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Abstract: Pervaporation (PV) has been considered as one of the most active and promising areas
in membrane technologies in separating close boiling or azeotropic liquid mixtures, heat sensitive
biomaterials, water or organics from its mixtures that are indispensable constituents for various
important chemical and bio-separations. In the PV process, the membrane plays the most pivotal
role and is of paramount importance in governing the overall efficiency. This article evaluates
and collaborates the current research towards the development of next generation nanomaterials
(NMs) and embedded polymeric membranes with regard to its synthesis, fabrication and application
strategies, challenges and future prospects.
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1. Introduction

The development in current separation technologies has envisioned a green and invincible future
that impelled the interest of energy preservation, along with waste minimization and zero discharge
all over the world [1]. The concept of a clean and sustainable future has emphasized the integration of
energy resources and various processes, as well as the retrieval and reutilization of valuable products
from waste streams [2]. To achieve this goal, membrane-based separations may be considered as an
auspicious substitution over traditional separation processes.

A membrane is a permselective barrier that allows particular species to pass through it while
posing a partition for non-selective species. The membrane technologies are fast-developing and
cutting-edge separation technologies that could be extensively employed in environmental remediation,
green energy, food, chemical and pharmaceutical sectors [3–8]. In general, six major membrane
processes, including microfiltration (MF), ultrafiltration (UF), reverse osmosis (RO), electrodialysis
(ED), gas separation (GS) and PV have found use in such applications.

PV is a membrane process involving separation of liquid mixture through a dense selective
layer of an asymmetric membrane. PV is being tried extensively on systems which are difficult to
separate by the existing separation processes, like distillation, adsorption and extraction. In fact, PV is
an effective candidate for separating azeotropic and close boiling liquids, heat sensitive materials,
organic mixtures along with removal of dilute volatile organic compounds (VOCs) from wastewater
and recovery of volatile aroma compounds from fruit juices [9–17]. PV permits the separation of
azeotropic mixtures without using a third component that may steer towards undesired side effects,
like hydrolysis. Although research and development on PV membranes and process have recently
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attracted utmost attention of the scientific community, Kahlenberg qualitatively studied the separation
characteristic of a hydrocarbon from its alcohol mixture through a rubber membrane as early as
1906 [18]. In fact, Kobar, in 1917, first coined the term ‘pervaporation’ from the abbreviation of
‘permeation’ and ‘evaporation’, where he used a collodion membrane (cellulose nitrate) for separating
water from a serum albumin-toluene solution (300:25 v/v) [19]. After that, PV has comprehensively
been studied by several researchers, as well as industries owing to its eco-/cost-friendly performance
potential and simple instrumental design. Although few review papers have summarized the historical
development and commercialization of PV [20,21], this has been schematically presented in the present
review (Scheme 1) [18–30].
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So far separation by PV has been tested for the following three categories, (i) dehydration of
organics; (ii) removal of traces organics from aqueous solutions, (iii) organic-organic separation, etc.
With the availability of novel efficient membranes, PV has been increasingly developed for large scale
processes and until 1999, more than 90 industrial PV units were established throughout the world [31].

Afterward, around 300 US and European patents on PV were published and more than
100 PV units, mainly dealing with the dehydration of organic solvents, were set up [31,32]. In most
of the cases, the optimized solution turns out to be a hybrid process integrating the PV with one
or more other separation technologies, such as distillation, or with a chemical reactor in the final
stage of separation [33]. As an example, for the dehydration of ethanol, it is first concentrated to
90 wt % by distillation and then followed by its further concentration to 99.95 wt % ethanol by
PV. The development and application of industrial scale PV system for organic-organic separation
continued challenging, mainly due to the unavailability of appropriate membranes and modules
that can handle harsh organic separation environment [34]. However, pervaporative recovery of
specialty organic compounds, such as retrieval of heat-sensitive aroma in the food industry, dairy
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flavor compounds, aromatics removal from gasoline, separation of bio-butanol, has been explored [16].
These compounds are often present at very low concentrations in the mixtures and their recovery
with traditional techniques, such as distillation and partial condensation, are not very simple [16].
Recently, the importance of PV separation technology increases noticeably as the requirements and
awareness for the green environment increases, and the demand for the supply of more fresh water
and reutilization/recycling of wastes multiplies. Being a promising technology, PV has the potential to
efficiently solve such burning issues and will scientifically and industrially be viable to address these.

In PV, the membrane itself is the key factor, and hence, various materials including polymeric,
inorganic and hybrid have been tried. Among them, polymers are primarily and the most extensively
used PV membrane materials owing to their easy processing, satisfactory mechanical stability,
controlled and tunable transport properties and low cost. However, the low chemical and thermal
stability, poor resistant towards hazardous environment, and especially the inherent trade-off relation
between permeability and selectivity limit the applicability of such polymeric membranes. On the other
hand, a unique type of membrane, known as mixed matrix membrane (MMM), can be fabricated via
employing two or more different materials of diversified physicochemical nature and such membranes
possess a continuous phase, usually a polymer, embedded through a second dispersed phase [35].
In MMMs, appropriate selection of different phases is important and in many cases, addition of a small
amount of dispersed phase may improve the physicochemical properties and separation proficiencies.

Recently, nanotechnology has been considered as one of the highest potential areas for resolving
the technical challenges coupled with the separation and purification technologies. The development of
distinct nanostructured materials reformed the conventional perception of separation media, streaming
new separation methods that outstrip the contemporary accomplishments with their unique properties.
The development of superior membrane materials in terms of both permeability and selectivity,
fabricated from novel polymers and other NMs, and their commercialization into long-life stable
modular configurations open the paths towards real time application of PV separations. Further,
improved cost effective systems and module design, optimized collaboration and integration with
existent technologies for enhanced recovery from fermentation, esterification and other bio-separation,
reduce the overall capital investment. In this review article, the current research and development of
polymeric membranes embedded with novel NMs for next generation pervaporative separation and
purification process, concerning its synthesis, fabrication and application strategies, challenges and
future prospects has been explored.

2. Fundamental Theories of Pervaporation

Studies on the separation mechanism proposed a number of opinions on how the transport
of a particular component takes place through the membrane. Initially, it was proposed that the
selectivity of the membrane raised in the boundary layer between liquid and gaseous zones in
the membrane [23] and may be a result of selective permeation through the polymer crystal [36].
The importance of the specific interactions like, H-bonding, between polymeric chains and permeate,
was rationally understood/identified [37]. However, previously, diffusion and concentration gradients,
in the different solvent components, were believed to be the key driving force for the PV process [38].
However, among these approaches, majority of the researchers believe that PV takes place through
a dense permselective membrane, where the liquid feed mixture in contact with one side of the
membrane being selectively absorbed and diffused through the membrane, followed by removal from
the downstream side.

Transportation of a component across membrane takes place when a driving force, i.e., a potential
difference acts on the individual component in the system. The potential difference that arises may be
due to differences either in pressure, concentration, temperature or electrical potential. Depending
on the nature of the membrane and the species to be separated, the mode of transport through a
membrane can be categorized as passive, active or facilitated type. In passive transport, the membrane
acts as a barrier and the permeation of components is determined by their diffusivity and concentration
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in the membrane or simply characterized by their size. The driving force in this type of transport is the
gradient in potential. Another form of passive transport is ‘facilitated’ transport or ‘carrier-mediated’
transport. In this case, the transport of a component across a membrane is enhanced by the presence of
a carrier, which is mobile in nature. In active transport, the driving force for transport is achieved by a
chemical reaction in the membrane phase.

2.1. Parameters in Membrane Performance

The PV membrane is mainly characterized by two parameters, flux (Ji) and the separation factor
(SF) (αi

j). Now, Ji can be determined by measuring the permeant mass/volume per unit membrane
area per unit time using Equation (1).

Ji =
Qi

A× ∆t
(1)

Here, Qi and A represent the quantity (in gram or mole) of the permeate collected in time interval
∆t and the effective membrane area, respectively. Again, αi

j can be defined using Equation (2).

αi
j =

Yi/Yj

Xi/Xj
(2)

Here, Xi/Xj and Yi/Yj represent the fractions of the components i/j in feed and permeate,
respectively. In fact, the membrane SF is often called membrane selectivity (MS). A group of authors
occasionally report their results in terms of enrichment factor (β), which is the ratio of concentrations
in the permeate to the feed. However, both Ji and αi

j not only depend on the intrinsic properties
of the membrane used, but they are also a function of the experimental conditions, from which the
problem of reporting the data in terms of fluxes and SFs originates [39,40]. In fact, a small change in
the operating conditions or slight modification in the membrane could change the results significantly.
It is therefore very difficult to compare the PV results between sets of data obtained under different
operating conditions. Considering these factors, a better way to represent the PV data is membrane
permeability (Pi), permeance (Pi/l) and selectivity (αij) [39].

In PV, the overall performance of the membrane is often evaluated in terms of permeation
separation index (PSI) [41], which can be expressed by Equation (3).

PSI = Ji(α− 1) (3)

However, from the Equation (3), it is clear that when α = 1, no separation takes place, and zero
PSI indicates either zero flux or zero separation.

2.2. Transport in PV

In PV process, transport through a membrane may be described by the two main mechanisms,
which are discussed below.

2.2.1. Preferential Sorption-Capillary Flow (PSCF) Mechanism

In 1987, Sourirajan and Shiyao proposed this mechanism as a combination of RO separation
followed by evaporation and gas/vapor transport through capillary pores on the surface layer of the
membrane [42,43]. In fact, in this mechanism, effective molecular size of the permeants, pore size and
its distribution in the membrane and the specific interaction between the permeant and the membrane
material regulates the separation. The liquid feed flows through the tiny cylindrical pores in the dense
membrane and evaporates as vapor from the pore outlet in the downstream side under low pressure.
However, the assumption of cylindrical pores, effect of the size and distribution limits its acceptability
in explaining the separation characteristics. The model is also unable to justify the inverse relation of
flux and membrane thickness, membrane swelling, and trade off relationship of flux and SF.
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2.2.2. Solution-Diffusion (SD) Mechanism

SD mechanism is the most widely accepted transport mechanism for PV, which mainly consists
of three steps: first, sorption of the liquid feed mixture into the membrane at the upstream side;
second, diffusion of the sorbed component through the membrane due to the presence of concentration
gradient, and finally desorption of the permeants at the downstream side under vacuum as vapor [44].
Thus, the separation is achieved via the differentiation in solubility and diffusivity of various species
into the membrane matrix. Desorption at the downstream side under low pressure is very fast and
does not contribute any effect in separation performances. In the SD model, it is assumed that the
pressure within the membrane is quite uniform and the concentration gradients present across the
membrane are expressed in terms of the chemical potential gradient [44].

Sorption of the Permeants

The sorption of the permeants occurs as a result of the activity gradient when the liquid mixtures
come into contact with the dry polymer membrane surface. Sorption is a thermodynamic phenomenon
that reaches equilibrium as soon as the activity of the sorbed species, into the polymer matrix, becomes
equal to the activity of the bulk liquid. The relative sorption of the permeants depends on the relative
solubility of the individual species into the membrane matrix. The solubility, which is a measure of
the amount of permeant sorbed by the membrane, varies with different species due to the presence of
specific interaction between the permeants and the membrane material. The separation is obtained
because of this preferential sorption among liquids mixture into the membrane matrix. The solubility
parameter (SP) theory, based on free energy of mixing (∆GM), implies that the preferential sorption
takes place when the SPs of both polymer and the permeant species are very close. Another important
factor is the interaction parameter that determines the affinity of a polymer for a particular species.

Diffusion through the Membrane

The variation in the rate of diffusion for different sorbed species gives the desired separation
of that particular species. The rate of diffusion depends on several physical and chemical factors
including, size and shape of the permeant molecules, mutual interaction between the polymer and the
diffused component. In general, low molecular weight (MW) and molecules with smaller cross-section
move faster. Movement of a large molecule requires breaking of higher number of secondary bonds to
accommodate the molecule into a vacant space or hole [45]. Another theoretical model was proposed
for the diffusion of spherical and quasi-spherical molecules by Peppas and Reinhart that accounts the
effect of plasticization of polymer chains during sorption. This model demonstrates that the diffusion
coefficient (DC) not only depends on the size or MW, but also on the other structural characteristics of
the polymers, such as degree of swelling, crosslink density (CD), etc. [46].

Transport Equation through the Membrane

The transport of the ith component through any membrane can be described by Fick’s first law as
expressed in Equation (4).

Ji = −Di
dci
dx

(4)

Here, Ji is operating through a plane perpendicular to the direction of diffusion, and is proportional
to the concentration gradient (dci/dx). The proportionality constant, i.e., Di, is known as the diffusivity.
As Di is a function of membrane phase concentration of the permeants, hence the above equation may
be modified as Equation (5).

Di = −D0
i f (Ci)

dci
dx

(5)

Here, D0
i is the DC of ith component at infinite dilution.
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Now, integrating Equation (5) over the entire membrane thickness l, the above equation is
modified to Equation (6).

Ji

l∫
0

dx = −D0
i

Cii∫
Ci f

f (Ci)Cidci (6)

Here, Cii is the membrane phase concentration of ith component that can be calculated from its
bulk concentration by Henry’s equation, when it is present in trace amounts. However, Cii may also
be obtained from the sorption data. Again, Cif is the membrane phase concentration on the permeate
side of the ith component, and may be neglected as the activity of the component in the downstream
side is very low due to the low pressure or vacuum. Thus, the equation can be easily solved to
calculate the theoretical flux and DC of the components employing any of the above equations of DC
and concentration.

The rate of permeation through a polymer membrane depends on both the sorption and diffusion
parameters and can be expressed by Equation (7).

Ji = −Pi
dci
dx

(7)

Here, Pi is the membrane permeabilities, which is the product of solubility (Si) and diffusivity
(Di). Again, Equation (7) is often reported in terms of Pi or permeances (Pi/l) using Equation (8).

Ji = −
DiKG

i
l

(Pi0 − Pil) (8)

Here, l, Di, Pi0/Pil and KG
i are membrane thickness and membrane DC, partial pressures on either

side of the membrane and sorption coefficient of ith component, respectively. In fact, KG
i correlates

partial pressure of the gas (Pi) to the concentration (Ci) in the membrane phase. In general, sorption
bears a strong relationship with diffusion in polymer matrix. An increase in sorption of solvent
molecules in polymer matrix swells the membrane, which promotes the free segmental movement
of the polymer chains and lowers the activation energy for diffusion. The permeation of the solvent
molecules through the ‘liquid zone’ is much faster in comparison with dry polymer.

In general, the classic SD theory successfully describes the permeation phenomenon through
non-swollen membranes, such as traces of selective permeants (VOCs/water) present in the
mixtures [47,48]. Mathematical modeling of the pervaporative separation of methanol-methyltertbutyl
ether (MTBE) mixtures, based on the generalized Fick’s law and the assumption that transport through
the membrane is the rate-limiting step, has been studied using a commercial membrane, Pervap
2256 [49]. This work helps describe the PV mechanisms of azeotropic mixtures. However, when a
large proportion of the permeant has to be separated from the mixture, such as the separation of
organic-organic mixtures or dehydration, substantial membrane swelling may occur, and both the
sorption and DCs become concentration dependent. In such cases, permeation fluxes of the ith and jth
components, through the membrane, can generally be expressed by the Equations (9) and (10) [50].

Ji = −Di0 exp(αiiCi + βijCj)
dci
dx

(9)

Ji = −Dj0 exp(αijCi + βjjCj)
dci
dx

(10)

Here, Di0/Dj0, Ci/Cj and α/β represent DCs of at infinite dilution, local concentrations in the
membrane, and plasticization coefficients for the membrane, respectively, for ith and jth components.
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2.3. Transport in Nanocomposite Membrane (NCM)

The term NCM usually describes the membrane utilizing the nanoparticles (NPs) dispersed
within a continuous phase of binder matrix. The presence of NPs into the membrane matrix affects the
transportation of the permeants effectively by creating a preferential permeation trails for the selective
species and providing a barrier for non-selective species at the same time.

