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Abstract: TiO2/g-C3N4/PVDF composite membranes were prepared by a phase inversion method.
A comparison of the performance and morphology was carried out among pure PVDF, g-C3N4/PVDF,
TiO2/PVDF and TiO2/g-C3N4/PVDF composite membranes. The results of permeability and
instrumental analysis indicated that TiO2 and g-C3N4 organic-inorganic composites obviously
changed the performance and structure of the PVDF membranes. The porosity and water content
of 0.75TiO2/0.25g-C3N4/PVDF composite membranes were 97.3 and 188.3 L/(m2·h), respectively.
The porosity and water content of the 0.75TiO2/0.25g-C3N4 membranes were increased by 20.8%
and 27.4%, respectively, compared with that of pure PVDF membranes. This suggested that the
combination of organic-inorganic composite with PVDF could remarkably improve UTS, membrane
porosity and water content.
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1. Introduction

The research on membranes has aroused great interest due to their wide applications in
environmental protection, chemical purification, electrolytes, substrates, coatings, etc. [1–6]. Generally,
there are two different types of membrane: inorganic and organic [7–10]. Poly (vinylidene fluoride)
(PVDF), a common organic membrane material with excellent chemical resistance and thermal stability,
has become a hot research topic in the membrane industry [11,12]. However, PVDF suffers from
several disadvantages, such as low surface energy and strong hydrophobic properties, which largely
limit the practical application of PVDF [13–16].

To date, a variety of strategies have been employed to fabricate hydrophilic PVDF membranes,
including coating [17], adsorption [18], plasma treatment [19], blending [20] and surface grafting
polymerization [21]. Among these, published research results thus far have been focused on PVDF
membranes fabricated by nanoparticle coating, due to the unique electronic, magnetic and optical
properties of nanoparticles, which would greatly improve the capabilities of polymers [22–25].
The nanoparticles introduced into PVDF membranes include polymeric chains and metal oxide.
From among the polymeric chains, surface-modified macromolecules have been used as additives
in the membrane matrix for anti-fouling applications [26–28]. This has been an effective strategy for
enhancing anti-fouling properties by mitigating membrane fouling. Generally, coating a thin film
and grafting polymer chains on the surface of the membrane have been two typical approaches in
previous research [29]. Among metal oxide nanoparticles, TiO2 has received the most attention, due to
its stability and availability [30–33].
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Recently, graphitic carbon nitride (g-C3N4) has become a promising candidate for photocatalysis
due to its low cost, visible-light response, simple synthesis and high chemical stability [34–37]. To date,
there have been several reports on the synthesis and application of g-C3N4/PVDF membranes [38–40].
In our previous report, g-C3N4/PVDF membrane was fabricated through a phase inversion method.
It has been found that dispersing g-C3N4 into PVDF membrane can change the thermal decomposition
process of PVDF membranes.

In this paper, we propose a facial approach for obtaining TiO2/g-C3N4/PVDF composite membranes
by a phase inversion method. It is clearly demonstrated that the TiO2 and g-C3N4 can obviously change
the performance and structure of PVDF membranes. Moreover, the effects of organic-inorganic composites
on the performance and structure of the PVDF membrane are also investigated.

2. Experiment

2.1. Materials

Poly(vinylidenefluoride) (PVDF), the membrane material, was purchased from the Shanghai 3F
New Materials Co., Ltd., Shanghai, China. N,N′-dimethylformamide (DMF), Silane coupling agent
(SCA), polyethylene glycol (PEG 6000), Rutile TiO2 nanoparticles, and Melamine were purchased from
Sinopharm chemical reagent Co., Ltd., Shanghai, China. All of the used chemicals were of analytical
grade, and were used without further purification.

2.2. Preparation of Carbon Nitride (g-C3N4)

In a typical synthesis, 20 g melamine was transferred to an alumina crucible with a cover and
heated to 550 ◦C in Ar atmosphere for 2 h with a heating rate of 5 ◦C/min. After undergoing
various reactions at high temperature, a light-yellow powder of g-C3N4 was finally obtained in the
alumina crucible.

2.3. Preparation of Membrane

In a typical synthesis p, 0.6 g PFG-6000 was introduced in 21 mL DMF and stirred for 30 min
at 50 ◦C. After that, 3 g PVDF and 1.5 mL SCA was added into the previous solution and stirred for
another 30 min to form a homogenous suspension. The right amount of TiO2 and g-C3N4 were added
and stirred for 4 h. Finally, the final solution was slowly poured on the near end of the glass and
a casting knife was placed on one edge of the glass to cast a membrane with a thickness of 2 mm.
The obtained samples were denoted as xTiO2/yg-C3N4/PVDF membrane, where x and y refer to the
mass ratio of TiO2 and g-C3N4.

