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Abstract: Current and future demands for increasing the energy density of batteries without
sacrificing safety has led to intensive worldwide research on all solid state Li-based batteries.
Given the physical limitations on inorganic ceramic or glassy solid electrolytes, development of
polymer electrolytes continues to be a high priority. This brief review covers several recent alternative
approaches to polymer electrolytes based solely on poly(ethylene oxide) (PEO) and the use of nuclear
magnetic resonance (NMR) to elucidate structure and ion transport properties in these materials.
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1. Introduction

There is an ongoing quest to exploit the full potential energy embodied in the metallic Li+/Li
electrochemical couple in practical and safe battery systems. Using a pure lithium anode material
will increase volumetric and mass specific energy density by up to a factor of two while reducing
battery cell manufacturing complexity—both key next steps for electrified transportation and consumer
electronics [1]. To this end, solid state electrolyte materials have been under investigation for many
decades, and the history of polymer-based systems has been with us since the 1970’s when polyethylene
oxide (PEO) containing alkali metal salts was discovered to be an ionic conductor [2]. Though used
for niche applications in thin-film all-solid-state configurations, ceramic or glassy solid electrolytes
have recently experienced a strong resurgence in activity, due in part to the discovery of LGPS
(Li10GeP2S12) [3] and its Si analogue [4]. Recently, a novel class of glassy electrolytes and electrode
reactions has been proposed that work with both lithium and sodium ions [5], though these have been
demonstrated in cells with operational potentials under 3 V. The reactive RF (Radio Frequency) sputter
deposited LiPON (Lithium Phosphorous OxyNitride) system was demonstrated 20 years ago [6],
and has proven to be difficult and costly to scale commercially, even when the useable cell area is
on the order of square centimeters or smaller; large area cells are extremely problematic due to the
formation pinholes and defects during deposition. Other variations of inorganic electrolyte systems
have either been unable to suppress Li dendrites due to Li growth around ceramic grain boundaries
have had very low room temperature conductivities, or have been unstable/not demonstrated with
high potential cathode systems [7]. For large format applications where uniform thickness and
composition over a wide geometric area are of paramount importance, ceramics and glasses electrolyte
layers will pose substantial challenge as they suffer from structural rigidity resulting in loss of contact
upon repeated cycling.

Although polymers can circumvent some of these issues, there are multiple critical performance
parameters that dictate how a solid polymer will function in a battery environment, including ionic
transport, mechanical stability, electrochemical stability (at high and low voltage) interfacial integrity,
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and ability to function at high rate and aerial capacity. Variants of the polyethylene oxide (PEO)-based
polymer electrolytes have dominated the academic literature in this field. Approximately 40 years of
research on PEO-based polymer electrolytes [8–18] has shown that achieving sufficiently high cationic
conductivity (~10−4 S·cm−2 or better) at room temperature with high voltage cathode materials
remains elusive. In the PEO system, the primary conduction mechanism involves the cooperative
motion of cations and their coordinating polyether segments, which occurs in the amorphous phase
of these often heterogeneous polymer-salt complexes above their glass transition temperature [10].
This has led to decades of effort on suppressing the crystalline phase and lowering the amorphous
phase Tg for ambient temperature operation, with only incremental improvement in performance.
Angell [19] defined a useful concept, the so-called decoupling index, which parameterizes the degree to
which ionic and host structural relaxations are decoupled, and more recently Sokolov [20] recognized
that solvent-free polymer electrolytes will probably never achieve a high enough level of conductivity
unless the need for this coupling mechanism is eliminated or severely limited. Another consequence of
the reliance on polymer segmental motion for ionic conductivity is that the Li+ transference numbers
in PEO-based materials tend to be rather low, typically 0.25 or less [13].

Other necessary properties include: stability against lithium metal, ability to fill the material with
a high volume percentage of active inorganic materials, swelling and solvent resistance, low electronic
conductivity, and ease of processing.

To date, there have been few demonstrated practical device-level results showing the performance
and stability of dry polymer electrolytes in functional energy storage devices using a lithium metal
anode layer. Many published results elucidate conductivity as a function of temperature, and some
assess the chemical stability of the material under anodic and cathodic potentials, though do not
include data from full electrochemical cells including rate capability and cycle life studies. There are
examples that show the cycling behavior of full cells, though these all have similar characteristics,
including at least several of the following: cathode active material areal loading values are significantly
lower than those used in practical lithium based batteries, cathode materials having a redox potential
below 3.5 V, elevated temperature testing, and very small coin cell or swagelock test format, and all
have current densities at 125 mA/cm2 and below). Table 1 is an accounting some of these results,
many of which were recently published in premiere journals.
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Table 1. Recent cell-level results reported from cells with dry solid polymer electrolytes. (Courtesy of Prof. Jay Whitacre, Carnegie Mellon University).