Casado et al. studied the pervaporative dehydration of organic mixtures using a commercial silica
membrane and determined the corresponding kinetic parameters [51]. A semi-empirical correlation
was used to fit the water flux data that expressed water flux as an exponential function of the water
activity in the feed mixture by Equation (11).

ln(Jw,mass) = ln(J0,w(T)) + ζa f
w (11)

Here, ζ and a f
w represent model parameter and water activity of feed solution, respectively.

However, the term J0,w(T) can be defined by Equation (12).

J0,w(T) =
ρmDw,0

δτ
(12)

Here, ρm, δ and τ represent mass density at the membrane phase, selective layer thickness and
the exponential parameter of diffusivity in the membrane, respectively, and it follows an Arrhenius
type Equation (13).

ln(J0,w(T)) = ln J00,w −
Eact

RT
(13)

The semi-empirical equation was used to predict the membrane performance and validate the
applicability of the equation. It was observed that the water flux through the membrane depends
on the water activity in the feed liquid mixture and the water flux provided by the commercial silica
membrane are larger than that of the reported Pervap SMS membrane for the dehydration of industrial
acetone mixtures [51].

In another approach, the models proposed by Maxwell and Bruggeman describe the overall
permeability as a function of the permeabilities of the polymer matrix phase and the filler phase, and
the amount of the filler. These models successfully predict the permeability through polymer-inorganic
NCMs. The Maxwell model suggested that addition of inorganic nanofillers (NFs) to a polymer matrix
typically reduces the permeability of the permeant. In fact, such NFs not only reduce the membrane
solubility, via decreasing the available volume for sorption, but also decrease the diffusivity due to
the expansion of the penetrant diffusion pathway length resulting from an increase in tortuosity [44].
In succession, Barrer et al. simplified the Maxwell model (Equation (14)), particularly suitable for the
composite membranes containing impermeable spherical particles [52].

Pe f f = Pc

(
1−φ

1 + 0.5φ

)
(14)

Here, Peff, Pc and φ are permeability of NCM, permeability of permeant in the pure polymer
matrix and the volume fraction (VC) of NFs, respectively. This model explained the reduction in
permeability of some NCMs [53,54]. However, further researches on the transport phenomenon of the
NCMs indicate the presence of other factors that were not considered in the Maxwell model [55–58].
The studies on gas transport behavior with polyimide-silica NCM reveled an increment in permeability
with the increase in nanosilica content in the matrix [59]. The Maxwell model did not consider the
interactions between the NFs and the polymer chains, and between the NFs and the penetrants.
The alteration in polymer or NF chemistry via physicochemical modification enhances the interfacial
interactions that change the solubility and diffusivity of penetrants significantly. The Maxwell equation
is also limited to the membranes with low filler content and it did not consider the distribution of the
filler in the matrix.
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The Bruggeman model, originally developed to analyze the dielectric constant of particulate
composites [60], was recommended by Bouma et al. to model the permeability in NCMs [61].
This model includes the effect of incorporation of additional spherical particles to a random dilute
suspension by an integration technique by using Equation (15).(Pe f f − Pd

PC − Pd

)(Pe f f

PC

)−1/3

= 1−φd (15)

Here, Pd and φd represent permeability of a permeant in a dispersed phase and VC of the second
phase in the total membrane, respectively. However, the prediction of permeability using both the
Maxwell and Bruggeman models is acceptable only up to φd = 0.20, and beyond this, the presence of
surrounding particles may affect the flow patterns [62] and Bruggeman model behaves better since
it accounts for this behavior. In fact, this model can further be reduced to the following equations
depending on the nature and amount of the dispersed phase. If the composite phase comprises an
impermeable dispersed phase (i.e., Pd = 0), this model can be written as the Equation (16).

Pe f f

PC
= (1−φ)3/2 (16)

However, the formation of a significant amount of voids in the membrane is observed when NPs
are highly incompatible with the polymer matrices. Such void spaces are considered as the dispersed
phase and much more permeable than the polymeric phase. Thus, if the permeability of the dispersed
phase is higher than the matrix, i.e., Pd > PC, the model can be rewritten as Equation (17).

Pe f f

PC
=

1

(1−φ)3 (17)

This equation was observed to be well matched with the experimental data and the change in
permeability can also be predicted satisfactorily [63].

2.4. Effect of Process Conditions

2.4.1. FEED Concentration

The permeation of a component in PV occurs via SD mechanism, which is highly dependent
on both solubility and diffusivity of the corresponding species into the dense polymer matrix.
Concentration of a particular species in the feed side regulates both the solubility and diffusivity,
hence the separation performances. In general, it is observed that the flux increases with increase in
concentration of the component in the feed, but exhibits a reverse trend for SF.

2.4.2. Feed and Permeate Pressure

The driving force in PV is the activity gradient of the components across the membrane, which
in turn is dependent on the partial pressure of the species. The feed side pressure influences the PV
performances notably only when the permeate side pressure is higher. The permeate side pressure
affects the PV characteristics significantly as the activity of the species is directly related to the
permeate pressure. Indeed, the lowering in the permeate side pressure from the saturation pressure of
permeates allows the components to pass through the membrane and flux reaches the maximum as
the permeate pressure becomes zero. The change in permeate pressure can also affect the SF. In fact,
at higher permeate pressure, the rate of desorption slowed down the influence on the overall selectivity.
However, the nature of the change completely depends on the relative volatility of competitive species
at the downstream side. In general, reduction in permeate pressure results in higher flux and good SF.
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2.4.3. Effect of Temperature

In view of the fact that both of solubility and diffusivity of the components are strongly
temperature dependent, it is expected that the transport of permeant through PV membranes are also
reliant on the temperature. In fact, the flux generally increases with the increase in feed temperature,
following an Arrhenius-type Equation (18).

J = J0 exp
(

Ep

RT

)
,ln J = −

Ep

RT
+ ln A (18)

However, activation energy (i.e., Ep) can be obtained from the slop of the linear plot of lnJ vs. 1/T.
Since, the diffusivity of the permeants increases with increase in temperature, the permeation rate also
increases. In fact, at higher temperature, the enhanced movement of the polymer chains, assisted by
the thermal energy, also facilitates the easy permeation of the sorbed molecules through the membrane.
The SF usually decreases with increase in temperature for most of the components.

2.4.4. Effect of Membrane Thickness

The SD model suggests that the permeability of a component remains unchanged with the
thickness of the membrane. However, flux is observed to vary inversely with the membrane
thickness [64], since an increase in the membrane thickness enhances the permeation resistance.

2.4.5. Concentration Polarization (CP) and Mass Transfer Coefficient (MTC)

In PV, as the components in the feed mixture permeate through the membrane at different rates,
a variation in the concentration of the permeating and non-permeating species near the membrane
surface builds up gradually. Consequently, the concentration of the preferred molecules in the solution,
adjacent to the membrane surface, becomes lower than that in the bulk fluid. Meanwhile, the solution
becomes strengthened in the non-permeating or less-permeating molecules. There is also a decrease in
fluid velocity from the bulk feed to the stationary membrane, which boosts the concentration gradient.
The formation of concentration gradient is known as the CP, which lowers the flux and MS by reducing
the driving force across the membrane. In PV, CP is not a severe problem as the permeation rate is
much lower compared to the other pressure driven separation process and the permeants usually
do not retain on the membrane surface. However, for highly selective and highly permeable thin
membrane the CP becomes important. The mass transfer resistance in the boundary layer can be
represented by Equation (19).

1
Q

=
1

KL
+

1
DS

(19)

Here, Q, K and L represent flux, MTC for boundary layer and membrane thickness, respectively.
Usually, flux and SF decreases with CP and the effect of CP is more pronounced with decreasing MTC
and concentration of the preferentially permeating species. It was observed that the experimental
MTC also depends on the conditioning of the PV system. The steady-state regime normally attains a
certain delay after starting the PV operation. In this context, Rautenbach and Hommerich studied the
dynamic mass transfer effect on PV system that includes both the models on a macroscopic level for
time dependent membrane separation performance, and the models for the technical PV unit itself [65].

3. Membranes for PV Applications

A membrane can be defined as a permselective barrier interposed between two phases. It imparts
separation through controlled and selective mass transfer of one of the components to be separated
from one bulk phase to other. In fact, the membrane can be classified as porous or non-porous, thick or
thin, and its structure can be homogeneous or heterogeneous. Based on the origin, membranes can be
classified as natural or synthetic, neutral or charged. The membranes show a wide range of variation
in the physical structure and separation characteristics [66]. In fact, depending on morphology,
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membranes can be classified into two categories, viz. symmetric or asymmetric. The symmetric
membranes refer to the membranes, which possess featureless uniform morphology throughout
the entire membrane thickness. Such membranes are fabricated from single or a blend of polymers
and are usually found to exhibit higher selectivity, but poor permeate flux. Conversely, asymmetric
membranes have a gradient in structure. The asymmetric membranes can be characterized into two
major categories: one where the top selective layer is integrated with the support made from the
same material and the other is composite membranes where more than one distinct phase is present.
The presence of different polymers and other materials in the composite membrane offers enhanced
membrane properties that may not be obtained in symmetric membranes. The incorporation of a small
amount of NPs not only drastically changes the physical and thermal properties, but also influence the
separation characteristics significantly. However, the interface differentiation, between the polymer
and the NPs, and the presence of a strong agglomeration tendency of these NFs make the fabrication
of a suitable NCM highly critical.

The membranes synthesized through dispersion of nanosized particles in the matrix of a single
polymer, copolymer or polymer blends exhibit more interesting properties. Although the symmetric
dense membrane can provide high selectivity, overall flux is usually low owing to higher mass transfer
resistance. Thus, the membranes fabricated by using an asymmetric structure consist of a thin dense
selective skin layer over a thick porous substrate that provides the mechanical strength of the thin
selective barrier layer are of special interest. The mass transfer rate can be substantially increased by
using the asymmetric membrane structures.

In conventional PV membranes, permeability and selectivity trends show typical “trade-off”
relationship, which means that a highly permeable membrane with excellent selectivity is rather
difficult to attain. It is thus important to develop advanced membranes for more challenging future
applications. The initial approach was to fabricate MMMs with polymer-inorganic fillers, such as,
zeolites, silica and carbon molecular sieves etc. where, fillers or NFs are dispersed in a polymer
matrix [67–73]. Recently, Albo et al. studied the structural characteristics and gas transport properties
of interfacially polymerized in-homogeneous top layer of thin-film composite membranes [74,75]. The
nano ordered free-volume pore size of the prepared polyamide (PA) membranes were pretreated by
various methods and evaluated by nanopermporometry (NPP). The membrane was quantitatively
compared with the free volume pore, estimated from the normalized Knudsen based permeance (NKP)
and with positron annihilation characterization (PALS). Those studies revealed the bi-modal structure
of material and the transport mechanisms occurring. It was also observed that the membrane structure
has been influenced significantly by the drying procedure and is therefore crucial in controlling the
separation performances.

Nanocarbon based MMMs have recently generated great interest because of their unique
properties. Carbon nanotubes (CNTs), nanodiamonds (NDs) and graphene oxides (GO) have
specifically attracted significant attention due to their superior separation performances. Structurally,
CNTs are the tubular graphite sheets rolled-up along a central axis with a diameter within nanometer
range. Due to strong van der Waals forces present between the individual CNTs, these tend to
agglomerate into bundles [76]. This is a very common problem working with NMs. The differentiation
in their physical and chemical properties, especially the difference in density between the NMs and
the polymers leads to create non-uniform distribution of the NMs in the polymer phase [71]. This may
eventually trigger the formation of non-selective defects, such as pinholes in the membranes. Thus,
the efficiency of NMs depends on the effective dispersion into the polymer matrix. Modification of the
NMs surface via chemical treatment or functionalization is believed to be an effectual way to restrict
the agglomeration tendency that facilitates uniform dispersion of NMs in the membrane matrix [77,78].
Due to the enhanced sorption-desorption phenomenon and faster transport over the CNTs surface
makes it perfectly fit for the PV applications [79–86]. Among other NMs, silica, zeolite and titanium
oxide (TiO2), has been used widely by various researchers [1,87–89]. These PV membranes have been
applied extensively in three major fields of separations as described below.
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3.1. Dehydration of Organics

Membranes, prepared from hydrophilic polymers, are generally employed for the dehydration of
organic solvents. Various polymeric membranes have been reported for this separation process [90,91].
Polyvinyl alcohol (PVA) is one of the most extensively used polymers from where hydrophilic
membranes with good mechanical strength can be obtained. PVA is completely soluble in hot water
and needs to be crosslinked to maintain the structural integrity during the PV process. It may
be crosslinked with a number of aldehyde/ketone at a certain pH or any mono-/poly-carboxylic
acid to produce a water insoluble membrane having water permeability [92–96]. In succession,
Kang et al. reported the fabrication of PVA/poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)
water soluble membrane [92]. Moreover, Huang and Yeom used polyamic acid as a crosslinker for PVA
for ethanol dehydration [93]. Again, hydrophilicity of PVA was further increased by grafting maleic
anhydride/methyl methacrylate and used for ethanol dehydration [94]. In another study, Kang et al.
modified the membrane surface of crosslinked PVA by chemical reaction with monocholoro acetic
acid [95]. This modification increased water selectivity by a factor of 2 compared to the ordinary
crosslinked PVA membrane when applied for dehydration of ethanol. The major drawback of PVA
membrane is that it cannot be used for dehydration of corrosive liquids, i.e., for dehydration of
any acid or base, which is interesting for pervaporative separation as relatively lower volatility of
such aqueous acid or base restricts conventional distillation. A new alcohol dehydration membrane,
PVA-chitosan (CS) blended composite membrane (PVA-CS), possessing promising selectivity (~500)
and permeability (200 g m−2 h−1), especially in separating ethanol-water near the azeotropic region at
70 ◦C, has also been reported [96]. Again, Zhang et al. studied PVA-CS membrane for pervaporative
dehydration of n-butyl acetate-water and n-butyl acetate-n-butanol-water type binary and ternary
systems, respectively [97]. In fact, with increase in CS fraction, degree of swelling in water was
found to reduce significantly. A very high SF of 27,000 with a total flux of 402 g m−2 h−1 was
obtained using the blend membrane containing 25 wt % CS at 40 ◦C for the binary system. Dense
membranes prepared by blending PVA with poly(acrylic acid) (PAA) were tested for dehydrating
fusel oil and by-product issued from Brazilian ethanol distilleries [98]. Sorption and permeation of
aqueous alcohol (C1–C4) through PVA membrane crosslinked with a multifunctional crosslinker has
also been reported [99]. Again, Alginate composite membranes, cross-linked with 1,6-hexanediamine
(HDM) or PVA, were prepared by casting an aqueous solution of alginate and HDM or PVA on a
hydrolyzed microporous polyacrylonitrile (PAN) membrane and characterized by PV separation
of acetic acid-water mixtures [100]. Chung et al. have developed multilayer MMMs consisting
of a selective MMM top layer, a porous poly (acrylonitrile-co-methyl acrylate) [poly (AN-co-MA)]
intermediate layer and a polyphenylene sulfide (PPS) nonwoven fabrics substrate. The selective MMM
layer was formed by incorporating KA zeolite in PVA matrix followed by crosslinking reaction of PVA
with fumaric acid [101]. Thin, high flux and highly selective crosslinked PVA water selective layers have
been prepared on top of hollow-fiber ceramic supports [102]. A hollow-fiber composite membrane,
PVA-sodium alginate (SA) blend, supported by a polysulfone (PS) hollow-fiber UF membrane, was
reported for pervaporative dehydration from binary aqueous solutions of isopropanol, n-butanol,
tertiary butanol and ethanol [33].