2.4. Contact Angle Measurement (Sessile-Drop Method)

Water contact angle was measured with a Data Physics optical contact angle measuring instrument
with the droplet size controlled using a Gilmont syringe (Chengde Dingsheng testing machine testing
equipment Co., Ltd., Chengde, China). Distilled water was used for analysis. The advancing angle
was measured when water was added to a droplet spreading over the membrane surface. Droplets
were in placed in contact with the membrane at several different locations on each membrane sample
to obtain a series of contact angle pairs. All measurements were carried out at room temperature.

2.5. Porosity Measurement

In order to evaluate the porosity of the membranes, the membranes were placed in an air-circulating
oven at 60 ◦C for 24 h. Then, they were weighed after wiping off surface water with blotting paper.
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After that, the wet membranes were placed in an oven at 80 ◦C for 24 h in order to ensure they were
completely dry. The porosity of the membranes (P) was calculated by:

P(%) =
W0 −W1

Ah
× 1000,

where P is the porosity of membrane, W0 is the wet sample weight (g), W1 is the dry sample weight
(g), A is the square of membrane (cm2) and h is the thickness of membrane (mm).

2.6. Characterization

The mechanical strength of the membranes was tested by Instron 5542 Material Testing Instrument
(Changchun Kexin Experimental Instrument Co., Ltd., Changchun, China) at room temperature (25 ◦C)
and 80% relative humidity. Fourier Transform Infrared (FT-IR) spectroscopy was performed on a Nexus
870 spectrometer (BRUKER, TENSOR27, Karlsruhe, Germany). Field Emission Scanning Electron
Microscopy (S-4800 Hitachi, Tokyo, Japan) was applied to observe the morphology of the resulting
membranes. Each sample was clamped at the both ends with an initial gauge length of 100 mm and
width of 20 mm. Thermogravimetric Analysis (Simultaneous TGA-DSC, New Castle, DE, USA) was
conducted under nitrogen from 30 to 700 ◦C at a heating rate of 10 ◦C·min−1. X-ray diffraction patterns
were recorded by X-ray Diffractometer (BRUKER-AXS, Karlsruhe, Germany).

3. Results and Discussion

Figure 1 depicts the FT-IR spectra of PVDF, TiO2/PVDF, g-C3N4/PVDF and TiO2/g-C3N4/PVDF
membranes. The 0.75TiO2/0.25g-C3N4/PVDF membrane was characterized by typical IR patterns of
PVDF membrane, indicating that the main chemical skeleton of PVDF membrane had been retained.
There is a weak band located at 2917 cm−1, which is associated with the CH stretching of PVDF
structure [41]. The band at 3341 cm−1 is associated with OH stretching vibration of water molecules
emanating from the polymer pores [42]. Notably, the absorption band of OH for TiO2/PVDF was
weakened compared with that of PVDF, which may be caused by the effects of the hydrogen bonds
between the fluorine atoms in PVDF and the oxygen atoms in TiO2, implying that the TiO2 had
been successfully distributed on the surface of PVDF. Interestingly, the band at 3341 cm−1 appeared
in g-C3N4/TiO2/PVDF, which was associated with the stretching mode of N–H of g-C3N4 [43].
This phenomenon was attributed to the g-C3N4 having also been successfully distributed on the
surface of PVDF.
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Figure 1. FTIR spectra of PVDF, TiO2/PVDF, g-C3N4/PVDF and TiO2/g-C3N4/PVDF membranes.
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The morphologies of PVDF, TiO2/PVDF, g-C3N4/PVDF and g-C3N4/TiO2/PVDF membranes were
investigated through SEM, and the results are presented in Figure 2. Before SEM, the sample membranes
have to be dried. Generally, three different drying methods have been proposed to dry membranes,
including room temperature-oven drying, ethanol-hexane drying, and freeze-drying [44,45]. In this
paper, room temperature-oven drying is used. The membranes are firstly dried at room temperature
for 12 h, and then dried in an oven of 120 ◦C for 6 h. Compared with the porous and coarse structure
of PVDF membrane (Figure 2a), both TiO2/PVDF and g-C3N4/PVDF (Figure 2b,c) membranes show
a smooth structure with circular and dark voids of uniform dimensions. Notably, the g-C3N4/TiO2/PVDF
membrane (Figure 2d) shows decreased but more regular and uniform voids.
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Figure 2. SEM images of (a) PVDF membrane; (b) TiO2/PVDF membrane; (c) g-C3N4/PVDF
membrane; and (d) TiO2/g-C3N4/PVDF.