Dry Polymer Electrolyte
Type

Room Temperature
Conductivity Scm−1

Cathode
Type Used

Cathode Loading
Used (wt. % Active)

Areal Cathode
Capacity

Test Fixture
Format

Testing
Temperature Used

# of Full/Deep Cycles
Demonstrated

PEO/nanocomposite [21] ~10−5 or lower
LiFePO4
(<3.5 V) 60% ~1 mAh/cm2 Coin cell 100 ◦C 100

Polyether/LiFTSI [22] ~8 × 10−5 LiFePO4
(<3.5 V) 54% Undisclosed Coin cell 80 ◦C 1300

PEO/nano particle
composite [23] ~5 × 10−5 LiFePO4

(<3.5 V) 63% Undisclosed Coin cell 70 ◦C 130

Single-ion BAB triblock
copolymer [24] Lower than 10−6 LiFePO4

(<3.5 V) 60% 8 mAh/cm2 Coin cell 80 ◦C ~100

Block Co-polymer
(P3HT-PEO) [25] ~10−5 or lower

LiFePO4
(<3.5 V) 50% Undisclosed Coin cell 90 ◦C 10’s

Ordered Liquid Crystalline
(meogen/Li salt) [26] ~10−6 Scm−1 LiFePO4

(<3.5 V) 65% Undisclosed Coin cell 60 ◦C 30

PEO/MEEGE [27] ~ lower than 10−5 LiFePO4
(<3.5 V) 83% Undisclosed Pouch Cell 60 ◦C 250

P(EO/MEEGE/AGE) [28] lower than 10−5 Nano-coated
LiCoO2

82% ~1 mAh/cm2 Coin cell 60 ◦C 25 (not fully stable at cathode
potentials)

PEM [29] <10−3 LiFePO4 80% 0.8–1.5 mg/cm2 Coin cell ambient 50 cycles (80% capacity after)

Interlinked solid polymer
electrolyte [30] ~10−4 LiFePO4

(2.5–4 V) Undisclosed ~0.1 mAh/cm2 Coin cell 20 ◦C 50

Single ion triblock
copolymer [31] <10−7 LiFePO4 60% Undisclosed Undisclosed 70 ◦C 300 (77% capacity retention)

Carbonate-linked PEO
electrolyte [32] <10−5 LiFePO4 80% 1.3–1.8 mAh/cm2 Coin 25 ◦C 20
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In reviewing the table, several things become apparent: none of these show performance at
current densities (>0.5 mA/cm2) which are needed for practical devices, most are at high temperatures,
and none stably incorporate cathode materials of practical importance with technologically
relevant loading levels. Nonetheless, the current status of the inorganic sulfide solid electrolytes
and the daunting scale-up problems they face, continues to motivate worldwide research into
polymer electrolytes.

Ion transport characteristics remain a limiting factor on the practical applicability of many
next-generation candidate battery electrolytes. NMR is especially well-suited to studying these
properties, as it can easily probe much of the relevant time and length scales, while individually
measuring the movement of the various constituents.

The net magnetization of the particles excited in the course of NMR experiments returns to
equilibrium according to two relaxation profiles (longitudinal, or T1, and in-plane, or T2). Both the
value of the relaxation rates and their characters (one- or multi-component) can be determined for
those electrolyte components which can be tracked with an NMR-active nucleus. These relaxation
rates are determined by intra- and inter-molecular spin interactions, and thus provide insight on the
short-range dynamics of the system [33]. In fact, relaxation measurements have been used to probe
dynamics since nearly the advent of NMR itself [34].

Long-range dynamics are also suitable for study by using pulsed field gradient NMR methods,
which have been in use for the past five decades [35]. As the Larmor frequency of precession is
determined by the local magnetic field strength, a magnetic field gradient encodes the position of
particles in their phase. Pulsed magnetic field gradients make it possible to encode and decode
positions while retaining high signal resolution. The resulting signal intensities can be compared to
measure the self-diffusion coefficients, which can be used to calculate several properties germane to
battery application.

This is all in addition to the structural characterizations which NMR is well-known for. The ability
of NMR to investigate the coordination and solvation of particles in not only liquids, but also solids
through the use of magic angle spinning, cross-polarization, and decoupling techniques has been
leveraged for many years. More detailed explanations of their application can be found in the
literature [36].

The purpose of this review is to examine several recent developments in the literature related to
NMR-based investigations of ion transport in selected families of polymer electrolytes, most involving
some modification of PEO. Though not exhaustive, we believe that the examples we have chosen to
highlight are representative of the majority of current approaches to viable polymer electrolytes, with
NMR as a primary analytical tool.

2. PEO and Ceramic Composite Electrolytes

Poly(ethylene oxide) was among the first polymers to be discovered to be an ionic conductor,
and the decades since this discovery has seen much time and energy put into reaching its potential
as a solid polymer electrolyte. It forms the basis of many more complex polymer systems, including
many composites and copolymers [12,37], thanks to the wealth of information on its mechanical and
electrochemical properties. Although PEO tends to suffer from low room-temperature conductivity
values, the significant advantages it brings in terms of promoting Li salt dissolution, as well as
its mechanical properties as a solid polymer, justifies the continued interest in its refinement as
an electrolyte.

Polymer/ceramic composite electrolytes are an attractive option for customized mechanical and
electrochemical properties. For decades, it has been known that incorporating certain ceramic materials
into the polymer matrix can improve the ionic conductivity of the material, mitigating one of the
key weaknesses of solid polymer electrolytes [38,39]. This effect is achieved via surface groups of the
ceramic particles modifying local structure, as suggested by studies investigating particles of reduced
size [40,41]. The particles are believed to affect the recrystallization of the polymer chains, resulting in
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amorphous regions conducive to fast Li+ ion transport [42]. Inclusion of nanowires in lieu of particles
can provide a long-range network for improved lithium mobility [43,44]. Ceramic additives enhance
the ability of the electrolyte to form a stable interface with electrodes [39,45]. Certain combinations
of polymer and ceramic can even result in a greatly increased Li+ ion transference number due
to cross-linking of the polymer chain promoted by the presence of the ceramic filler, resulting in
Li+-preferred transport channels near the particles [21].

