-coating
method. Four solvent systems used in preparing the coating solution were investigated, and
EGME + ethanol (4:1) was selected as the optimal solvent system. The rejection of composite
membranes with different active layers followed the sequence SPPES > SPPHES > SPPBES. The results
revealed that SPPES composite membranes exhibited higher water flux and salt rejection than SPPBES
and SPPHES. Composite membranes showed nanofiltration characteristics. The salt rejection of the
three composite membranes decreased in the order Na2SO4 > MgSO4 > NaCl > MgCl2. The rejection
of the three composite membranes decreased slightly as the solution temperature was raised from
20 to 90 ◦C, while the SPPES composite membrane showed a higher increase in the flux than others.
The results indicate that composite membranes show good thermal stability, and the SPPES membrane
shows better separation properties and thermal stability than others. After being immersed in 0.2 g/L
sodium hypochlorite solution for 10 days, the solution flux of composite membranes decreased less
than 1.7%, indicating the good chlorine resistance of the three sulfonated poly(aryl ether sulfone)
composite membranes. There was no obvious difference in the morphologies between SPPES, SPPBES,
and SPPHES composite nanofiltration membranes.
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