Polyvinylamine (PVAm) is another variety of water soluble polymer possessing a number
of primary amines in its backbone. However, the presence of intramolecular H-bonds
generates high crystallinity, which makes the membranes brittle and less permeable [103].
A thin-film hydrogel composite was graft-polymerized on a polyethersulfone (PES) UF support
employing the UV photo-initiation method with vinyl sulfonic acid (VSA) as the monomer and
N,N′-methylenbisacrylamide (MBA) as the cross-linker monomer [104]. The optimal membrane
exhibited a very high flux of 7.5 kg m−2 h−1 and SF of 313. However, the performances of the
membrane decreased after 1–2 days of operation.

The limitation of PVA membranes in dehydration of corrosive liquids by PV was overcome
by the development of membranes based on polycarboxylic acids [105–108]. The membrane made
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from polycarboxylic acids alone, like PAA, is too hygroscopic to impart the required mechanical
integrity. Blend of inert polymers with polycarboxylic acids yields a membrane with good separation
performances and mechanical strength. Thus, Huang et al. studied the dehydration of acetic acid using
a membrane comprising of nylon-6-PAA crosslinked with a metal (Al(III)) ion [105]. However, such
metal crosslinker is not stable and collapses with time. Hence, inert yet stable film forming polymers,
like polypropylene and Teflon, were grafted into PAA, vinyl pyrrolidone, 2-hydroxy ethyl methacrylate
(HEMA) by plasma grafting [106,107]. These membranes showed excellent mechanical stability with
high selectivity for water, yet suffered from very poor flux. Copolymerization of polymerizable
acid, ester or imide monomers with a monomer of an inert polymer gives rise to a membrane with
consistent performances. On the basis of this fact, a number of copolymers, like poly(AN-co-AA),
poly(AN-co-maleic anhydride) and poly(AN-co-HEMA) were synthesized and studied for dehydration
for ethanol and acetic acid [108,109].

Bhat and Aminabhavi have done a thorough review on PV separation of SA and its modified
membranes [110]. The survey indicated that SA based membranes have been reported to perform
outstanding separation characteristics in dehydrating the aqueous-organic mixtures. PV membranes
were prepared from SA-polyaniline (SA-PANi) polymer casted on ultra-porous PAN and PES supports
for acetic acid dehydration [111]. In fact, PAN and PES supported SA-PANi composite membrane
showed fluxes/selectivities of 0.07/441 and 0.04 kg m−2 h−1/359.3, respectively, at 2 wt % of water in
feed mixture.

PANi, synthesized by oxidative polymerization and doped with PAA, was used for PV
of aqueous isopropanol [112]. Polyimide membrane, crosslinked with tricarbohydrazide-1,3,5-
benzenetricarboxylic acid trihydrazide (BTCH), was used for isopropanol dehydration [113]. Results
showed that the highest SF of 3452 could be achieved with an optimal membrane forming temperature
of 80 ◦C. A crosslinked polybenzoxazine membrane (CR-PBz-M) for dehydration of isopropanol has
been studied [114]. When the membrane was swollen by isopropyl alcohol (IPA) solution, a change
in micropore size distribution from a single distribution to a bimodal pattern was observed, which
demonstrated an in situ self-promoted characteristic for pervaporative dehydration. The permeation
flux of 330 kg m−2 h−1 and 100% of water in the permeate side has been recorded at 70 wt % IPA
concentration. In this context, Kursun et al. developed a thermo-responsive poly(N-isopropyl
acrylamide) (PNIPAAM) grafted PVA (i.e., PVA-g-PNIPAAM) membranes, suitable for separation of
IPA-water mixtures [115]. At 87.40 wt % IPA in feed, the water flux and SF of such membrane was
obtained to be 11 gm m−2 h−1 and 95, respectively.

The dehydration of corrosive organic solvents is always challenging. PV performance of
crosslinked blend membranes of PVA and PAA had also been attempted for the dehydration
of dimethylformamide (DMF) [116]. In another study, copolymers of acrylamide (AM) with
increasing amounts of HEMA were synthesized and the crosslinked (gelled) copolymer membranes
that were made from these sol copolymer solutions (uncrosslinked) were used for pervaporative
dehydration of DMF within 0–13.07 wt % water in feed [117]. These hydrophilic gel copolymer
membranes were found to be highly water selective in both sorption and diffusion through the
membranes. Roy et al. studied the pervaporative dehydration of highly oxidizing hydrogen
peroxide (H2O2). As the choice of membrane material is potentially limited for this system,
perfluorodimethyldioxole–tetrafluoroethylene (PDD–TFE) copolymer membranes (CMS-3 and CMS-7)
were used to concentrate H2O2 within 4–40 wt % of H2O2 at different temperature. In fact, the highest
H2O2 selectivity of ~12 was observed for CMS-3 membrane at an H2O2 concentration of 43 wt % with
a total flux of 6.15 × 10−3 gm cm−2 h−1 whereas for CMS-7, selectivity and total flux were found to
be 9.2 and 9.6 × 10−3 gm cm−2 h−1, respectively, at the same H2O2 concentration. However, both
the membranes showed long-term stability at 35 wt % H2O2 concentration [118]. Again, an aqueous
pyridine solution was dehydrated using poly(AN-co-AA) membranes for separation of water-pyridine
mixture [119].
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A novel PV membrane material, synthesized from hyperbranched polyglycidol (HPG)
and hyperbranched poly (amine-ester) (HPAE) followed by crosslinking terminal –OH with
4,4′-oxydiphthalic anhydride (ODPA) and GA, respectively, has been explored for pervaporative
dehydration owing to the hydrophilicity [120]. Again, polybenzimidazole-polyetherimide (PBI-PEI)
dual-layer hollow fiber membranes (HFMs) were used for pervaporative dehydration of ethylene
glycol (EG) [121]. It was observed that an increase in operating temperature lowered the EG-water
clusters and lower membrane-EG affinity of the membrane that improved the flux and selectivity. The
water flux and SF was found to be as high as 186 g m−2 h−1 and 4500, respectively. In this context,
Kujawski et al. studied the commercialized hydrophilic Pervap™ membranes (Pervap™ 2200, 2201,
2216, 2255, and 2510, supplied by Sulzer Chemtech AG, Winterthur, Switzerland) for dehydration of
tetrafluoropropanol (TFP) aqueous mixtures [122]. It was observed that the PSI for Pervap™ 2200 and
2216 was ~5000 kg m−2 h−1, implying that both of the membranes can successfully be employed for
the removal of water from TFP solutions.

The PV membranes were further modified with the incorporation of NMs into the polymer matrix.
It was observed that introduction of NMs not only increased the mechanical strength of the membranes,
but also influenced the separation characteristics significantly [123–127]. The favorable interactions
between the NMs and the pristine polymer influence the membrane performances effectively. The NFs
present in the membrane matrix may work as “spacers” to provide free spaces for water permeation
through the polymer chains (e.g., silica, TiO2), or the molecular sieving effect (e.g., zeolite) stimulates
water transport. CS based NCMs, synthesized by incorporating Preyssler type heteropolyacid,
namely, H14[NaP5W30O110], NPs by solution casting and the solvent evaporation method exhibit
a remarkable increase of SF of 35,991 from 96 base value for NCMs in comparison with unmodified
membrane for the separation of ethanol-water mixtures [128]. The dehydration performances of CS
and microporous titanosilicate ETS-10-CS MMMs were studied in the range 85–96 wt % ethanol [129].
It was observed that the permeate flux was increased from 0.45 to 0.55 kg m−2 h−1 at 50 ◦C for
the ETS-10-CS MMM with respect to the pure CS membranes. García-Cruz et al. synthesized
various CS based MMMs with different fillers, like room temperature ionic liquid [emim][OAc]
(IL), metallic Sn powder, layered titanosilicate AM-4 and layered stannosilicate UZAR-S3, by solution
casting [130]. The electrical conductivity and electrochemical response of the membrane, in strong
alkaline medium, were measured. These thin CS-based MMMs (40–139 µm) were found to be highly
alkaline resistant and exhibited higher conductivity than pure CS membranes. In fact, MMMs obtained
via incorporation of Al-rich zeolite beta NPs into the SA matrix, followed by crosslinked with GA,
has been tested for pervaporative dehydration and esterification of ethanol and acetic acid [131]. The
hydrophilic nature of the Al-rich zeolite beta, along with its molecular sieving effect and favorable
interaction with the polymer matrix, was found to be responsible for the relative enhancement of
pervaporative dehydration.

Titanium oxide (TiO2) is one of the most common inorganic NFs that has been used widely
in separation [132,133]. The incorporation of a small amount of TiO2 (0.25–1 wt %) modified with
PANi into the GA crosslinked SA for the dehydration of 1,4-dioxane showed enhanced SF [134].
The surface modification of the NPs not only improved the dispersibility, but also increased its
hydrophilicity. However, the reduction in membrane swelling decreased the flux significantly.
Tancharernrat et al. fabricated styrene butadiene copolymer (SBR)–SiO2 composite membrane, where
the obtained SBR–SiO2 NPs exhibited spherical morphology with SiO2 as the core and SBR as the
shell via differential microemulsion polymerization for dehydration of alcohol [88]. In NCMs, the
NPs offered extra free spaces to the water molecules, showed high water permeability, and increased
permselectivity from its ethanol mixtures. Incorporation of microporous hydrophilic zeoliteT and
aluminosilicate into crosslinked PVA and charcoal NPs into SA endorsed both water flux and SF for
1,4-dioxane dehydration [135–137]. The CS membrane was chemically modified by introducing an
aromatic ring grafted with acidic –COOH (N-p-carboxy benzyl chitosan (NCBC)) and the cross-linked
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nanostructured NCBC-silica composite membranes were prepared for PV dehydration of alcohol
mixtures [138].

In recent times, a novel technique has been applied to overcome the limitation of trade-off
effects observed in PV by constructing a super-hydrophilic water uptake layer by spray-assisted
bio-mineralization of calcium carbonate (CaCO3) onto a (poly(acrylic acid)/poly(ethyleneimine))n/
polyacrylonitrile ((PAA/PEI)n/PAN) membrane [139]. The bio-mineralization dramatically increased
the hydrophilicity (water contact angle decreased from 74◦ to 4.2◦) and the membrane showed an
enrichment of water content from 5 to 98.8 wt % while the permeate flux reached 1.3 kg m−2 h−1,
which is almost five times that of the pristine membrane. Another technique was used to form a
double network PVA (PVA-DN) NCM from interpenetration of two PVA networks of varying MW for
PV dehydration. At first, the PVA network was created by crosslinking the high MW PVA (HPVA)
in presence of silica nanospheres (SNSs) prior to a formation of the second network by the thermal
crosslinking of low MW PVA (LPVA) [140].

The metal organic frameworks (MOFs), which are comprised of metal or metal clusters joined
through organic linkages, have attracted significant attraction in separation fields [141]. The organic
linkages present in MOFs provide higher compatibility of inorganic NMs in polymer matrices. The PV
membranes fabricated from zeolite-type MOF NF has shown superior performances for dehydration of
organics [142–144]. Zeolitic imidazolate frameworks (ZIFs), a sub-class of MOFs, display outstanding
stability and compatibility within polymer matrix and exhibit desirable properties for various PV based
applications [145–151]. The ZIF-7 crystal particles exhibit good interfacial adhesion when incorporated
into the CS and the MMMs demonstrate higher flux and SFs at 2.5 wt % loadings [145]. However,
higher loading of MOFs could lead to a crosslinking reaction between Zn atom of ZIF-7 and the
amino groups of CS polymer, which eventually reduced the flux. The dehydration of ethanol has
been studied by Amnuaypanich et al. using a semi-interpenetrating polymer network of natural
rubber and crosslinked PVA incorporated with zeolite 4A [152]. The uniform porous structure of
Zeolite 4A provided an alternative pathway to the water molecules that enhanced the selectivity and
permeability. Silica NPs with –SO3H functionalization has been used for in situ of crosslinking CS
to prepare CS-silica NCMs by Liu et al. [153]. The Hydrophilic 4A zeolite was also incorporated
into the poly(ether-block-amide) (PEBA-2533) composite membranes up to the extent of 10–40 wt %
of polymer weight to enhance separation properties for NMP-water mixtures. A high selectivity of
122 was observed at a reasonable flux of 55 g m−2 h−1 at 2.87 wt % of water [154]. The enhanced
performance of hydrophilic zeolite 4A may be due to the presence of optimized average pore size of
0.4 nm, which is slightly bigger than the size of water molecule (i.e., 0.26 nm) [155].

Dudek et al. reported the PV dehydration from its alcohol mixture using CS and iron
oxide NPs [156]. The in situ synthesized PVA-g-AN/HEMA-Fe3O4 NCMs has been employed
for acetone-water system [157]. The addition of magnetite (Fe3O4) NMs effectively enhanced the
water SF. The permeation fluxes and SFs were found to be within 0.015–0.091 kg m−2 h−1 and
29.1–14,000, respectively.

Polybenzimidazole (PBI) and PBI/ZIF-8 NCMs for pervaporative dehydration of alcohols have
been studied [158]. The sorption and swelling studies showed that the high PV permeability of
PBI/ZIF-8 NCMs is attributed to the high fractional free volume (FFV) created by large cavities of
ZIF-8 particles. The water permeability of such membrane was found one order of magnitude higher
than the original PBI membrane (14,000–22,000 vs. 1200–2300 Barrer) and there was a 29.2% reduction of
energy barrier for penetrant transports across PBI membranes consisting of 33.7 wt % ZIF-8 NPs [146].
Liu et al. fabricated SA based MMMs via incorporation of kinds of ZIF (two-dimensional ZIF-L
nanosheets and zero-dimensional ZIF-8 NPs) for PV dehydration of ethanol [159]. The water flux and
SFs for ZIF-L-/ZIF-8-filled membranes were obtained of 1218 g m−2 h−1/1840 and 879 g m−2 h−1/678,
respectively. The appropriate openings of ZIF-L nanosheets provided the desirable molecular sieving
effect and rendered ordered water channels for rapid transport of water molecules.
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Hua et al. utilized ZIF-90 NPs to fabricate NCMs with Matrimid® polymer for IPA
dehydration [148]. NCMs composed of phosphotungstic acid in SA for dehydration of alcohol
by PV has been studied [160]. The incorporation of nanosized SA zeolite materials into the PVA
matrix exhibited a fairly high water flux and reasonable SF for n-butanol-water system. Zeolites are
microporous, crystalline alumino silicates that absorbs water molecules preferentially within its pores
when the pore size matches the size of the water molecules [161]. The membrane filled with zeolite
NPs offers higher water flux and selectivity compared to the pristine polymer membranes [162].

Recently, another group of material called polyhedral loigosilsesquioxane (POSS) has shown
substantial potential as NFs in the NCMs due to its enhanced mechanical, thermal and oxidation
resistance and compatibility with the membrane materials. NCMs, fabricated with several types
of POSS including octa-anion (OA), octa-nitrophenyl (ONPS), octa-aminophenyl (OAPS) and
octa-ammonium (OAS) into the CS matrix for ethanol dehydration, has been reported [163]. It was
observed that the performances of these membranes are highly dependent on the specific interactions
between the POSS and the membrane materials. The nano-size of the POSS materials (~1–3 nm) helps
develop a dual-layer HFMs, where the POSS were embedded into the mixed matrix layer as a selective
barrier for ethanol dehydration [164]. The incorporation of small amount of POSS NMs (1–2 wt %)
into the selective layer of MMMs enhanced both permeation rate and SF, which may be due to the
increased free volume and the diffusion selectivity. The highly hydrophilic crosslinked PVA-fullerenol
membranes has been fabricated for dehydration of ethanol [165]. The incorporation of 5 wt %
low-hydroxylated fullerenol C60(OH)12 and cross-linking with maleic acid helped for distributing the
NPs uniformly into the amorphous PVA phase. Friebe et al. [166] synthesized 3D MOF structure, based
on UiO-66 [Zr6O4(OH)4(bdc)6], featuring triangular pores of approximately 6 Å, as a thin supported
membrane layer with high crystallographic orientation on ceramic α-Al2O3 for separation of H2 from
different binary mixtures at room temperature having separation factors of H2/CO2 = 5.1, H2/N2 = 4.7,
H2/CH4 = 12.9, H2/C2H6 = 22.4 and H2/C3H8 = 28.5. Again, Sun et al. [167] grafted PSBMA onto the
surface of UiO-66-NH2 (UiO-66-PSBMA) via atom transfer radical polymerization (ATRP) procedure
to suppress the aggregation tendency of raw MOFs. Moreover, Armstrong et al. [168] prepared
UiO-66 impregnated PVCi to form cross-linked UiO-66 crystals, which was analyzed through powder
X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy, and
further characterized for potential uses as a gas membrane through inert gas permeation studies and
nitrogen porosimetry.