More recently, “polymer-in-ceramic” electrolytes composites have demonstrated good mechanical
properties, high discharge capacities, and good capacity retention in solid state lithium-metal
batteries [46]. Incorporation of Li-ion conductive ceramics with a high shear modulus can have
the effect of increasing the mechanical resistance to lithium dendrite formation. This, paired with the
somewhat Li-insulating nature of the polymer matrix, results in the suppression of dendritic growth
while still allowing proper conduction of lithium ions [47]. Thanks to this improved interfacial stability,
lithium-metal compatible ceramic composite electrolytes have shown promising behavior [48,49].

A recent study by Zheng et al. [50] focused on elucidating the somewhat complicated nature
of Li-ion transport through composite materials, where the ions might transport through the
polymer matrix, through the ceramic fillers, and/or through their interfaces. Cubic-Li7La3Zr2O12

(LLZO) dry powder was added to a polymer matrix consisting of poly(ethylene oxide) and lithium
bis(trifluoromethanesulfonyl)imide (LiTFSI), then ball milled. The resulting slurry was solution cast
and dried into a composite film. Several films were cast with different wt. % fractions of LLZO, from
5 wt. % to 50 wt. %. Finally, a separate sample was cast with tetraethylene glycol dimethyl ether
(TEGDME) included, at 20 wt. % TEGDME and 50 wt. % LLZO.

6Li solid-state magic-angle spinning NMR was performed to characterize the local structure and
dynamics of the lithium ions. The results contain a peak representative of LLZO decomposed through
the ball-milling process at 1.3 ppm (relative to LiCl). The results also show a new peak at 1.8 ppm
relative to LiCl, indicative of the LLZO–PEO interface [51]. In the sample containing TEGDME, this
peak was observed to slightly shift and its area integral to increase. This, along with the increased
intensity of the decomposed LLZO peak, confirmed that the TEGDME assists in the breakdown of
LLZO, and may play a role in converting more of it to an interfacial complex.

Broadening suggestive of disorder of the local environments for lithium ions is observed in
the LiTFSI peak at higher concentrations of LLZO, characteristic of reduced polymer crystallization.
A slight reduction in the FWHM in the sample containing TEGDME can be attributed to a partial
averaging of the anisotropic interactions due to the increased mobility of the lithium ions. Evidence
of this increased mobility was also present in a reduced T1 of the decomposed LLZO signal for the
sample containing TEGDME.

Li-ion transport was further investigated by using 6Li metal electrodes in symmetric cells, and then
cycling them to enrich the 6Li in the polymer electrolyte via isotopic exchange. The low natural
abundance of the 6Li isotope (7.6%) means that the pathways preferred by Li-ion transport should
experience a noticeable enrichment of 6Li (Figure 1).

The results reveal that for the 5 wt. % LLZO sample, an enrichment in the LiTFSI signal is
observed, along with a shift in the peak resonance. This change in the ions’ electronic environment
is consistent with reduced PEO-Li interaction in amorphous phase PEO, leading to faster Li-ion
conduction (Figure 1a).

Combined with the T1 data and CPMAS (1H–6Li) showing very little interaction between LLZO
and the PEO matrix, the authors were abler to conclude that the 20% LLZO composite still mainly
conducts lithium via the polymer matrix, with the decomposed LLZO assisting the ionic conduction.

The LLZO 50 wt. % sample produced spectra suggesting that the main conduction pathway
had changed, with the bulk of enrichment occurring in the LLZO peak, with some in the LiTFSI and
interface peaks (Figure 1c). No enrichment was observed to occur in the decomposed LLZO peak.
There was now enough LLZO to form a coherent network for the ions to travel through.
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Finally, the LLZO 50 wt. % + TEGDME sample spectra revealed that the Li-ion conduction
pathway changed again, back to the decomposed LLZO and LiTFSI. This is consistent with TEGDME’s
high natural ionic conductivity, as well as its ability to reduce PEO crystallization, resulting in preferred
movement for lithium through the polymer/TEGDME matrix.Membranes 2018, 8, x FOR PEER REVIEW  6 of 23 
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Figure 1. 6Li NMR comparison of pristine and cycled LLZO (5 wt. %)-PEO (LiTFSI), LLZO (20 wt. %)-
PEO (LiTFSI), LLZO (50 wt. %)-PEO (LiTFSI), and LLZO (50 wt. %)-PEO (LiTFSI) (50 wt. %)-TEGDME [50].
Reprinted with permission from [50]. Copyright 2018 American Chemical Society.

Further electrochemical measurements via Electrochemical Impedance Spectroscopy (EIS) would
reveal that the 50 wt. % LLZO sample demonstrates the lowest conductivity of the samples
(<1 × 10−5 S/cm), due to the PEO pathways being blocked and the LLZO network providing poor
conductivity on its own. In contrast, the sample containing TEGDME demonstrated a much higher
conductivity (>5 × 10−5 S/cm) due to the TEGDME’s ability to facilitate ion conduction channels
through the PEO. In fact it can be argued that due to these interfacial issues, there is limited advantage to
incorporating a highly conducting ceramic over a non-conducting (in the bulk phase) one [7,12,14,21].

Another study by Lago et al. [23] leveraged solid-state NMR to study a plasticized PEO-based
Solid Polymer Electrolytes (SPE) containing anions grafted onto ceramic nanoparticles. The idea was
to combine the improved conductivity and electrochemical stability of a lithium-only conduction
polymer with the increased ionic dissociation, inhibited crystallization, and improved mechanical
properties associated with incorporated ceramic nanofillers [45].