To further study the physical strength and durability of the membrane, the Ultimate Tensile
Strength (UTS) was measured, and the results are shown in Tables 1–3. As expected, 0.75TiO2/
0.25g-C3N4/PVDF membrane showed the highest UTS value. Values for TiO2/PVDF, g-C3N4/PVDF,
and 0.75TiO2/0.25g-C3N4/PVDF membranes were measured as 7.5, 7.1 and 8.7 MPa, respectively.
It is clear that the addition of TiO2 and g-C3N4 to PVDF improved the mechanical strength of the
composite membranes. It is well known that membranes with macro-void morphologies often show
inferior mechanical properties [42,46]. It was assumed that the increased UTS in TiO2/g-C3N4/PVDF
composite membrane was attributable to the decreased voids in the membrane structure. Furthermore,
0.75TiO2/0.25g-C3N4/PVDF composite membrane exhibited the highest tensile strength, which could
be attributable to there being fewer voids in the membrane structure.

To determine the hydrophilicity/hydrophobicity of the membrane surface, the contact angle was
measured. As shown in Table 1, the contact angle of the as-prepared membrane with TiO2 and g-C3N4

was decreased. It is well known that the membrane wettability of the membrane is influenced by the
membrane material, as well as the surface porosity and roughness [47,48]. After adding TiO2 and
g-C3N4, the surface porosity sharply increased. In other words, adding the TiO2 and g-C3N4 leads to
a higher surface porosity and results in a decreased contact angle of the membrane.
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Table 1. TiO2/g-C3N4/PVDF composite membranes compositions.

Membrane Composition (wt %) UTS (MPa) Contact Angle Porosity Water Content

PVDF - 0.27 75.98 50 90.3
TiO2/PVDF - 0.29 56.22 71 111.3

g-C3N4/PVDF - 0.29 58.64 71 127.7
TiO2/g-C3N4/PVDF 0.75:0.25 0.33 62.57 67 143.2
TiO2/g-C3N4/PVDF 0.5:0.5 0.29 70.89 60 124.5

Table 2. Water content of TiO2/g-C3N4/PVDF composite membrane.

Parametric
Membrane

Composition
(wt %)

Contact Angle Water Content

Initial
State 30 s 60 s Container

Quality
3 min Later

Quality
JW L/

(m2·h)

PVDF - 82.34 72.62 75.98 1.9164 7.7294 90.3
TiO2/PVDF - 73.27 68.06 56.22 4.0196 10.6646 111.3

g-C3N4/PVDF - 75.53 65.94 58.64 3.9521 11.5824 127.7
TiO2/g-C3N4/PVDF 0.75:0.25 79.29 70.93 62.57 3.8871 12.4376 143.2
TiO2/g-C3N4/PVDF 0.5:0.5 77.53 79.42 70.89 2.7236 9.8236 124.5

Table 3. Porosity of TiO2/g-C3N4/PVDF composite membrane.

Parametric Membrane
Composition

(wt %)
Porosity (%)

mwet (g) mdry (g) ε

PVDF - 0.06 0.03 50%
TiO2/PVDF - 0.07 0.02 71%

g-C3N4/PVDF - 0.07 0.02 71%
TiO2/g-C3N4/PVDF 0.75:0.25 0.06 0.02 67%
TiO2/g-C3N4/PVDF 0.5:0.5 0.05 0.02 60%

Membrane porosity and water content play an important role in membrane performance.
As shown in Table 1, the porosity and water content of the 0.75TiO2/0.25g-C3N4/PVDF composite
membranes were 97.3 and 188.3 L/(m2·h), respectively. This can be ascribed to the improvement in the
hydrophilicity of the composite membranes because of the addition of TiO2 and g-C3N4.

To further explore the pyrolysis properties of the 0.75TiO2/0.25g-C3N4/PVDF composite
membrane, a temperature-domain TGA was conducted, and the results are shown in Figure 3.
It is clearly shown that the TiO2/g-C3N4/PVDF composite membrane exhibited a higher thermal
decomposition temperature than that of the pure PVDF membrane, indicating the better thermal
stability of the composite membrane, which could potentially be attributed to the physical and
chemical interactions between PVDF chains and g-C3N4 surface functional groups.
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The crystal structures of the g-C3N4, PVDF and g-C3N4 PVDF membranes were characterized by
XRD. As shown in Figure 4, two pronounced peaks at around 13.0◦ and 27.4◦ were observed in the
XRD patterns of g-C3N4, corresponding to the in-plane structural packing motif and the interlayer
stacking of aromatic systems, respectively [34]. The XRD patterns of the g-C3N4/PVDF membrane
showed a weak peak of g-C3N4, which could be attributed to the low g-C3N4 content.
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