As a new type of NFs, CNTs have also drawn substantial attention due to their unique structures
and properties. The tubular structure of CNTs are made up of cylinders of graphite sheets of nanometer
diameter. The pristine CNTs tend to agglomerate into bundles due to strong van der Waals attraction
between the tubes. It was observed that the modification of CNTs led to better dispersion into the
polymeric matrix and improved the separation performance of the multilayer MMMs. The NCMs,
fabricated with CNTs, are extensively studied in PV for alcohol dehydration. The PVA-multi-walled
CNT membrane showed an increase in water flux with the addition of CNTs loadings with unchanged
SF up to 1 wt % [84]. The results revealed that the addition of CNTs alleviated the crystallinity
present in the pristine membrane and stimulated the micro-orientation that eventually decrease the
free volume of PVA membrane matrix. Although the presence of CNTs reduces the free volume,
the overall flux increases as the CNTs offers an alternating faster diffusion path to the permeating
molecules. The MMMs, comprising of CNTs and polymer polyelectrolyte complexes (PECs) as matrices,
showed a uniform dispersion of CNTs in the membrane matrix. However, the cross-sectional SEM
image showed significant damage of the CNTs probably as a result of the load transfer from PEC to
CNTs under stretching [169]. In another study, multiwalled CNTs (MWCNTs) were functionalized
with poly(3-hydroxybutyrate) (PHB) and then aligned into the CS matrix [170]. The presence of
PHB improves the compatibility of the CNTs that helped ensure a uniform distribution into the
matrix. The NCMs exhibited a relatively high flux and selectivity for water when employed for
dehydration of 1,4-dioxane. The CS membrane was further modified with PVA-modified MWCNTs
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that employed in acetone dehydration. Further, the PVA functionalized MWCNT was bulk aligned
on the poly(vinylidene fluoride) (PVDF) membrane by a simple filtration method and then coated
with CS to form a novel three-layer NCM [171]. The novel three-layer CS-thin PVA-MWCNT-PVDF
NCM exhibited a significant improvement in water flux with only a slight decrease in SF. In another
work by Panahian et al., fabricated multilayer MMMs containing CNTs, PVA, PES and polyester as
inorganic filler and selective top, intermediate and support layers, respectively, for dehydration of
ethanol-water mixtures [172]. The incorporation of functionalized MWCNTs by diisobutyryl peroxide
into CS membrane has been utilized for alcohol dehydration [173]. The NCMs, fabricated through
CNTs incorporated into a separating layer of PVAm-PVA supported on a microporous PS substrate
were used for dehydration of EG by PV [174]. The membrane containing 2 wt % CNTs exhibited a
permeation flux of 146 g m−2 h−1 and a SF of 1160 at 1 wt % feed water concentration.

Recently, there has been much interest in graphene oxide (GO) as a material with unique electrical
and optical properties. The distinctive structural features, high mechanical strength [175] and the
atomic-level thickness of GO have been exploited to fabricate an extremely thin membrane with
controlled pore size and high flux [176,177]. Potential applications of GO in water desalination and
purification has also been explored [177,178]. The membrane fabricated by incorporating GO into the
PVA matrix has been applied in the recovery of water from vinegar waste water. The presence of GO
offered better hydrophilicity and showed a reasonably high water flux and SF [179].

In PV, a novel NCM, consisting of a cross-linkable 6FDA polyimide matrix and NH3 functionalized
GO (i.e., NHGO) particles, has been studied for dehydration of alcohol. The membrane demonstrated
a water permeability of 0.198 mg m−1 h−1 KPa−1 and a water-IPA molar selectivity of 6726 which
was 35 times higher than that of the pristine-co-polyimide [180]. The Zwitterionic graphene oxide
was incorporated into SA for efficient water-alcohol separation [181]. The GO surface was further
modified with methylnicotinamide chloride (MNA) for oil-water separation [182] that improved
the interaction between the nanosheets and the sulfonated polyphenylenesulfone (sPPSU) polymer.
The aldehyde-functionalization of GO also improved the adhesion between the GO nanosheets [183].
The newly synthesized GO-framework (GOF) membranes possessed GO-aldehyde covalent bonds
that helps to adjust microstructural properties. The alcohol dehydration performances of GOF
membrane was much improved compared to pristine GO membrane. The water flux was obtained
2.59 kg m−2 h−1 for water-butanol dehydration and 99.7 wt % of water in permeate.

3.2. Removal of Organics from Aqueous Solution

Membranes prepared from organophilic polymers are generally employed for the removal of
traces of organic from aqueous solution. The following polymeric membranes have been reported for
this separation process.

Silicone containing polymers generally exhibit good organophilicity. Indeed, silicone based
rubber membranes, mainly poly dimethyl siloxane (PDMS), have been the most investigated for
separating many organic-water mixtures, such as alcohols, ketones, phenols, hydrocarbons and
chloro-hydrocarbons, due to their exceptional wide-ranging performance in permselectivity, stability
and production cost. Watson and Payne and Blumke et al. reported the sorption and permeation
properties of organic compounds through PDMS membranes [184,185]. Netke et al. used a PDMS
membrane for removal of isomeric picolines from its aqueous mixture [186]. To improve the
organic selectivity of the PDMS membrane, hydrophobic adsorbent, like a molecular sieve, had
been incorporated in the membrane and this filled membrane showed a higher SF than the unfilled one
when applied for pervaporative removal of an organic from its aqueous solution [187,188]. Netke et al.
filled PDMS membrane with hydrophobic silicalite filler but selectivity for acetic acid for aqueous acetic
acid mixture was poor for such membrane [189]. The polyoctylmethyl siloxane (POMS) membrane
has been considered to separate acetone-butanol-ethanol from aqueous solutions [190]. The effect of
multicomponent feed systems, such as addition of acetone and ethanol in feed, on the PV performance
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of the membrane were analyzed. When applied in a real fermentation broth, the membrane showed
high selectivity of 9.8, 3.8 and 0.9, for butanol, acetone and ethanol, respectively.

A series of unsaturated silicone backbone containing polypropynes, like polytrimethyl-
silylpropyne (PTMSP), were tried for selective alcohol separation from its aqueous solution [191].
These membranes were found to yield very high permeation rate. Slater et al. studied PV
performance of a series of alcohols, like ethanol, n-butanol and tert-butanol, through PDMS and
PTMSP and polymethoxy siloxane (PMS) membrane [192]. Volkov et al. investigated the PV
separation of ethanol and acetone from their aqueous solution through polyvinyltrimethyl silane
(PVTMS), PVTMS-PDMS block copolymers, PVTMS-polybutadiene (PB) block copolymers and other
modified PTMSP membranes [193]. Ethanol-permselective membranes were prepared from various
silicone and silane monomers under extremely mild polymerization conditions. These membranes
have polydimethylsiloxane-like structures and SFs of 1.5–5.2 [194]. Pervaporative separation of
aqueous solutions of propionic, butyric and iso-butyric acid has been studied using plain and filled
silicone rubber membranes [195]. A novel silicone rubber membrane was prepared by crosslinking
silylstyrene-oligomer containing -SiH groups with divinyl-polydimethylsiloxane using Karstedt’s
catalyst at room temperature for separation of organics from water [196]. In order to stabilize
the production of highly concentrated ethanol, a coupled fermentation/PV process using ethanol
permselective silicalite membranes coated with silicone rubber was studied [197].

Non-silicone synthetic membranes have also been reported in recent years. The most investigated
is polyetherimide block polymer (PEBA) by Boddeker for extraction of alcohol and hydrocarbon
(aromatic) [198]. This membrane showed good selectivity for high boiling bio-products. Matsumoto et
al. reported phenol removal from its aqueous solution using the same membrane [199]. It was observed
that the diffusion rate of phenol in PV mixtures was not affected by the presence of water. In fact,
pervaporative removal of halogenated hydrocarbons, from waste streams, through poly(bis-phenoxy
phosphazen) membrane was investigated by Peterson et al. [200]. The membrane showed high SF for
these hydrocarbons. Nakagawa et al. studied the PV enrichment of chlorine containing hydrocarbons
(1,1,2-trichloroethane and tetrachloroethane) from dilute solutions through poly(acrylate-co-AA)
composite membranes crosslinked with N,N,N/,N/-tetra glycidyl metaxylenediamine [201].
High SF and acceptable permeation rate for the hydrocarbons were obtained. For the removal
of aniline, phenol, nitrobenzene and some other high boiling solvents from process water and
wastewater, copolyimides have been synthesized and modified in order to obtain organophilic
membranes [202]. Removal of VOCs, such as benzene and chloroform, from aqueous mixtures,
through poly(methylmethacrylate)-PDMS (PMMA-g-PDMS), poly(ethylmethacrylate)-PDMS
(PEMA-g-PDMS), and poly(n-butylmethacrylate)-PDMS (PBMA-g-PDMS) graft copolymer
membranes, were investigated by PV [203]. A highly benzene selective membrane has been
synthesized by the addition of hydrophobic IL, 1-allyl-3-butylimidazilium bis (trifluoromethane
sulfonyl) imide ([ABIM]TFSI) to the poly(methyl methacrylate)-graft-poly(dimethylsiloxane)
(PMMA-g-PDMS) membranes [204]. The membrane showed high benzene permselectivity when
applied for the removal of a trace amount of benzene (0.05 wt %) in water.

A novel asymmetric ceramic-supported polymer (CSP) PV membrane was developed using
free-radical graft polymerization of polyvinyl acetate (PVAc) onto a porous tubular silica substrate.
The resulting membrane was characterized by PV removal of trichloroethylene (TCE) and chloroform
from dilute aqueous solutions [205]. An in-depth investigation of integral asymmetric poly(vinylidene
fluoride) (PVDF) membranes has been carried out for the extraction of polar and non-polar organic
compounds from dilute organic-in-water feed solutions [206]. The pervaporative separation of
ethanol-water mixtures utilizing composite membranes, prepared by coating a thin film of a
polystyrenesulfonate across the surface of a microporous alumina support, was also investigated [207].
A novel composite flat-sheet membrane with a dense SBS top-layer, coated on Fluoroplast F-42 support
with an intermediate layer of PDMS and PU layer [208] has been utilized for recovery of ethanol from
its aqueous mixtures.
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Hosseini et al. prepared a hydrophobic composite membrane of PDMS-poly(methyl hydrogen
siloxane) (PDMS-PMHS) membrane for the pollution control and solvent recovery of dimethylsulfoxide
(DMSO) from its aqueous solution [209]. At 10 wt % feed concentration, SF was found to be 57. The
PV performance was also observed to be dependent on operating temperature. In fact, the DMSO flux
was found to increase from 0.386 to 0.565 kg m−2 h−1 with an increase in the temperature from 25
to 70 ◦C. PV separation of methanol from aqueous solutions with PVA based hybrid membranes by
Hu et al. showed a flux of 0.9–4.0 kg m−2 h−1 and selectivities within 1.04–1.63 [210]. The methanol
flux/SF for Sulzer PERVAP™ 4060 and 2211 membranes were 0.9–3.2 kg m−2 h−1/2.6–7.8 and
4.3–8.9 kg m−2 h−1/1.1–2.0, respectively, at 0.05–20 wt % of feed methanol concentrations within
50–70 ◦C [211]. Pervaporative recovery of VOCs from the methanol-containing binary, ternary and
quaternary industrial waste water solutions by vinyltriethoxysilane (VTES)-grafted-silicalite-1-PDMS
MMMs has been investigated [212]. At 65 ◦C, the maximum PSI of 5346 g m−2 h−1 with SF of
over 10 were obtained at 10.5 wt % feed methanol concentration. Uragami et al. investigated the
removal of traces of VOCs, such as chloroform, benzene and toluene, from aqueous solutions, using
the poly(styrene)-b-PDMS (PSt-b-PDMS) membranes containing an IL, 1-allyl-3-butylimidazilium bis
(trifluoromethane sulfonyl) imide ([ABIM]TFSI) ([ABIM]TFSI-PSt-b-PDMS) by PV [213]. As the VOCs
are preferentially attracted by the IL, both the permeability and the selectivity increased with increase
in IL content.

The incorporation of suitable NMs was also observed to enhance the separation and permeation
performances of the MMMs. Davey et al. thoroughly discussed the fabrication of various novel MMMs
for fermentative separations [214]. The review showed that MMMs are currently delivering membranes
with enhanced performances for these separations. Vane et al. extensively studied the various factors
affecting the alcohol-water PV performance of hydrophobic zeolite-silicone rubber MMMs [215]. The
membrane exhibited ethanol-water PV permselectivities up to five times to that of silicone rubber
alone and three times higher than simple vapor–liquid equilibrium (VLE). For removal and recovery
of organic solvents, ZSM-5 zeolite with a high ratio of Si:Al and silicalite-1 (an aluminum-free ZSM-5)
has been used as the mostly common inorganic fillers. The MMMs fabricated by incorporating the
high-silica ZSM-5 molecular sieve particles into the silicone rubber matrix showed enhanced ethanol
recovery from its aqueous mixtures [216]. It was found that the small particle size, uniform dispersion
and loading amounts are the most important parameters to achieve the desired membrane properties.
However, the membrane showed a reduction in its performance over time that may be due to the
swelling of the membrane. The membranes also showed declined performances when applied for
the recovery of the butanol from fermentation broths. The other products present in the broth may
be adsorbed within the zeolite particles, reducing the butanol permeation rate and SF. Further, the
chemical modification of the ZSM-5 zeolite particles, via hydrofluoric (HF) acid etching, removes
the organic impurities and improves the surface hydrophobicity and roughness. The chemically
treated NPs showed better alcohol separation than the unmodified NPs when embedded into PDMS
membrane [217,218]. Such modification also improved the interfacial adhesion. PEBA membranes
fabricated with silicalite NPs showed an improvement in flux and SF for ethanol recovery up to 2 wt %
loadings then the performance declined due to the transport resistance of adsorbed molecules [219].
The strong affinity exhibited by the butanol molecules towards the silicalite could be useful for
in situ butanol removal from fermentation broths. The silicalite NPs were further modified by
silylation with vinyltriethoxysilane (VTES) that improved the interfacial interactions between the
PDMS matrices [220] and reduced the void formation and membrane swelling on prolonged use. The
modification allowed high loading of NPs up to 67 wt % into the membrane matrix that eventually
increased the selectivity of the membrane. Liu et al. fabricated an ultra-thin highly homogeneous
nanosilicalite-PDMS active layer on a porous alumina capillary support [221] for the recovery of
iso-butanol from aqueous solutions (0.2–3 wt %). The membrane exhibited flux and SF as high as
11.2 kg m−2 h−1 and 41.6, respectively. For ethanol recovery, Huang et al. synthesized a novel MMMs
consisting of a polyphosphazene nanotube (PZSNT) embedded in a PDMS matrix [222]. The enhanced
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separation performance in the presence of PZSNT is mainly due to the strong affinity towards ethanol,
compatibility with polymer matrix and reduced diffusion resistance. The nanotubes with smaller
diameter showed better flux and SF as the interface surface increased. The hydrophobic NCMs
synthesized by incorporating surface-functionalized fumed silica in polydimethylsiloxane (PDMS)
for recovery of 1-butanol from its aqueous solutions [223]. The membrane demonstrated improved
butanol permeability and selectivity. Introduction of superhydrophobic surfaces using SiO2 and PDMS
decreased the affinity of the membrane surface towards water molecules and was found to be useful
for separation of ethanol from its aqueous mixtures [224].