Variable-temperature 19F solid-state NMR was performed on two samples: one, the classic
PEO(LiTFSI) [EO:Li 20:1], and one composite sample comprised of 5 nm Al2O3 ceramic nanoparticles
functionalized simultaneously with lithium 4-[2-(trimethoxysilyl)ethyl]benzene-1-sulfonyl
[(trifluoromethyl)-sulfonyl]amide and PEG9 trimethoxysilane [EO:Li 50:1] in PEO:PEGDME
1:1 (the choice of nanoparticles was based on a previous work) [52].
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Figure 2 shows the comparison of the resultant linewidths of the anion signals in the two
samples as a function of inverse temperature. A clear difference in the linewidth response is evident.
The linewidth in the LiTFSI−PEO system is heavily dependent on temperature, a consequence of the
fact that the mobility of the fluorine in the LiTFSI molecules is coupled to the mobility of the PEO
matrix. As the temperature increases, the PEO segments become much less rigid, allowing greatly
increased freedom of movement to the LiTFSI molecules, whose molecular tumbling averages out the
local anisotropic interactions and results in a much-narrowed NMR peak. To the contrary, the relative
temperature-independence of the sample containing functionalized Al2O3 nanoparticles indicates that
the local mobility of the anions is decoupled from that of the polymer matrix. Furthermore, the larger
linewidths in the sample containing nanoparticles at higher temperatures confirms that, although their
movement is decoupled from that of the polymer, it does experience restriction due to its association
with the Al2O3 nanoparticles.
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Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

EIS measurements would reveal that this composite material shows conductivity approaching
10−4 S/cm at 70 ◦C. This electrolyte was then used to create an Li-metal/LiFePO4 cell which
demonstrated better cycling performance than previous Li-metal batteries with composite polymer
electrolytes [53]. This, combined with the respectable conductivity and high cation transference
resulting from the immobilization of anions, means that this approach could represent a viable path
forward on the development of a practical solid-state battery.

These results demonstrate the ability of solid-state NMR to discern the different contributors to
ion transport in these complex materials. Polymer/ceramic composites represent a polymer electrolyte
family with excellent potential, thanks to its mechanical and electrochemical customizability and
compatibility. NMR can be instrumental in developing models to guide future design of these
promising electrolyte candidates, or in verifying critical aspects of their performance.

3. Copolymers, Block Copolymers, and Polymer Blends

There is significant interest in the use of copolymers as battery electrolytes, due to the fact that
different components can be used to selectively engineer the nanostructure, theoretically leading to
advantageous macroscale properties [54,55]. Crystallization of polymer-based electrolytes has been
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shown to limit the conductivity below practical application levels [56], but incorporating copolymers
has been shown to be a viable way to mitigate this crystallinity [57–59]. Phase separation can assist in
both improving conductivity and in inhibiting lithium dendrite growth through mechanical rigidity.

A recent study by Daigle et al. investigated the Li+ ion mobility in comb-like copolymers
via solid-state NMR [60]. These comb-like polymers were based on poly(styrene) (PS) backbone
fashioned through anionic polymerization. The purpose of this backbone was to provide mechanical
reinforcement to inhibit lithium dendrite growth via the phenyl groups. Poly(ethylene glycol)
methyl ether methacrylate (PEGMA, shown in Figure 3) was grafted to assist in Li+ conductivity
by suppressing crystallinity. LiTFSI salt was incorporated to provide charge carriers. Several samples
were created with differing ratios of PEGMA to PS (2.6:1, 3.9:1, and 30:1). Solid-state cross-polarization
(CP) and direct acquisition 13C NMR measurements were performed to characterize the structure of
the polymers, while 7Li NMR measurements were performed to track the li-ion transport mechanics.
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Figure 3. Poly(ethylene glycol) methyl ether methacrylate (PEGMA) chemical structure.

The structural analysis revealed that, as expected, the PEGMA backbones were more rigid than
the pendant groups. However, a signal attributed to the pendant groups was acquired in the CP
measurements; due to the fact that some rigidity is necessary to facilitate the magnetization transfer
necessary for a CP measurement, the authors concluded that the coordination between the pendant
groups and lithium salts resulted in this rigidity.

7Li NMR was then used to elucidate the Li-ion transport mechanisms. The samples with the lower
ratios of PEGMA to PS displayed conductivities above 10−4 S/cm at 60 ◦C. This approaches what
could be considered high enough conductivity for practical application. This suggests the potential
for these materials for use in energy storage, and the importance of understanding the mechanisms
underlying their operation.

Lithium ion diffusion was deduced by examining the linewidths of the peaks produced in the
spectra (it is possible to relate these linewidths to transverse relaxation of the signal, mediated by
short-range interactions). Similarly, short-range motion can be correlated with longitudinal relaxation
times, also measurable via NMR.

The linewidths, measured across the three samples as a function of temperature, reveal
that the lithium signals produce very sharp peaks when compared to copolymers based on
polyurethane-poly(dimethylsiloxane) [61]. This is correlated with more mobility of the ions, which is
corroborated by the fact that conductivity (measured here by AC impedance spectroscopy) is several
times higher than in that previous material, in the case of the samples with lower PEGMA/PS ratio.
In addition, when 1H decoupling was applied, no change was observed in the signal, leading the
authors to conclude that the lithium-ion mobility was high enough to motionally average out 1H–7Li
dipolar interactions.

T1 as a function of temperature, shown in Figure 4, would reveal that sample 2 (PEGMA:PS 3.9:1)
demonstrates the highest lithium mobility, while at the same time showing a weaker temperature
dependence than the other two samples. However, all three samples demonstrate a sharp drop in
mobility around 263 K.
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The similarity between the lithium ion mobility and PEGMA chain mobility allowed the authors
to conclude that their movement is correlated.

Another recent study reported on eight PEO-polycarbonates [62]. This study was motivated
by research showing that aliphatic polycarbonates could enable room-temperature cycling [63,64].
The authors prepared several different samples of PEO-PC polymer, varying both the ratio of PEO
to PC and the LiTFSI salt concentration. 1H, 13C, 19F, and 7Li NMR experiments were performed to
characterize the structure and local dynamics of the system.

The authors elected to investigate the effect of varying salt concentration on the PEO-PC (34:1)
sample, owing to it displaying the highest room temperature conductivity as measured by AC
impedance spectroscopy across the entire temperature range measured. 7Li relaxation experiments
would reveal that a new signal appears for both the 7Li and 19F spectra at the highest concentration of
salt, 80 wt. % LiTFSI (despite significant shimming issues affecting the lineshapes, the authors note
a discernable difference between the attenuation of the two peaks, concluding that the secondary peak
is not an artifact of shimming. However, it should be noted that the very broad lineshapes of the
secondary peaks can affect the accuracy of any relaxation times derived thereof.) The authors ascribe
this secondary peak to the formation of LiTFSI aggregates. The spectra are displayed in Figure 5.Membranes 2018, 8, x FOR PEER REVIEW  10 of 23 
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from [62]. Copyright 2018, with permission from Elsevier.
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The BPP (Bloembergen, Purcell, and Pound) model [34] was fitted with the resulting T1

measurements to calculate the correlation time, activation energy, and quadrupolar coupling constant
for the samples of varying salt concentration. The activation energy was found to drop dramatically
with higher salt concentrations, consistent with faster reorientational dynamics. Higher correlation
times were calculated for the ion aggregates, consistent with slower dynamics and less mobility.

7Li and 19F pulsed field gradient NMR was also performed on the PEO-PC (34:1) samples with
differing salt concentration. Of note is a sharp uptick in the diffusion coefficients of both 7Li and 19F
at 80% wt. LiTFSI, which the authors note contradicts the AC impedance spectroscopy-measured
conductivity values which follow a consistent downward trend with higher salt concentration. This is
explained through the fact that in many systems, the diffusion can be so slow, or the relaxation so
fast, that certain species may go undetected in the course of the experiment. It is very likely that
the Li ion’s share of the lithium signal is dying out before ever being acquired by the spectrometer,
resulting in diffusion coefficients being calculated from the attenuation of just a tiny fraction of the
“true” signal. This is an illustration of the importance of tempering conclusions made from solely NMR
by comparing against other methods of measurement.

Another recent study, carried out by Timachova et al. [65], focused on a nanostructured block
copolymer electrolyte. These electrolytes are of interest because they can form nanoscaled ordered
regions of alternating phase, which enables the kind of combinations of rigidity and conductivity
necessary in a practical battery electrolyte. Much work has focused on the characterization of these
materials due to their attractiveness as electrolytes [66,67]. In 2016, Chintapalli et al. [68] reported
a study of polystyrene block poly(ethylene oxide) (SEO) mixed with LiTFSI. Through a combination
of differential scanning calorimetry (DSC) and AC impedance spectroscopy, they determined that
the maximum conductivity of the SEO occurred at very different salt concentrations than in the PEO
(r = 0.21 as opposed to r = 0.11). This is due to inhibited grain growth, which increases the ionic
conductivity of the block copolymer.

Timachova et al. applied PFG-NMR to study a polystyrene-b-poly (ethylene oxide) copolymer/
lithium bis(trifluoromethanesulfonyl)imide solid electrolyte as a function of salt concentration.
Their goal was to characterize the local anisotropic nature of Li-ion diffusion due to the lamellar layers,
and to obtain the isotropic continuum transport properties (a first for block copolymer electrolytes).

The SEO in the samples was synthesized via sequential anionic polymerization of styrene followed
by ethylene oxide [69]. Electrolytes of several different LiTFSI concentrations were then prepared
(r = [Li]/[EO] = 0.03, 0.06, 0.12, 0.18, 0.24, and 0.3).

Pulsed-field gradient NMR was performed on the electrolyte samples, targeting both 7Li and 19F
nuclei to track the movement of cations and anions. Initial comparison of the attenuation curves of
a traditional PEO electrolyte with that of the SEO block copolymer reveals a clear difference, as seen
in Figure 6.

A linear relationship between the normalized signal intensity and the square of the gradient
strength is indicative of isotropic diffusion in this case, as illustrated by the PEO result. In contrast,
the SEO electrolyte produced a nonlinear relationship, indicating anisotropic diffusion. The curve
through Figure 6b represents the best fit of the anisotropic diffusion coefficient with D‖ (diffusion
along the lamellae) and D⊥ (diffusion perpendicular to the lamellae).
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diffusion has been characterized in a block copolymer electrolyte. The authors would leverage this 
new information to establish an NMR-based “morphology factor” representing the degree of isotropy 

Figure 6. PFG-NMR signal attenuation of 19F seen in (a) PEO(5)/LiTFSI at r = 0.06 and
(b) SEO(16−16)/LiTFSI at r = 0.18 [65]. Reprinted with permission from [65]. Copyright 2018 American
Chemical Society.

Figure 7 shows the resulting values through the PEO-rich lamellae (associated with D‖) and
across the PEO/poly(styrene) boundaries (associated with D⊥). AC impedance spectroscopy was
performed to measure the conductivity, and steady-state current and restricted diffusion measurements
were performed to help calculate the steady-state transference number. These values were then used
to calculate the Stefan-Maxwell diffusion coefficients, represented by the light squares in the plots.
The calculated diffusion coefficients representing the Li-PEO and TFSI−PEO interactions are consistent
with the D⊥ values measured by PFG-NMR. This strong agreement from two different measurements
allowed the authors to conclude that the electrochemical performance is strongly coupled with ion
transport through defects in this system.
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Figure 7. Parallel, D‖, and perpendicular, D⊥, diffusion coefficients and the Stefan−Maxwell
diffusivities of (a) Li and (b) TFSI in SEO(16−16) as a function of salt concentration, r, at 90 ◦C [65].
Reprinted with permission from [65]. Copyright 2018 American Chemical Society.