The introduction of polyhedral loigosilsesquioxane (POSS) has improved the organic compound
recovery from its aqueous mixtures. The –OH present in the POSS materials may interact with the
polar functional groups present in the polymer chains. Octa(3-hydroxy-3-methylbutyldimethylsiloxy)
POSS (AL0136) and disilanolisobutyl POSS (SO1440) NPs were used with Pebax membrane showed
enhanced organic recovery [225]. The MMMs, fabricated using hydrophobic nanosilica into
poly(1-(trimethylsilyl)-1-propyne) (PTMSP), showed significant enhancement in permeation flux
for pervaporative separation of dilute ethanol and butanol mixtures (5 wt %) from its aqueous
solutions [226]. The initial data at 50 ◦C showed a flux of 9.5 kg m−2 h−1 with SF of 18.3 for
ethanol-water separation and 104 for butanol-water separation, respectively, which may decline with
time because of aging of the membrane. The use of ZIF in solvent recovery has been investigated [227]
by Liu et al. where ZIF-71 has been incorporated into Pebax membrane. The organic nature of the
super-hydrophobic ZIF-71 helps disperse uniformly. The MMMs were successfully employed to
remove n-butanol from acetone-butanol-ethanol (ABE) solution. At 20 wt % NMs loadings, the MMMs
demonstrated a total flux of 520 g m−2 h−1 and SF of 18.8 at 37 ◦C. The membranes were observed to
be highly stable up to 100 h of operation with real ABE solution obtained from fermentation broth.
Free-standing ZIF-71-PDMS based NCMs have been reported for pervaporative separation of ethanol
and 1-butanol from its aqueous mixture [228]. For recovery of the aroma, isopropyl acetate from its
aqueous solutions, ZSM-5 filled hydroxyl terminated polybutadiene (HTPB)-based polyurethaneurea
(PU) membranes [229] have been studied. A homogeneous ZIF-8-silicone rubber NCM with high
particle loading has been synthesized by Liu et al. [230] on a hierarchically ordered stainless-steel-mesh
(HOSSM) employing a novel “Plugging–Filling” method. The membrane showed a very high SF of 53.3
and total flux 0.90 kg m−2 h−1 at 80 ◦C for recovery of furfural (1.0 wt %) from water. From the literature
review, it was observed that the incorporation of NMs not only resolves the problems associated with
the mechanical stability of the membranes under prolonged use in an organic environment, but also
improves the SF without affecting the overall flux.

3.3. Organic-Organic Separation

It is very difficult to find a suitable membrane for potential organic-organic separation.
The polymers chosen for membrane preparation are based on their relative SPs with respect to
the permeants to be separated. This SP approach plays the main role in imparting the separation
efficiency of the membrane when the permeants are of same size and mass resulting in little difference
in their relative rate of diffusion through the membrane.

Several attempts have been made for selective pervaporative separation of isomeric xylenes [231]
through membranes comprising of polyethylene, poly(vinylidine fluoride) (PVF) along with various
Werner complexes, like hydroxy propyl methyl cellulose having α-cyclodextrin cellulose esters and
poly(p-xylene) film. McCandless investigated separation of benzene-cyclohexane mixture by PV using
PVF membrane and obtained the SF as high as 20 [232]. DMF and DMSO were added in the feed to
enhance the permeation rate but SF was found to decrease to 6. Cabasso examined the separation of
these mixtures through polymeric alloy membrane of various compositions of polyphosphonates [204].
An SF of 13 for benzene was obtained with this membrane, and DC for benzene was found to depend
on its concentration in the polymer matrix. Among the other systems, separation of methanol from
anhydrous organic mixtures has been of growing interest, as its removal is required in many situations.
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In most of these cases, methanol forms azeotropes with the other organic compounds like alkanes,
ethers and esters. Several works have reported on the separation of aromatic-alcohol, alkanes-alcohol,
alcohol-ether, etc. [233–240]. Separation of methanol or ethanol from its mixture with MTBE, dimethyl
carbonates (DMC), etc., have been reported [239,241–244]. The MTBE, ethyl tertiary butyl ether (ETBE),
tertiary amyl methyl ether (TAME) etc. are being extensively used as lead free octane enhancers. These
ethers are manufactured by reacting an isoalkene, e.g., isobutene for MTBE, with excess methanol
over a sulphonic ion exchange resin. In recent year cellulose acetate membrane has already been
commercialized for pervaporative separation of these ethers from methanol [243]. Considering the
similar nature of methanol and water, hydrophilic membranes are used for separation of methanol from
these ethers. Volkov et al. studied the effects of synthesis conditions, molecular mass characteristics
and chain microstructure on the properties of poly[(1-trimethylsilyl)-1-propyne] based membranes
for PV recovery of organic products from fermentation broths for the preparation of bioethanol
and biobutanol [245]. The membranes exhibited good chemical resistance under the conditions of
separation of fermentation broths.

Pervaporative separation of toluene-methanol mixtures over the entire range of concentration
were investigated using both the un-grafted poly(ethylene terephthalate) (PET) and the grafted
PET-g-PST membranes [244]. It was found that PET-g-PST membranes exhibited better toluene
selectivity than the un-grafted PET membrane while the permeation fluxes of the grafted membranes
were lower. Grafted PET-g-PST membranes with degrees of grafting up to 35% were found to be better
than the un-grafted PET for PV of toluene-methanol system. The separation of benzene-cyclohexane
mixtures and xylene isomer mixtures through a fixed-carrier membrane consisting of cellulose acetate
(CA) as a base polymer and dinitrophenyl (DNP) group as a selective fixed-carrier were studied
by Mitsuyoshi Kameda et al. [246]. Crosslinked oligosilylstyrene–polydimethylsiloxane composite
membranes were used to separate traces of 1,2-dichloroethane (1,2-DCE) from its mixtures by PV
and studied the effect of flow rates on PV performances [247]. Polyurethane (PU) dense membranes
were used in the separation of binary and multicomponent aromatic-aliphatic mixtures by PV [248].
Poly(hexamethylene sebacate) (PHS) which has strong affinity for styrene was selected as membrane
material, and the characteristics of permeation and separation for the styrene-ethylbenzene mixtures
through these PHS cross-linked with N,N,N′,N′-tetraglycidyl m-xylenediamine(TETRA-DX) membrane
by PV were also investigated [249]. Conducting polymer composite membranes with a separation layer
of polypyrrole doped with hexafluorophosphate (PF6

−) and p-toluenesulfonate (CH3C6H4SO3
−), were

examined for the removal of methanol from organic solvents, like toluene, IPA, MTBE and acetonitrile,
by PV [250]. The thin plasma polymerized AA films on poly(3-hydroxybutyrate) (PHB) membranes
were fabricated and studied for methanol-MTBE separation [251]. The experimental results showed
that the fluxes were relatively lower than the pristine membrane. However, PSI was always higher.
The permeability was found to be within the 660–4045 and 10.5–57.7 Barrer for methanol and MTBE,
respectively. PVA membrane was investigated for separation of IPA from its toluene mixtures [252]
for feeds composition from 10 to 40 wt % toluene at 35–50 ◦C and 4–16 psi. The PV experimental
results showed that at an optimum 12 psi applied pressure, 40 ◦C temperature and 10 wt % toluene in
feed solution, the toluene content of 78 wt % in the permeate was obtained. Ribeiro et al. fabricated
a series of aromatic polyimides and polybenzoxazoles and evaluated them as membrane materials
for separation of aromatic-aliphatic mixtures by PV [253]. The high temperature PV experiments at
80 ◦C showed an enhancement of aromatic hydrocarbon permeability approximately four orders of
magnitude depending on the chemical structure of the diamine.

In a PV study of separation of toluene-methanol mixtures, Ray et al. efficiently crosslinked the
SBR and NR membrane and compounded with different doses of reinforcing carbon black fillers
of high surface area [70]. The improved selectivity was achieved through chemical crosslinking by
efficient vulcanization and physical crosslinking through filler incorporation. The incorporation of
fillers not only enhanced the aromatic selectivity of the membranes but also improves the swelling
resistance and mechanical strength of the soft rubber membranes.
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Compared to other two PV separations, separation of organics using NCMs are less common.
The research studies have mainly focused on the separation of alcohol from other organic mixtures, or
separation of isomers and aromatic mixtures. The NPs present in the matrix mainly serve two major
advantages, viz. (i) reduce membrane swelling or plasticization effect and (ii) offers large surface
area for sorption and transport. In most cases, the overall flux and the selectivity showed a trade-off
relationship. Researches in this field have shown that the incorporation of suitable NMs not only
increase the mechanical strength and long-term stability of the membranes, but also enhances the
selectivity of particular components. The stability of MFI zeolite-filled PDMS membranes during
pervaporative ethanol recovery from aqueous mixtures containing acetic acid has been studied [254].
It was observed that longer-term exposure to acetic acid resulted in an irreversible, steady decline in
ethanol-water SF due to decreasing ethanol flux. The decrease in ethanol flux is probably attributable
to the interaction of acetic acid with the silanol groups on the external surfaces of the zeolite particles or
with the PDMS in the polymer-zeolite interface, which eventually restricts the ethanol transport into the
zeolite pores. PV separation of toluene-alcohol mixtures using silicalite zeolite embedded CS MMMs
has been studied [255]. The membrane permeated toluene preferentially with the selectivities/fluxes of
264/0.019–0.027 and 301/0.019–0.026 kg m−2 h−1 for toluene-methanol and toluene-ethanol mixtures,
respectively. The overall PV performance was increased with increasing silicalite content in the MMMs.
PDMS membrane filled with ZSM-5 zeolite filler has been successfully used for the separation of
1-butanol-2,3-butanediol mixtures [256]. The enhanced separation performance of the filled membranes
was ascribed to the positive filler–polymer interactions, and the improved mass transfer contribution
of surface flow through the zeolite pores. M. Tamaddondar et al. synthesized self-assembled
polyelectrolyte surfactant (PELSC) NCMs for PV separation of MeOH/MTBE [257]. The separation of
aromatic-alkanes was carried out using composite PVC membranes containing up to 40 wt % activated
carbon (Maxsorb SPD30) [258]. The performances of the NCMs were significantly increased compared
to pristine membrane, showing an enhancement of flux seven times higher and slight reduction
in selectivity.

CNT-incorporated membranes are also extensively studied in PV for organic-organic separations.
The PV separation of benzene-cyclohexane mixtures has been studied by Peng et al. using PVA
membranes modified with CS-wrapped MWCNTs [259]. The membrane exhibited an increase in
both permeation flux and SF. The incorporation of CNTs could provide the internal nano-channel
at the polymer interface for selective permeation. MWCNTs functionalized with isonicotinic acid
followed by grafting with Ag+ was incorporated into the CS membrane and used for the separation of
benzene-cyclohexane mixtures [260]. The modified membrane was observed to absorb more benzene
with an increase in the content of the MWNTs-Ag+ in the membrane and the benzene content in
the feed mixtures. The benzene flux and selectivity was increased up to 357.96 kg m−2 h−1 and
7.89, respectively, at 1.5 wt % MWNTs-Ag+, 50 wt % benzene concentration and 20 ◦C. The PAm
membrane, in the same way, fabricated with 2 wt % CNTs showed high selectivity and permeability
for pervaporative separation of MeOH/MTBE mixtures [261].

Researchers often used transition metal ions (M(I/II)), such as Ag(I), Cu(I), and Co(II), as the
facilitated transport fillers in the membranes for separating aromatic-aliphatic mixtures [262,263].
Wu et al. fabricated AgCl-poly(GMA-co-MMA-co-AMPS) copolymer hybrid membranes by in
situ microemulsion polymerization for the separation of benzene-cyclohexane mixtures [264].
The pi-complex interaction forms between Ag+ and the double bonds in aromatic molecules, enhanced
the aromatic compound separation ability. However, the incorporation of Co(II) into PVA matrix
showed significantly high permeation and SF of 150 g m−2 h−1 and 60, respectively [263]. These metal
ions interact with the permeating species and facilitate the selective transport of the corresponding
species. However, the metal ion facilitated membranes showed lack of stability and loss of M(I/II) in
the membrane matrix during the separation process has been observed [265].

On the other hand, the NCMs, fabricated by using MOFs, built by M(I/II) and organic
ligands, exhibit higher design ability in composition and improved stability. Co(II)-formate
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doped into poly(ether-block-amide) (PEBA) membrane has been demonstrated feasible to be used
as stable aromatic hydrocarbon transport carrier for facilitating aromatic hydrocarbon transport
membranes [266]. The membranes showed a very high permeate flux of 771 g m−2 h−1 with a SF of
5.1 at 10 wt % toluene-n-heptane mixtures. The IL membrane prepared via coating BMIM+BF4

−-Cu
nanocomposite dispersions onto a polyester microporous membrane support by Kim et al. for the
separation of propylene-propane mixture showed enhanced separation performances compared to
pristine membrane [267].

The separation of aromatic compounds from aliphatic mixtures is quite challenging. A novel
graphite-filled PVA-CS hybrid membrane for PV of benzene-cyclohexane mixtures has been
reported [268]. It was found that both of the permeation flux and SF improved with incorporation
of graphite. The presence of specific σ- and π-bond interactions between graphite and benzene
improved the separation performance. Li et al. used an atmospheric dielectric-barrier-discharge
plasma graft-filling technique to graft the copolymers in the sublayer pores and onto the surface
of an asymmetric PAN based UF membrane [269]. To enhance the stability of the PV membrane
for aromatic-aliphatic separation, Wang et al. fabricated a “pore-filling” membrane by dynamic
pressure-driven assembly of a PVA-GO nanohybrid layer onto an asymmetric PAN UF membrane [270].
The pore-filling structure efficiently reduced the membrane swelling and the increased affinity of the
membrane to aromatic compounds due to the molecular-level dispersion of GO in PVA led to improved
performance in the PV separation of toluene-n-heptane mixtures. For separation of benzene from its
cyclohexane mixtures a NCM has been fabricated by incorporating three-dimensional silver-GO into
polyimide hybrid membranes [271]. The hybrid polyimide membrane showed highest SF reached to
35 at 15 mass% of Ag-GO loadings. An increase in Ag content in Ag-GO samples formed Ag NPs
on GO surface through impregnation reduction reaction, which eventually enhanced the separation
performances. It is thus clear that the key points of separation and purification of organic liquid
mixtures to be feasible in terms of both technically and economically are the design and construction
of both physical and chemical structures of the NCMs for enhanced membrane performances.

4. PV membranes Fabrication Techniques

In PV, the membranes play the most important role in determining the technological and
economical efficiency of the aforementioned technology; and the improvement in membrane design
could greatly affect the performance of current technology. To this point, most of the membrane
materials used in PV technique are suitable for small-scale laboratory research purposes, but not in
large-scale industrial applications. It is thus important to investigate on the fabrication techniques of
more membrane materials to overcome the weaknesses in existing membranes. Different fabrication
techniques used for the preparation of PV membranes are discussed below.