This result is significant because it represents the first time that the local anisotropic nature of
diffusion has been characterized in a block copolymer electrolyte. The authors would leverage this
new information to establish an NMR-based “morphology factor” representing the degree of isotropy
of diffusion. They would find that this factor indicates low isotropy at low concentrations of salt
(close to that expected for an ideal lamellar system with D⊥ = 0), and high isotropy with higher
concentrations of salt. Transmission electron microscopy (Figure 8) would confirm that the lamellar
structure contains significantly more defects with higher salt concentration. This provides further
evidence that the NMR measurements were able to accurately decouple the in-plane and through-plane
diffusion values. The results indicate that transport in the bulk is strongly influenced by defects in the
structure, providing guidance for further optimization of these materials.
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Figure 8. Dark-field transmission electron microscopy images of SEO(16−16) at (a) r = 0 and
(c) r = 0.18, reproduced from [68] and at (b) r = 0.06 and (d) r = 0.3 measured in this work. The bright
phase is poly(ethylene oxide) [65]. Reprinted with permission from [65]. Copyright 2018 American
Chemical Society.

Another study by Liu et al., in 2017 [70], would focus on a blended hybrid solid
polymer electrolyte. Blended polymers are attractive due to the ease of synthesis while still
providing a high degree of control over the mechanical properties of the end product [71–73].
This particular material studied was created by blending two organic-inorganic hybrids. One hybrid
consisted of (3-glycidyloxypropyl)trimethoxysilane (GLYMO), an organosilane, cross-linked with
a monoamine-based polyether (Jeffamine M-2070); the second consisted of GLYMO and poly(ethylene
glycol) diglycidyl ether (PEGDGE) reacted with a diamine-based polyether (Jeffamine ED2003).
These structures are illustrated in Figure 9. These hybrids would be combined in different ratios
and LiClO4 salt added to create several electrolyte samples for examination. Solid-state NMR was
performed on 13C, 29Si, and 7Li nuclei to characterize the lithium-ion mobility and confirm the structure
of the material.Membranes 2018, 8, x FOR PEER REVIEW  13 of 23 
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AC impedance measurements would suggest that the ion transport was linked to the segmental
motion of the polymer matrix, as is common in many solid polymer electrolytes. The authors
determined that a peak ionic conductivity should occur at a salt concentration of [O]/[Li] = 16.
This was based on the fact that increasing the salt concentration can have competing effects
on conductivity—higher concentration increases the amount of charge carriers, but too high of
a concentration can lead to ion aggregation and impede mobility. It should be noted here that some
recent studies have shown that certain salt concentrations outside the assumed window of interest can
yield competitive performance via interionic interactions [74].

7Li static linewidths were measured across a range of temperatures from −90 ◦C to 90 ◦C.
Measurements carried out without proton decoupling would be characterized by a plateau of broad
linewidths ~5 kHz at temperatures below −60 ◦C, and another flat region of narrow linewidths above
60 ◦C. Activation energies were calculated from these results to be 0.15 eV for the sample synthesized
from hybrid 1:hybrid 2 (70:30) with [O]/[Li] = 32 (denoted in the article as MP(70:30)-32 and 0.14 eV
for MP(70:30)-16, which is comparable to that of similar systems in the literature [75]. With proton
decoupling applied, a sharp decrease in the linewidth at lower temperatures was observed, leading the
authors to conclude that about 80% of the interaction causing broadening was due to 7Li–1H dipolar
interactions. VTF fitting of conductivity measured by AC impedance spectroscopy would confirm that
the ionic conductivity is strongly coupled to the polymer segmental chain motion.

Following up on this, 1H-decoupled 7Li MAS measurements were performed in the same
temperature range. These measurements revealed that the coordination between Li-ions and the
ether oxygens in the polyethers in M-2070, ED2003, and PEGDGE produced the strongest signal, while
that of the 7Li coordinated with GLYMO oxygen was extremely difficult to detect. The authors ascribe
this lack of signal to low GLYMO concentration in the sample.

Although the MP(70:30)-16 sample showed the highest room temperature conductivity value at
over 1x10-4 S/cm and an electrochemical stability window approaching 5 V, test cells incorporating
it showed significant irreversible capacity loss upon cycling due to the suspected formation of
a passivation layer. However, examination after cycling would show that the membrane showed no
signs of mechanical decomposition or particle aggregation.

4. Crystalline Polymer Electrolytes

Acceptable conductivity cannot occur in crystalline polymer electrolytes unless the ionic motion
can be effectively decoupled from the polymer matrix [76]. In fact, this decoupling is believed to
be an important step toward developing polymer electrolytes of any type that can provide the ionic
conductivities necessary for practical application [20]. In 2001, Gadjournova et al. showed how
crystallinity can be a boon for cation transport, due to the regularity of ordered diffusion pathways [76].
A number of approaches have been suggested in recent years for enhancing the conductivity, including
anionic doping, replacement of the ends of the polymer chains with glymes to enhance disorder [77–79],
and stretching of the polymer to align the chains and enhance transport along the longitudinal
axis [80,81].

Recently, Yan et al. reported a new crystalline solid polymer electrolyte consisting of
a PEO-urea-LiTFSI complex [82]. Their investigation was motivated by a previous study on a similar
ternary structure involving α-cyclodextrin, which demonstrated fast Li-ion movement through the
resultant structure. Urea was chosen as the next candidate, thanks to the formation of a crystalline
inclusion compound in PEO-urea binaries [83–85].

The ternary complex was prepared by dissolution of PEO, urea, and LiTFSI in acetonitrile
(with varying concentrations of the LiTFSI salt), followed by stirring, casting at 40 ◦C, and drying.
Wide angle x-ray spectroscopy was used to verify the crystalline nature of the resulting compounds.
The α-PEO-urea-LiTFSI complex forms the same crystalline structure as α-PEO-urea, only slightly
more compact. A high level of crystallinity is maintained. The highest-conductivity samples were
investigated via solid-state 1H–7Li and 1H–19F cross-polarization MAS NMR to determine Li+ and
TFSI− ion coordination.
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These tests would show evidence of correlation between Li+ ions and both NH2 (at ~6 ppm)
in urea and CH2 (at ~4 ppm) in PEO. This suggests that Li+ is present in the crystalline inclusion
structure, where both the urea and PEO are known to be present. The same trend is noted for the
1H–19F tests; TFSI− anions are correlated with both the urea and PEO, suggesting their presence in the
hexagonal urea channel as well. Of note here is the presence of two peaks in the 19F spectrum, which
the authors ascribe to differing environments. From an NMR perspective, relaxometry studies, as
well as diffusometry, could be of use here in further elucidating differences between the environments
(however, specialized systems would be required given the relatively slow diffusion expected from
their reported conductivities).

The authors describe the resultant system as consisting of the aforementioned inclusion structure
consisting of urea channels containing PEO chains and Li+ and TFSI− ions. There is evidence that urea
promotes ionic dissociation between Li+ and TFSI− [86]. In addition, the authors hypothesize that the
channels may trap the larger TFSI− anions, allowing the Li+ ions to travel freely. This would produce
conductivity and transference numbers more favorable for battery operation.

Impedance spectroscopy was also used to determine the conductivities of the sample. The highest
conductivity material demonstrates a conductivity of ~6 × 10−5 S/cm at 30 ◦C. This value compares
favorably to previous highly crystalline polymer electrolytes, and even to some amorphous species,
but it is still orders of magnitude below what would be required for a commercially viable battery.
However, this study demonstrates that exploitation of inclusion complexes similar to these could
facilitate competitive conductivities and transference numbers.

In another study, Fu et al. [87] reported a crystalline polymer electrolyte based on self-assembled
α-cyclodextrin (CD), polyethylene oxide (PEO), and Li+ salts. Through the literature, they identified
two key goals to increasing the ionic conductivity: to decouple the Li+ ions from the polymer chain
segments [24,88–96] and to generate long-range pathways for bulk ionic transport [97]. Along these
lines, they combined their self-assembly approach to creating ordered nano-tunnels with alteration of
the conformational sequence of PEO to inhibit interaction between Li+ ions and the polymer segments.
Samples of differing α-cyclodextrin to PEO ratios were synthesized following previous works [98,99].
1H–13C CP MAS NMR and wide angle X-ray diffraction measurements were performed to verify the
tunnel structure of the PEO chains. The 13C NMR spectra are displayed in Figure 10.Membranes 2018, 8, x FOR PEER REVIEW  15 of 23 
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Figure 10. The disappearance of the signal splitting indicates the formation of α-CD-PEO inclusion
complex [87] © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

The NMR results verify that the splitting is no longer resolved in the complex samples compared
to the neat α-CD, which has been associated in the literature with the formation of inclusion
complexes [100–102].
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Static 19F NMR measurements would reveal that the lineshape of the signal changes very little over
the temperature range 0–40 ◦C, with a broadness indicative of low mobility. In contrast, the 7Li static
NMR measurement (spectra shown in left of Figure 11) would manifest a narrow signal associated with
high mobility. This narrow signal at −1.15 ppm would be designated Li-2 by the authors, associated
with Li+ ions between polymer chains and CDs. Broader signals at −1.31 ppm and −0.64 ppm
would be assigned to Li+ ions strongly associated with the polymer chains and with the assembled
CDs, respectively.

In addition, the narrow Li-2 signal broadened significantly with lower temperature. This indicates
that the motion of the Li cations is decoupled from that of the anions, at least in the higher temperature
regime. This has important implications for the applicability of this material, as ion pairing can
significantly attenuate the practical conductivity of an electrolyte.
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Based on the linewidth of Li-2 observed in the NMR measurements, plotted in right of Figure 11,
the activation energy was calculated to be about 21.6 kJ/mol, which agrees, within error, with the
activation energy calculated from the temperature dependence of the conductivity (also shown in
right of Figure 11) measured by EIS (although the authors are careful to mention that this could be
coincidental). This low value indicates that the motion of the Li+ ions is coupled much less strongly
than in systems such as oxygen-based superionic conductors or EO/Li+ complex crystals [103,104].
This decoupling, in tandem with tunnel structure providing long-range Li+ transport pathways,
produces a high EIS-measured conductivity on the order of 1 × 10−3 S/cm at room temperature in the
sample with the lowest lithium concentration.

Further 2H solid state NMR measurements would provide evidence that the PEO chains were
forming all-trans conformation sequences. Simulations show that no stable structure exists for Li+ ions
to coordinate with the PEO chains in such a conformation sequence, further reinforcing the idea that
the Li+ ions are very weakly coupled to the PEO chains in this system. In the PEO4 sample, the PEO
chains are more likely to conform in the trans-trans-gauche sequence, resulting in stronger coupling
between ions and the polymer matrix, with resultant lower ion mobility and conductivity. These results
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have important implications for the refinement of solid polymer electrolytes which facilitate fast Li+

ion transport, both through the engineering of nanostructure and through attenuation of the interaction
between ions and the polymer.