4.1. Solution Casting Method

Solution casting method is frequently used to synthesize composite PV membranes. In this
process, the polymer and all other necessary ingredients are dissolved in a common solvent to obtain
a homogeneous solution, followed by the casting of this solution onto a flat glass plate or Petri dish,
as shown in Figure 1. After complete evaporation of solvent, the dried membrane is then peeled off
from the glass support. Solution casting method is not only suitable for single-layered membrane
formation, but also highly useful for the fabrication of multi-layered dense and/or porous membranes
through the multi-solution coatings on the glass support. In fact, introduction of highly volatile
solvents to the casting solution with an evaporation step prior to the phase inversion in a non-solvent
bath can encourage the formation of top dense layer. The incorporation of NMs into the polymer
solution requires special attention, as the NPs always tend to agglomerate that result in poor dispersion
and inferior membrane performances. The solution prepared by mixing the polymer, solvent and
the NMs often stirred for long time (usually 8–12 h) vigorously and/or exposed to ultrasonication.
Solution casting method has extensively been studied for fabricating various types of nanocomposite
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PV membranes [123,146,153,162,272–275]. Gao et al. fabricate the PV membranes by solution casting
technique for dehydration of IPA using the novel PVA NCMs, containing zeolites of several metal
ions, like Na+, K+ and Ca(II) [272]. Additionally, another two new PVA based NCMs were reported
by Mali et al., via incorporating phosphomolybdic acid and silicate NPs, using the solution casting
method [273]. In succession, Adoor et al. also investigated the pervaporative dehydration of IPA- and
ethanol-water mixtures using filler incorporated SA membranes, incorporating pristine and modified
pristine NPs [162]. On the other hand, Li et al. and Prasad et al. reported the use of zeolite 13X NPs
into the polyimide and sodium carboxymethylcellulose membranes, respectively, to fabricate novel
NCMs for pervaporative dehydration of IPA-/ethanol-water mixtures [274,275]. In all of these studies,
substantial variation of separation potential, as reflected from the reasonable variation of both flux and
SF, has been noted. Weng et al. [276] utilized the knife casting method for synthesizing a multi-walled
carbon nanotube/PBNPI nanocomposite membrane, perfectly suitable for H2/CH4 separation,
whereas Bae et al. [277] prepared TiO2 nanoparticle incorporated sulfonated polyethersulfone (SPES)
membrane through the knife casting method. Again, Vatanpour et al. [278] and Solè et al. [279]
used the phase-inversion method for synthesizing polyethersulfon-TiO2 nanocomposite membrane
and Sorbitan monolaurate [Span20] incorporated polyoxyethylene sorbitan monolaurate [Tween20],
polyoxyethylene(4) lauryl ether [C12E4] membrane, respectively via the phase-inversion method.Membranes 2017, 7, 53  23 of 63 
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Figure 1. Preparation of Nanocomposite Membrane (NCM) by solution casting method.

4.2. Solution Coating Method

Another frequently used technique for fabricating thin composite membranes is solution coating.
This technique is normally used to synthesize composite membranes, via depositing a thin selective
layer, on top of a microporous substrate or support, which may adopt flat-sheet, hollow fiber or tubular
shape (Figure 2). In fact, the degree of porosity of the substrate should be sufficiently high so that the
membrane resistance can mainly be controlled by the coated selective layer [280,281]. In this context,
the pore size distribution of the substrate surface should preferentially be sharp and free from large
defects, so that the intrusion of coating solution can be prevented. In fact, pre-wetting of the substrate
with a low boiling point solvent, which is immiscible with the coating solvent, prior to the coating
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process can minimize such intrusion [280,281]. The pre-wetting solvent is then evaporated to obtain
the coated membrane.

Spin coating is another procedure used to fabricate uniform thin films. In this process, a small
amount of polymer-NM dispersion is applied on the center of the substrate that is spinning at desirable
speed. Several researchers utilized this spin coating technique to fabricate uniform improved NCMs.
Ding et al. improved the permselectivity of PV membrane by constructing the active layer through
alternative self-assembly and spin-coating [282]. A high PV dehydration performance has been
observed for the composite membrane fabricated with an ultrathin alginate/PAA-Fe3O4 active layer
fabricated via spin coating [283]. In this context, Wang et al. [284] prepared a nanocomposite membrane
via thin coating of PVA membrane on the multiwalled carbon nanotube. Again, Steele et al. [285]
prepared superoleophobic coatings of ZnO nanoparticles blended with a waterborne perfluoroacrylic
polymer emulsion membrane.Membranes 2017, 7, 53  24 of 63 
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Table 1. Fabrication of nanocomposite polymeric membranes by solution blending method. 

Organic 
Polymers 

Inorganic 
NPs/Mesh Size 

Amount of Organic 
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4.3. Blending of Solutions

One of the easiest ways to fabricate nanocomposite hybrid membrane is the direct mixing of
inorganic NPs into the previously prepared polymer matrix. Such mixing/blending can be carried
out in two ways: (i) in solution blending, where both components (i.e., membrane and NPs) are
dispersed in a common solvent and (ii) in melt blending, where both components are dispersed as
melt at high temperature. Of these two, melt blending is more common owing to higher efficiency
and environmental inhibition. Dispersion of NPs in a polymer matrix usually led to undesirable
agglomeration. Surface modification techniques, such as irradiation grafting, have been used to
modify the NPs and break down its agglomerates in producing nanostructural composites. In this
context, Genne et al. prepared PS-ZrO2 NCMs using 18 wt % PSF solution in N-methylpyrrolidone
(NMP) with different amounts of ZrO2 NPs [286]. The membrane permeability increased as the amount
of ZrO2 weight fraction was increased. Wara et al. reported the fabrication of NCMs of cellulose-Al2O3

by using the solution blending [287]. Liquid-state blending at the molecular level is widely used to
prepare hybrids, which minimize the limitations of melt blending. During the past decade, fabrication
of polymer-silica NCMs by solution casting mixtures of nanosilica has received much attention because
of their easy and convenient preparation (Table 1). Such membranes were studied for gas separation,
PV and PEMs in fuel cell applications [288,289].
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Table 1. Fabrication of nanocomposite polymeric membranes by solution blending method.

Organic Polymers Inorganic
NPs/Mesh Size

Amount of
Organic Polymer

Used (wt %)

Amount of Inorganic
Nanocomposite

Used (wt %)
Reference

PSf ZrO2/~1.00 µm 18 0–90 [285]
Poly(amic acid) TEOS/7–20 nm 61–79 39–21 [290]

EVA 12Me-MMT - - [291]
EAA MMT 5 g/200 mL 2 [292]
PVC Na-MMT 10 g 0.2 g [293]
PVC OMMT 10 g 0.2 g [293]
PVC MMT - 1–25 phr [294]
PVC Na-MMT - 1–25 phr [294]
PVC OMMT - 1–25 phr [294]
EVA 12Me-MMT - 0–6 [295]
CA Alumina 10 50 [286]

Blending polymerization is an easy method to operate and suitable for all kinds of inorganic
materials. Also, the concentration proportions of the components, i.e., polymer and inorganic
components are easy to handle and thus, used frequently. However, the inorganic ingredients are
liable to aggregate in the membranes, resulting in an inapplicable membrane formation [296–298].

4.4. Hollow Fiber Spinning (HFS) Technique

Different types of membranes, like flat sheet composite, polymeric hollow fibers and inorganic
tubular membranes, are gaining high commercial interest, owing to their potential application in
RO, micro-/nano-/ultra-filtration (MF/NF/UF), dialysis, GS and PV. Of these synthetic membranes,
hollow fiber polymeric membranes, first invented by Mahon in 1966 [299], have shown tantamount
impact and utmost importance, since these possess several advantageous attributes. In fact, high
demand of HFMs, as compared to the other membranes, is associated with higher packing density and
higher effective membrane area per unit volume of the separation device (i.e., membrane module),
resulting in greater process intensification. Furthermore, the HFMs provide significant self-mechanical
support and ease of handling during module fabrication and process operation. In this context,
Sukitpaneenit and Chung reported the use of PVDF-nanosilica dual-layer HFMs, synthesized through
HFS method, for the pervaporative recovery of ethanol from the binary aqueous solution with high
permeation flux and organic SF [300].

The majority of innovations and modifications towards HFMs synthesis have been carried out
through trial and error methods, aided by past experience, empirical data and qualitative scientific
understanding. In fact, the design of such membrane technology has emerged to provide sustainable
solutions of global demand for clean energy, water and health management. In order to fabricate novel
HFMs, possessing high pervaporative separation potential, researchers have to investigate the intrinsic
physicochemical properties of the membranes, manipulate phase inversion processes and control dope
rheological responses during membrane formation.

Synthesis of HFMs, comprising of both desirable morphology and separation performance, is
highly challenging. Macrovoids and irregular shapes, often observed in hollow fibers, can deteriorate
the mechanical properties of HFMs, when operated under high pressure/vibration for prolonged
time. A typical HFS system is shown in Figure 3. Indeed, the changes in polymer molecular structure
to improve separation performance are limited by the well-known trade-off between permeability
and selectivity, i.e., an increase in permeability usually is accompanied by a decrease in selectivity
and vice-versa.
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Figure 3. Typical hollow fiber spinning system: 1. spinning dope tank, 2. regulating pressure valve,
3. pressure gauge, 4. dope vessel, 5. dope valve, 6. bore liquid vessel, 7. bore liquid pump, 8. spinneret,
9. air gap, 10. Coagulation bath, 11. windup drum, 12. fiber collecting reservoir and 13. wash water.

The HFS process comprises a large number of process parameters throughout the entire chain of
dope formulation, coagulation chemistry, spinneret design and spinning conditions such as air gap,
temperature and take-up speed. During spinning, the membrane is formed through phase inversion
when the nascent fiber contacts with the coagulant.

Since the polymer dope is extruded simultaneously with the bore fluid in the lumen side of the
nascent fiber, coagulation occurs right away at its internal surface after the nascent fiber is emerged
from the spinneret. Meanwhile, partial coagulation starts at the outer surface when the nascent fiber
goes through the air gap region by the presence of humid air. The whole phase inversion process
is completed once the fiber is fully precipitated in the external coagulation bath. The thickness and
morphology of the selective layer can be manipulated by varying compositions of the spinning dope,
bore fluid and external coagulant as well as take up speed. The complexity of HFS increases as
the spinning method advances from single-layer to dual-layer co-extrusion. The dual-layer hollow
fibers possess the advantages of cost reduction as well as freedom in customization of materials and
morphology for the selective and supporting layers [301,302]. Liu et al. studied the effects of surface
modifications on preparation and PV dehydration performance of CS-PS composite hollow-fiber
membranes [303]. The fabrication of novel thin-film composite tri-bore hollow fiber (TFC TbHF)
membranes for PV dehydration of IPA has been reported [304].

4.5. Fabrication via Interfacial Polymerization (IP) Technique

IP is one of the most recognized methods for synthesizing thin composite membranes, mostly
used in RO [305] and NF [306,307]. In fact, IP technique was extensively used for fabricating RO
membranes since 1960 [308–310]. However, the use of this method for synthesizing PV membranes is
limited only up to the fabrication of hydrophilic membranes, suitable for dehydration [311–315]. In this
context, Parthasarathy et.al. [311] fabricated thin film composite (TFC) HFMs via redox-/photo-IP
method for the possible application in simple PV experiment to measure the performance potential of
such TFC membranes. Again, Shawky et al. [316] used m-phenylenediamine and trimesoyl chloride,
dissolved in water and hexane, respectively, for synthesizing another TFC membrane by IP. This
thin film polymer film was mounted on a porous support layer through an in situ polycondensation
process [309], followed by the formation of thin film nanocomposite (TFN) membrane, via proper
dispersion of inorganic fillers, in the thin polymeric layers, during IP. In fact, several works have been
devoted to the incorporation of CNTs [306,317], zeolite [318], silica [319] and silver [320] NPs, into
the PAm matrices of the TFNs, for fabricating PV nanocomposites membranes. In fact, the use of IP
is highly solicited as ultra-thin membranes can be fabricated by this technique with a rapid rate of
polymerization at ambient conditions [321]. This polymerization technique involves rapid reaction
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between two monomers, dissolved in two immiscible solvents, to yield a continuous polymeric layer
at the interface of such two immiscible liquid layers [322]. The selective layer formed on the top of
the substrate, during IP, is very thin and thus, possess relatively higher membrane flux. Furthermore,
proper selection of suitable monomers for IP can generate thin selective layers having improved
chemical resistance, thermal stability and long-term durability [323].

IP has emerged as an important synthetic method for synthesizing PA [324–326] and polyimide
(PI) [313,314] based TFC membranes, through polycondensation reaction between two monomers
on the surface of a microporous support (Table 2). During synthesis of PA membranes, through
IP, the amine- and acid chloride-based monomers, dissolved in the organic and aqueous solutions,
respectively, are taken and the thin film membrane is obtained from the interface of the two immiscible
solvents. The separation potential of such TFC membranes are found to depend largely on the type
of monomers used [325,326]. On the other hand, the IP/thermal imidization method has become a
very effective method for fabrication of PI based NCMs, with an ultra-thin skin layer, suitable for the
dehydration of aqueous organics. In this context, Liu et al. [313] synthesized a TFC, based on PTFE/PA,
via IP, using surface-modified PTFE films as substrates. Such a stable composite membrane exhibited
high performance potential, i.e., high permeation flux of 1720 g m−2 h−1 and reasonable SF of 177, for
the pervaporative dehydration of IPA-water mixture of 70 wt % of IPA in water. Again, Zuo et al. [314]
synthesized HFMs, consisting of a TFC PA layer and a porous Torlons PA-imide substrate through IP,
also reported to exhibit high pervaporative performance. In this context, PS and PES are frequently
used as the porous substrates for IP [324–326]. Kim et al. used PS-polyimide based TFC membranes,
prepared by IP of polyimide on a PS support, for pervaporative dehydration of ethanol aqueous
solutions [312].
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Table 2. Use of NCMs, synthesized through interfacial polymerization, for the PV.

Organic
Polymer Used NP Used Thickness

(µm) Utility TF (g m−2 h−1)/Temperature
(K)/Feed (wt %)

SF/Permeability Ref.

PTFE a PA b – PV c (IPA d/H2O) 1720 ± 150/343/70:30 (IPA/H2O)/– 177 (IPA/H2O)/– [313]
PVA e APTEOS hybrid f 18 PV (IPA/H2O) 26.5/303/90:10 (IPA/H2O)/– 1580 (H2O/IPA)/– [327]
PVA Zeolite – PV (IPA/H2O) 3.2/303/90:10 (IPA/H2O)/– 216 (H2O/IPA)/– [328]
CS g Zeolite 40 PV (THF h/H2O) 170/303/95:5 (THF/H2O)/– 2140 (THF/H2O)/– [329]
PVA 1.5 wt % FeO 45 PV (IPA/H2O) 95/303/90:10 (IPA/H2O)/– 122 (H2O/IPA)/– [330]
PVA 3.0 wt % FeO 45 PV (IPA/H2O) 82/303/90:10 (IPA/H2O)/– 143 (H2O/IPA)/– [330]
PVA 4.5 wt % FeO 45 PV (IPA/H2O) 79/303/90:10 (IPA/H2O)/– 470 (H2O/IPA)/– [330]
PVA 1.5 wt % FeO 45 PV (DO j/H2O) 98/303/90:10 (DO/H2O)/– 82 (H2O/DO)/– [330]
PVA 3.0 wt % FeO 45 PV (DO/H2O) 91/303/90:10 (DO/H2O)/– 104 (H2O/DO)/– [330]
PVA 4.5 wt % FeO 45 PV (DO/H2O) 84/303/90:10 (DO/H2O)/– 144 (H2O/DO)/– [330]
PVA 1.5 wt % FeO 45 PV (THF/H2O) 180/303/90:10 (THF/H2O)/– 342 (H2O/THF)/– [330]
PVA 3.0 wt % FeO 45 PV (THF/H2O) 139/303/90:10 (THF/H2O)/– 421 (H2O/THF)/– [330]
PVA 4.5 wt % FeO 45 PV (THF/H2O) 95/303/90:10 (THF/H2O)/– 519 (H2O/THF)/– [330]

Ceramic Zeolite NaA k 8 PV (THF/H2O) 430/318/93:7 (THF/H2O)/– 1240 (H2O/THF)/– [331]
Ceramic Zeolite NaA k 8 PV (AC l/H2O) 130/313/97:3 (AC/H2O)/– 50 (H2O/AC)/– [331]

PVA 0.5 wt % CNT(CS) m 80 PV (benzene/cyclohexane) 53.0 ± 0.5/323/50/50 (wt/wt)
(benzene/cyclohexane)/– 23.1 ± 0.4 (benzene/cyclohexane)/– [259]