5. Sodium-Conducting Electrolytes

Sodium chemistries represent an attractive alternative to the established lithium-based technology,
due to similar properties and much higher abundance. They are limited by a lack of compatible
electrodes, which are in turn limited by the need for a suitable electrolyte. A recent study by Pope et al.
reports an investigation of a single-ion conducting Na electrolyte [105]. Single-ion conductors promote
facile transport of one ion while trapping the counter ion. With proper engineering this can lead to
extremely high transference numbers and result in optimized battery performance.

This particular study is motivated by previous works identifying poly(2-acrylamido-2-methyl-
1-propane-sulfonate (PAMPS) as a suitable base for such an electrolyte, thanks to reduced cation
tethering to the immobilized anions [106–108].

Further studies have shown that incorporation of a bulky IL quaternary ammonium cations
can reduce the Tg by inhibiting crosslinking, leading to increased conductivity [109,110] and have
indicated that ether group-containing additives can partially solvate Na+ ions, further assisting in
their transport [111]. Putting these ideas together, the authors created an electrolyte by combining
a PAMPS homopolymer with an ether group-functionalized quaternary ammonium ion as illustrated
in Figure 12. They performed solid-state 23Na NMR experiments to further investigate the Na+

transport mechanism.
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Two-component T1 relaxation results would show strong evidence of at least two different
Na populations. The larger-linewidth component was assigned to a less-mobile population,
and corresponded to a larger T1. The difference in linewidths implies an expected difference in
T2 as well, making an exact population split calculation unfeasible due to the differing attenuation
effects. Variable-temperature linewidth measurements would reveal that the relaxation times of
the different populations become more and more similar above the glass-transition temperature.
The authors concluded that the less mobile Na signal can be attributed to ions bound to anionic sulfate
groups, with the more mobile signal attributed to unbound Na+ ions.

Despite the Tg-lowering effect of the ammonium cations, the glass-transition temperature
remains too high in this system for practical room-temperature application. Regardless, this study
demonstrates the selective ability of NMR to decouple the mobilities of different species, even in
multi-cationic systems.
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Another recent study focuses on the use of electrospinning to fabricate a sodium-ion conducting
PEO-based membrane [112]. Sodium is an attractive alternative to lithium-based chemistries, thanks
to its abundance and cost advantages. Recent research has shown that electrospinning can produce
membranes with enhanced performance when compared to traditional solution-cast membranes [113].
Samples were created by combining PEO with NaBF4 and succinonitrile (SN) in different ratios.

AC impedance spectroscopy would reveal that, near room temperature, the best conductivity was
observed in the sample containing (PEO:SN:NaBF4) in the ratio (18:0:1)—indicating that the inclusion
of the succinonitrile plasticizer did not provide an improvement in conductivity.

19F and 23Na solid-state NMR was then performed at ~265 K to investigate the local environments.
The results would indicate significant mobility differences between the samples of different
concentrations. In the case of the 19F spectra, a very broad linewidth is present in the (18:0:1)
sample, indicating relative immobility of the BF4 anions. In contrast, the (18:3:1) sample produces
significantly sharper linewidths, consistent with a much higher percentage of mobile anions. 23Na
NMR spectra would show the same trends across the different sample concentrations, with the (18:0:1)
sample having the lowest cation mobility. Variable temperature investigations of the linewidth of
the narrow component of the signals enabled the authors to estimate activation energies of about
42 kJ/mol for Na+ and BF4

− ions in the (18:0:1) sample, compared to 39 kJ/mol and 38 kJ/mol for
Na+ and BF4

−, respectively, in the 18:3:1 membrane. Despite the lack of measurable improvement in
conductivity, the authors conclude that the succinonitrile has a significant effect on the ionic mobility
in the membranes. In fact, the NMR lineshapes indicated multiple phases in the 18:3:1 sample—one
immobile PEO:NaBF4 phase, and one more mobile PEO:SN:NaBF4 phase.

The system was further elucidated by 13C MAS NMR on the 18:3:1 system, which allowed
the authors to estimate that about 1/3 of the PEO was in the mobile “SN-activated phase” after
deconvolution of the broad and narrow PEO signal components. CPMAS measurements and J-coupling
observed with the 1H decoupling deactivated would provide further evidence of this biphasic behavior.
This is also not observed in similar Li-based membranes studied previously [113]. The presence of the
immobile phase is thought to be the reason that the observed conductivity in the 18:3:1 membrane is
less than that of the 18:0:1 sample, despite the significantly higher local ionic mobility. Pulsed-field
gradient NMR may be useful in this case to establish a measurement to combine with the measured
conductivity and reveal more information about the long-range dynamics of the system. However, due
to the substantial nuclear quadrupole interactions resulting in rapid transverse relaxation associated
with 23Na, PFG NMR would be a very challenging undertaking.

6. Conclusions

Nuclear magnetic resonance has proven to be an invaluable tool in the characterization of both
structure and dynamics of a wide variety of materials. Its suitability for examining those properties
associated with battery performance justifies its continued use in optimizing the electrolytes of the
future; advances in both its technology and methodology allow it to remain relevant in the study of the
ever-more complex electrolyte systems being developed. The quest for a practical room-temperature
solid electrolyte continues, and the polymer electrolyte families described herein are but a small sample
of the research towards viability.
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