PVA 1.0 wt % CNT(CS) 80 PV (benzene/cyclohexane) 60.8 ± 0.6/323/50/50 (wt/wt)
(benzene/cyclohexane)/– 30.4 ± 0.8 (benzene/cyclohexane)/– [259]

PVA 1.5 wt % CNT(CS) 80 PV (benzene/cyclohexane) 67.3 ± 1.0/323/50/50 (wt/wt)
(benzene/cyclohexane)/– 37.6 ± 0.5 (benzene/cyclohexane)/– [259]

PVA 2.0 wt % CNT(CS) 80 PV (benzene/cyclohexane) 65.9 ± 1.2/323/50/50 (wt/wt)
(benzene/cyclohexane)/– 53.4 ± 0.4 (benzene/cyclohexane)/– [259]

PVA 2.5 wt % CNT(CS) 80 PV (benzene/cyclohexane) 58.9 ± 0.9/323/50/50 (wt/wt)
(benzene/cyclohexane)/– 46.4 ± 0.7 (benzene/cyclohexane)/– [259]

a poly(tetrafluoroethylene), b aromatic PAm polymerized by interfacial reaction between aqueous m-phenyl diamine and organic trimesoyl chloride solutions, c PV, d isopropyl alcohol,
e polyvinyl alcohol, f γ-aminopropyl-triethoxysilane, g chitosan, h tetrahydrofuran, j dioxan, k sodium form of zeolite A, l acetone, and m carbon nanotube (chitosan).
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4.6. Modifications of Composite Membranes via Physical and Chemical Treatment

The biggest challenge in fabricating the NCMs is to increase the compatibility between the NMs
and the polymer matrix that eventually helps the NMs to distribute uniformly into the polymer matrix.
Physicochemical modification is one of the best methods that not only restricts the agglomeration
tendency of the NMs, but also enhances its dispersibility into the polymer phase. Among different
inorganic NFs, silica incorporated composite membranes have generally been found to exhibit
significantly high organophilic properties. In fact, silica finds extensive applications owing to the
prevalent better thermomechanical and hydrophobic properties. Again, polydimethylsiloxane (PDMS)
based membranes have been investigated by several workers for separation of organic-water mixtures.
In this regard, for the betterment of compatibility between silica and PDMS, silica surface was
hydrophobized with trimethylsilanol. Shirazi et al. showed that the trimethylsilanol hydrophobized
silica (TMS-H-Silica) interacts better with the PDMS matrix, resulting in higher rigidity and better
organoselectivity of PDMS membrane. Hence, the permeation flux of PDMS-silica NCMs has been
found to be moderate, while the respective selectivity is significantly higher than those of the other
composite PDMS membranes, since flux and selectivity follow the opposite trend [332]. Again, fumed
nano-silica, produced by the flame hydrolysis of chlorosilanes, is commonly used for the reinforcement
of polymeric materials/elastomers, such as silicone rubber. Fumed nano-silica always exists in the
form of aggregates whose particle size is smaller than those of the conventional silica particles,
and the aggregates tend to agglomerate. In fact, the introduction of silica NPs into CS membrane,
having a thickness of 28 µm, created extra voids within the polymeric network, resulting in the
enhancement of selective permeation rate through the membrane during pervaporative dehydration
of the ethanol-water binary mixture [153]. Again, crosslinking on CS reduces the extent of swelling in
water and, thus, selectivity is enhanced for the dehydration of ethanol-water mixtures. In succession,
a new type of filled NCM was prepared by Liu et al. [153], fabricated through the incorporation of
hydrophobic silica into the CS skin layer (Table 3). Moreover, the addition of silica NPs to CS provided
extra free volumes in polymer networks for enhanced water permeation. In fact, the membrane,
possessing five parts per hundreds of functionalized silica and CS, exhibited SF and permeation flux
of 919 and of 410 g m−2 h−1, respectively, during the dehydration of 90 wt % aqueous ethanol at 70 ◦C.
Furthermore, the surface modification of silica with organosilane reduces the number of superficial
silanol groups and enhances organophilicity via attachment of organic moieties. A couple of reactions
generally take place: (i) hydrolysis of the silanol groups of the silica and the triethoxysilyl groups of the
silane via loss of ethanol and (ii) condensation and crosslinking of the silane molecules. The modified
silica NPs have exhibited stronger affinity and enhanced compatibility with poly(phenylene oxide)
(PPO), in comparison with the unmodified silica NPs. This generates more restricted permeation
through the PPO dense membrane matrix, reduces the diffusion of VOCs, like methanol and MTBE
and, consequently, restricts the permeation flux in PV. It has been observed that the permeation
flux of the filled PPO membranes, with silane modified silica, is lower than that of the silica filled
PPO membranes, especially at high MeOH concentration in feed. As the overall solubilities of the
filled PPO membranes are similar, the low permeation flux, observed for the filled PPO membranes
with silane modified silica, has been attributed to the betterment of silane modified silica NPs to
be dispersed in PPO matrix, introducing more tortuous passage through such membranes than the
unmodified silica filled PPO membranes. Consequently, the diffusion of both MeOH and MTBE
in the filled PPO membranes, with silane modified silica, has been found to be smaller than that
in the unfilled PPO or silica filled PPO membranes. The effect of γ-aminopropyltriethoxysilane
(APTEOS) content on the permeation flux and SF, in PV of 85 wt % ethanol solution, through the
hybrid membranes was studied by Zhang et al. [333]. The SF was observed to increase sharply for
such hybrid membranes, containing up to 5 wt % of APTEOS, but followed an opposite trend to
decrease on further increase in APTEOS. In fact, SF at 60 ◦C, was relatively higher when APTEOS
content in the hybrid membrane was less than 4.5 wt %. Indeed, SF was found to decrease with an
increasing temperature when the amount of APTEOS was more than 4.5 wt % due to the attainment
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of better mobility of PVA chains with increasing feed temperature, favoring ethanol diffusion and
poor water selectivity. Again, PVA-1,2-bis(triethoxysilyl)ethane (PVA-BTEE), an organic-inorganic
hybrid membrane, prepared via sol-gel method by Zhang et al. [296], showed good physicochemical
properties and permeation performances during pervaporative dehydration of ethanol. The hybrid
membrane containing 3 wt % BTEE imparted the highest permeation flux of 0.244 kg m−2 h−1, while
that containing 6 wt % BTEE resulted in the highest SF, which also confirmed the reverse variation
of permeation flux and SF. Silicalite-1, a hydrophobic inorganic material, has rarely been used as
a filler to fabricate MMMs. Silicalite-1 has a high Si-to-Al ratio that makes it hydrophobic. It has
an asymmetrical aperture with a 3D channel system. In this context, Adoor et al. [123] fabricated
silicalite-1 incorporated MMMs, of SA and PVA, for pervaporative dehydration of IPA. Indeed, IPA is
miscible with water in all proportions and forms azeotrope at 12.5 wt % of water that is difficult to
separate by simple distillation owing to the potential health hazards and expensive. It was observed
that 5 to 10 wt % silicalite-1 loaded SA and PVA based MMMs showed reasonable dehydration of
IPA. Addition of hydrophobic silicalite-1 particles improved the separation potential of the MMMs
over those of pristine SA and PVA membranes with a reduction in swelling value. Incorporation of
a higher amount (>10 wt %) of silicalite-1 into SA and PVA matrices resulted in brittle and unstable
PV membranes for such separation. In fact, restricted permeation through the tortuous paths, created
due to the presence of silicalite-1 particles, have resulted in greater transport of water molecules than
IPA, since IPA has higher molecular dimension than water. In fact, fluxes of MMMs were lower than
pristine SA and PVA membranes due to induced hydrophobicity of SA and PVA matrices as a result of
silicalite-1 incorporation within the matrix.

Among various inorganic NPs, zeolite has emerged as one of the best options for the betterment
of both selectivity and permeability due to the prevalent unique molecular sieving property and
selective adsorption [164,334]. Recently, zeolite filled membranes have exhibited reasonable flux and
separation performances than the traditionally used polymeric membranes [335,336]. However, the
fabrication of zeolite membranes is expensive and usually brittle. In order to combine the advantageous
properties of such two materials, fabrication of MMMs were proposed by the incorporation of
inorganic adsorbents, like zeolite particles, within the polymer matrix [337]. This endeavor introduced
promising results in rubbery zeolite systems for the pervaporative removal of organic solvents, such
as ethanol and methanol, due to the prevalence of better physicochemical properties, as required in
PV membranes [338]. Again, chemical reactions generating water, as a product, can be assisted by
selective permeation through membranes. The continuous removal of water from the reacting system
helps increase in the conversion and a reduction in reaction time. Zeolite-filled membranes perform
better in the PV-aided reactions because of facilitated water transport of the membranes as found
by Gao et al. [272]. Also, Qiao et al. [274] have fabricated zeolite 5A and 13X filled P84 membranes
and investigated the effects of annealing temperature during fabrication, the interaction between
zeolite and polymer, zeolite 13X loading on the membrane performance potential and PV separation
performance for dehydration of IPA. A higher annealing temperature of 250 ◦C helps improve the
interaction between zeolite and the polymer network through an increase in the flexibility of the
polymeric chains and enhances the charge transfer complexes (CTCs) formation. Both permeability
and selectivity of P84 membranes have significantly been improved after incorporation of zeolite 5A
and 13X NPs. Additionally, zeolite 13X shows better compatibility with P84 polymer than zeolite 5A.
In recent years, MMMs, incorporated with zeolites or other inorganic fillers, have widely been studied
for pervaporative dehydration of organics.
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Table 3. Literature study of inorganic NCMs towards PV performance prepared via solution casting and solvent evaporation method (SCSE).

Polymeric Network Inorganic Nanocomposite Flux (g m−2 h−1)/SF(–)(x/y)/Temperature (K) Feed Composition (wt %/wt %) Reference

PDMS a TMS-H-silica b 135/33 (IPA c/H2O)/298 IPA/H2O (4/96) [332]
PDMS TMS-H-silica 405/32 (IPA/H2O)/323 IPA/H2O (4/96) [332]
PDMS TMS-H-silica 117/28 (EtOH/H2O)/303 EtOH/H2O (4/96) [332]
PDMS TMS-H-silica 329/26 (EtOH/H2O)/323 EtOH/H2O (4/96) [332]
CS e 3 wt % Silica 450/639 (EtOH/H2O)/343 EtOH/H2O (90/10) [153]
CS 5 wt % Silica 410/919 (EtOH/H2O)/343 EtOH/H2O (90/10) [153]
CS 10 wt % Silica 450/735 (EtOH/H2O)/343 EtOH/H2O (90/10) [153]
CS 20 wt % Silica 320/919 (EtOH/H2O)/343 EtOH/H2O (90/10) [153]
CS 30 wt % Silica 410/1102 (EtOH/H2O)/343 EtOH/H2O (90/10) [153]

PVA f APTEOS g 35.5/537/(H2O/EtOH)/323 EtOH/H2O (85/15) [333]
PVA BTEE h 227/70 (H2O/EtOH)/323 EtOH/H2O (85/15) [339]

P84 co-polyimide i Zeolite-5A 40/4200 (H2O/IPA c)/323 IPA/H2O (90/10) [123]
PVA f KA zeolites j 179/410 (H2O/IPA)/323 IPA/H2O (90/10) [272]
PVA NaA zeolites k 140/1170 (H2O/IPA)/323 IPA/H2O (90/10) [272]
PVA CaA zeolites l 157/1170 (H2O/IPA)/323 IPA/H2O (90/10) [272]
PVA NaX zeolites 170/516 (H2O/IPA)/323 IPA/H2O (90/10) [272]
PVA KA zeolites j 179/410 (H2O/IPA)/323 IPA/H2O (80/20) [272]
PVA NaA zeolites k 183/328 (H2O/IPA)/323 IPA/H2O (80/20) [272]
PVA CaA zeolites l 190/233 (H2O/IPA)/323 IPA/H2O (80/20) [272]
PVA NaX zeolites 216/233 (H2O/IPA)/323 IPA/H2O (80/20) [272]

P84 co-polyimide i Zeolite-13X 110/2700 (H2O/IPA)/333 IPA/H2O (90/10) [274]
PBI m ZIF-8 n 103/1686 (H2O/IPA)/333 IPA/H2O (85/15) [146]
PBI ZIF-8 81/341.7 (H2O/n-BuOH)/333 n-BuOH/H2O (85/15) [146]
PBI ZIF-8 992/10 (H2O/EtOH)/333 EtOH/H2O (85/15) [146]

PVA f 5 wt % ZIF-8 868/132 (H2O/IPA)/303 IPA/H2O (90/10) [275]
PVA 7.5 wt % ZIF-8 952/91 (H2O/IPA)/293 IPA/H2O (90/10) [275]

PDMS a Fumed silica (A200) 200/19 (EtOH/H2O)/313 EtOH/H2O (5/95) [340]
PDMS Fumed silica –/7 (EtOH/H2O)/313 EtOH/H2O (5/95) [340]
PDMS Carbon black –/7 (EtOH/H2O)/308 EtOH/H2O (5/95) [340]
PDMS Zeolite Y 750/5 (EtOH/H2O)/308 EtOH/H2O (5/95) [340]
PDMS Silicalite-1 o 51/17 (EtOH/H2O)/295.5 EtOH/H2O (5/95) [340]

Matrimid p MgO 4500/1800 (H2O/IPA c)/373 IPA/H2O (90/10) [341]
PVA PMA q 36/29991 (IPA/H2O)/323 IPA/H2O (90/10) [273]
PVA Silicalite-1 o 69/2241 (IPA/H2O)/323 IPA/H2O (90/10) [273]
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Table 3. Cont.

Polymeric Network Inorganic Nanocomposite Flux (g m−2 h−1)/SF(–)(x/y)/Temperature (K) Feed Composition (wt %/wt %) Reference

PVA Sulfated zirconia 183/86 (H2O/EtOH)/323 EtOH/H2O (80/20) [342]
PVA H-ZSM5 r 182/46 (H2O/EtOH)/323 EtOH/H2O (85/15) [343]

Matrimid p Cyclodextrin 50/>5000 (H2O/IPA c)/323 IPA/H2O (86/14) [344]
Matrimid Zeolite-4A 21/>5000 (H2O/IPA)/303 IPA/H2O (90/10) [345]
Matrimid Cu3(BTC)2

s 400/245 (H2O/IPA)/323 IPA/H2O (90/10) [346]
Polyimide t Zeolite-13X 150/272 (H2O/IPA)/323 IPA/H2O (90/10) [276]

NaCMC u/PVA f Zeolite-13X 121/5118 (H2O/EtOH)/308 EtOH/H2O (90/10) [277]
PDMS a SiO2 807/13 (H2O/EtOH)/333 EtOH/H2O (5/95) [347]
PDMS ZIF-8 n 1229/10 (H2O/EtOH)/333 EtOH/H2O (5/95) [347]
PDMS SiO2 1693/9 (H2O/n-BuOH)/333 n-BuOH/H2O (5/95) [347]
PDMS ZIF-8 n 1743/30 (H2O/n-BuOH)/333 n-BuOH/H2O (5/95) [347]
PDMS PZSNTs v –/10 (EtOH/H2O)/313 EtOH/H2O (10/90) [222]
PDMS [CuII

2(bza)4(pyz)]n 23/2 (EtOH/H2O)/308 EtOH/H2O (5/95) [348]
PDMS Silicalite-1 o –/16 (EtOH/H2O)/308 EtOH/H2O (6/94) [349]
CS e IDD w 184/125 (IPA/H2O)//298 IPA/H2O (70/30) [350]

a Polydimethylsiloxane, b trimethylsilanol hydrophobized silica, c isopropyl alcohol, e chitosan, f polyvinyl alcohol, g γ-aminopropyl-triethoxysilane, h 1,2-bis(triethoxysilyl)ethane,
i copolyimide of 3,3′,4,4′-benzophenone tetracarboxylic dianhydride and 5(6)-amino-1-(40-aminophenyl-1,3-trimethylindane, j potassium exchanged zeolite A, k sodium form
of zeolite A, l calcium form of zeolite A, m polybenzimidazole, n zeolitic imidazolate framework, o type of zeolite, p copolyimide of 3,3′,4,4′-benzophenone tetracarboxylic
dianhydride and 80% methylphenylene-diamine +20% methylene diamine, q phosphomolybdic acid, r zeolite socony mobil–5, s 1,3,5-benzene tricarboxylate, t polymer of
2,2-bis(4-(4-aminophenoxy)phenyl)propamine and bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, u sodium carboxymethylcellulose, v polyphosphazene nanotubes,
w 4-isocyanato-40-(3,30-dimethyl-2,4-dioxo azetidino)diphenylmethane.
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Another promising NF, used in the membrane matrix, is ZIF material, a subfamily of MOFs,
composed of tetrahedral metal ions, such as Zn(II)/Co(II), and a variety of imidazolate linkers to
form spatial frameworks. Phan et al. [351] developed the MOFs that possesses tunable structures and
favorable affinity with the polymer matrix, as compared to most of the other traditional inorganic
particles comprising of rigid frameworks. This promising NF has been incorporated into several
polymer matrices, such as polymethylphenylsiloxane, PDMS, CS, PVA, polybenzimidazole (PBI),
polyether-block amide, PS, polyimide and polymerizable room temperature IL, for substantial
enhancement of physicochemical properties as required for increasing the membrane removal
efficiency, and hence, have drawn considerable attention owing to the controllable pore sizes, as
well as high porosities. The pore sizes of zeolites are necessarily smaller than the kinetic diameters of
most the solvents. In fact, such pore sizes of ZIF particles are found to vary within 0.7–13.1 Å and the
corresponding surface area is approximately two times greater than those of inorganic zeolites. Phan
and his coworkers [351] successfully synthesized various types of ZIF particles for H2 storage and
CO2 adsorption applications. In another study, Amirilargani and Sadatnia [275] prepared PVA-ZIF-8
MMMs for pervaporative dehydration of IPA, in which the as-prepared ZIF-8 NPs of the maximum
10 wt %, with sizes smaller than 60 nm, were dispersed directly in the matrix of PVA. PDMS-CA NCMs
were successfully fabricated by adding modified fumed silica, as filler, by Peng et al. [340], in which the
silane coupling agent modified the surface property of the silica particles to enhance the compatibility
between the particles and PDMS matrix.

The incorporation of ILs into the membrane system could potentially offer more flexibility
in modification of the membranes. The tunable physical and chemical properties of the ILs,
depending on the nature of the cation and anion present in their structure, make them appropriate
as ‘designer solvents’ [352]. The thin IL membranes based on inorganic supports with controlled
pore sizes has been synthesized [353]. It was found that the activation energy of the membranes for
permeation was increased with smaller pore sizes, which signified the presence of specific interactions
between the IL and the membrane pore surface in controlling the IL properties. A new class of ILs
containing magnetic metals, known as Magnetic ILs (MILs), on PVDF support has been studied for
CO2 separation/concentration that exhibited different behavior in the presence of an external magnetic
field [352]. Since the permeants may interact differently under a different magnetic field, these MILs
become an attractive alternative in the separation processes [354].

Since the introduction of several nanocarbons (NCs), like CNTs, graphene and various other
carbon nanostructures, researchers have been motivated to develop various physico-chemically
modified advanced materials. In general, nanostructural carbons tend to agglomerate in
nanocomposites, resulting in the deterioration of the properties of individual components.
Thus, several methods have been employed for imparting the better dispersion of such materials
in a polymer matrix, including the chemical modification of NCs. Chemical modification results
in relatively enhanced dispersion in solvents and, thus, betterment of physicochemical and
thermomechanical properties of nanocomposites [355]. The relative variation in the properties of
nanotubes, the minimum energy conformation of a graphite layer rolled into a cylinder of finite
size, depend on the arrangement of the graphene sheets, diameter and length of the tubes and
functionalization of nanostructure. The MWCNTs include a coaxial assembly of several single-walled
CNTs (SWCNTs) (“Russian doll” structure), separated by a distance of ~0.34 nm, which is slightly
higher than the interlayer distance in single-crystal graphite [356], whereas the double-walled CNTs
(DWCNTs) consist of merely the two graphene layers. The most exciting feature of DWCNTs is that the
outer wall solely involves, in contrast to SWCNTs, functionalization, whereas the inner tube remains
intact resulting in the retention of mechanical properties.

Several types of chemical modifications have been introduced for the covalent functionalization
on CNTs by disruption of the conjugation (Figure 4). For example, hydrogenation by Birch reduction
results in the modification of unsaturated backbone of the CNTs [357] as reflected by the corrugation
and disorderly alignment of CNT walls. Few current investigations have also been investigated
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by several workers that help us to understand the dominant role of the functionalized SWCNTs as
reinforcing materials in various polymeric systems. After the attainment of reasonable functionalization
on the surface of MWCNT by various chemically reactive groups, grafting of polymer chains
on the functionalized nanotube surface is allowed to proceed. The polymer-grafted nanotubes
impart substantially improved dispersion in organic solvents as compared to pristine MWCNT [358].
The nanocomposites exhibit improved thermomechanical stability as a result of chemical reaction
between the functional groups of filler and the polymer matrix. A significant number of research
has been conducted using modified CNTs for PV [170–173,259,359] and those NCMs have exhibited
significant enhancement in separation performances.
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Polyphosphazene nanotube (PZSNT) is a novel type of nanotube, which can be prepared by the
reaction between hexachlorocyclotriphosphazene (HCCP) and 4,4′-sulfonyldiphenol (BPS). As PZSNT
content increased from 0 to 10 wt %, both permeation flux and SF were found to increase. However,
the increase in PZSNT diameter leads to the increase in permeation flux and SF.

In addition to such techniques, direct grafting of different nanoparticles into the polymer matrix
is also highly attractive towards fabrication of composite membranes. In fact, Mauter et al. [360]
developed silver nanoparticles (AgNPs) encapsulated positively charged polyethyleneimine
(PEI) and plasma modified polysulfone based ultrafiltration membrane with and without
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride. Also, Liang et al. [361] fabricated
silica nanoparticles grafted polyvinylidene fluoride (PVDF) membrane, suitable for ultrafiltration.

5. Specific Applications of PV Membranes

Besides straightforward dehydration, separation and purification of organics, NCMs based PV
has recently been employed in many other areas, including desalination, desulphurization, chemical
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reactions, etc. These membranes exhibit substantial improvement in terms of selectivity, permeability
and long-term stability and shows high potential for real time applications.

5.1. Membrane Reactor

A membrane reactor is a device that combines shifting of a chemical equilibrium towards the
forward direction with simultaneous separation through the involvement of a membrane during a
reaction. In such a case, elimination of at least one end product is essential to drive the equilibrium
into the product side for spontaneous enhancement of the final product.

5.1.1. Roles of Membrane in Membrane Reactor

The role of a membrane in membrane reactors can be of the following three types: extractor
(to remove the product(s) for enhancing the rate of the reaction via shifting the equilibrium in forward
direction), distributor (to restrict the unwanted side reactions by the precise addition of reactant(s)) and
active contactor (to control the diffusion rate of reactants towards the catalyst chamber for betterment
of the reaction). In the first two cases, membranes are devoid of catalytic properties, whereas in
the active contactor mode, the membrane also plays the role of a catalyst through the prevalent
diffusion barrier ability. Thus, the use of active contactor mode is extensive and can further be
classified into two categories: forced flow contactor- and opposing reactant-mode, depending upon
the activity of the membrane. In fact, the forced flow contactor mode is mainly applied for the total
oxidation of VOCs. The distributor mode, on the other hand, finds immense application for limiting
consecutive and parallel deep oxidation reactions for partial oxidation, oxidative dehydrogenation
of hydrocarbons and oxidative coupling of methane. In fact, the extra cost, introduced due to the
involvement of a membrane into the reactor, can be counterbalanced by the attainment of several
advantages, like smoothness of operation, low-maintenance instrumentation, energy/cost-effectivity,
use of the minimum amount of chemicals and high cost to performance ratio of the membrane [362].
The membrane should be highly component selective, i.e., only the component to be separated will be
able to permeate through the membrane [363]. In this regards, preferential permeation of lyophilic
and lyophobic components is assisted by the relative variations of lyophilic and lyophobic functional
groups and physicochemical properties of the membranes [364–366]. The design for introducing
suitable physicochemical properties of the membrane is, however, controlled in such way that the
membrane can retain the compactness/network even in contact with solvent molecules. The membrane
should possess enough thermomechanical-/chemical-stability to work under the working temperature
and pressure of unit operation [367,368]. Indeed, a good balance of mechanical properties, like tensile
strength (TS) and elongation at break (EAB), is highly solicited for producing a stable PV membrane
to work under harsh reaction conditions [369]. In this context, it is reported that both TS and EAB
are severely affected by the methods and several input variables, including different relative mole
ratios of all ingredients and the respective nature, vulcanization-/crosslinking-/curing-agent, time
and temperature, of membrane synthesis [70]. Indeed, the exact balance between TS and EAB can
be obtained by implementing response surface methodology (RSM), a frequently used statistical
technique, via performing minimum number of experiments/runs [370]. In fact, the use of RSM
to obtain the amounts of ingredients, like the crosslinker, filler and accelerator, for synthesizing
accelerated sulfur vulcanized and carbon nano particle filled natural rubber membrane has been
reported by Karmakar et al. [371], in which a substantial variation of both TS and EAB has been
observed with the little change in such amounts. Also, there should be an optimum balance between
the flux and SF of the membrane.

Though both inorganic and organic membranes can be used in membrane reactors, yet the use
of inorganic membranes has been found to be more advantageous, owing to the superior thermal
properties and pH resistance ability. Inorganic membranes can withstand high thermal stress and
thus, restrict the structural deformation at much higher temperature than the organic membranes.
Additionally, inorganic membranes are capable of enduring organic solvents, chlorine and other
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corrosive chemicals, better than organic membranes, allowing the use of more effective, and yet,
corrosive chemicals and hazardous cleaning procedures.

Polymeric membranes, on the other hand, can only survive in moderate conditions.
Thus, membrane reactors, possessing polymeric membranes, can be operated for enzyme-catalyzed
bio-reactions and low temperature reactions, including saccharification of celluloses and hydrolysis of
proteins. However, several catalytic processes, used in different industries, include high temperature
and harsh chemical conditions. These situations undoubtedly point out the rational applicability of
inorganic membranes, like commercially available glass, ceramic and metal membranes, in the field of
membrane reactor or membrane catalysis. Some auspicious applications of inorganic membranes in
membrane reactor include dehydrogenation, hydrogenation and oxidation reactions, like oxidative
coupling of methane, synthesis of butadiene, styrene and ethene from butane, ethyl benzene and
ethane, respectively, and water-gas shift (WGS) reaction. In such membrane reactors, two basic
mechanisms can be depicted: (i) reaction and separation are combined in one unit (Figure 5a) and
(ii) reaction and separation are not combined and the reactants are recycled along a membrane system
(Figure 5b). The use of former instrumentation is limited for the combination of inorganic, i.e., ceramics
and metals, and polymeric membranes along with the catalyst. However, the second arrangement is
applicable to any membranes.
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Figure 5. Membrane reactors: (a) reaction and separation are coupled in one unit (catalytic membrane
reactor) and (b) reaction unit and membrane unit are separated (membrane recycle reactor).

The presence of selective component in the membrane could also enhance the overall
performances. Absorption properties and mass transfer of coal combustion flue gases in IL
(1-ethyl-3-methylimidazolium ethylsulfate) using a polypropylene HFM contactor [372] showed
that the use ILs with lower vapor pressure as absorption liquids may contribute significantly to the
performance of a zero solvent emission process [372,373]. The membrane MTC (km) was calculated
using a microscopic model based on laminar flow and was found as high as 3.78 × 10−6 m s−1,
which is about five times higher than that obtained in the macroscopic model [374]. Norkobilov et al.
studied the manufacturing process of ethyl tert-butyl ether (ETBE), which involves the separation
of ETBE from its mixtures with C4 hydrocarbons and unreacted ethanol. During this process, the
unreacted ethanol and ETBE forms azeotropic mixtures, which are difficult to separate by conventional
distillation. A process simulation software Aspen Plus was used to carry out the simulation tasks and
the process flowsheet analysis has been compared [375].

5.1.2. Use of Catalyst in Membrane Reactors

Most of the chemical reactions follow a multi-step reaction mechanism containing one or more
step(s) as equilibrium. Catalysts are therefore employed to speed up the overall rate of the reaction. In
fact, catalyst must be combined with the membrane system through different arrangements, as shown
in Figure 6. Of the three different arrangements, the first one is the simplest, where the catalyst is
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buried inside the bore of the tube (Figure 6a). This instrumentation is particularly useful for the
reactions, where changing in catalyst, during the course of reaction, is essential for catalyst poisoning.
The advantages of this system are the simplicity in preparation/operation and reloading the new
catalyst in case of catalyst poisoning. In other two arrangements, catalyst is immobilized onto the
membrane, either in the top layer (Figure 6b) or in the membrane wall (Figure 6c). However, instead of
the prevalent huge advantages and application prospects, the commercialization of membrane reactors
in large-scale industries are emerging slowly due to some practical limitations, like low SF, leakage at
higher temperature, poisoning of catalyst and mass transfer limitations. Another major drawback of
membrane based separation is the inverse variations of selectivity and permeability. In this context,
the use of NCMs, possessing both enriched selectivity and permeability, can successfully be employed
to solve such problems.
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Figure 6. Membrane reactors in a tubular configuration (a) bore of the tube fitted with catalyst, (b) top
layer filled with catalyst and (c) membrane wall filled with catalyst.

5.1.3. Membrane Chemical Reactors

Oxidative Coupling of Methane (OCM)

With depletion in liquid petroleum, natural gas, containing primarily methane (>95 wt %),
is reasonably expected to be one of the main resources for the production of chemicals and liquid fuels.
The two most frequently used methods for converting methane into different chemicals and liquid fuels
may proceed through direct and indirect routes. In the direct route, OCM occurs to produce different
C2 products, like ethane and ethylene, whereas in the indirect route, production of syngas, i.e., H2

and CO mixture, is produced via steam reformation or partial oxidation of CH4 followed by further
conversion into higher hydrocarbons by the Fischer-Tropsch reaction. Two types of membrane reactors
have been under the utmost consideration for OCM since the recent past: (i) porous ceramic membrane
reactors and (ii) dense ionic or mixed-conducting oxide membrane reactors. Porous membranes,
such as alumina, zirconia and vycor glass, possess substantial stability during chemical reactions, yet
exhibit poor O2 selectivity. Hollow-fiber ceramic membranes, possessing an asymmetric structure,
i.e., a thin dense and separating layer integrated with a porous substrate of the same material, have
recently been under consideration. As compared to the disk-shaped membranes, these hollow-fiber
membranes possess considerably larger membrane area per unit volume for O2 permeation. Two
different approaches have frequently been studied for improving the selectivity and yield of OCM. In
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the first methodology, the membrane is used as the O2 separator, containing air as the reactant, and
distributor [376,377], whereas in the other approach, the surface of the O2 semipermeable membrane
is made catalytically active and selective towards OCM, such that O2 can permeate through the
membrane and react, in the form of atomic oxygen, with the membrane on the other surface. Few
studies involving both perovskite and fluorite type membranes have been devoted based on the second
approach for OCM. Except the works reported by Nozaki and Fujimoto [378] and Guo et al. [379], the
membrane surface was kept unmodified, in all other reported works, with other catalysts. Among
all the reported perovskite type ceramic membrane reactors, the highest C2 yield of 16.5 wt % was
obtained by Lu et al. [380] by using a tubular BaGe0.8Gd0.2O3 membrane.

To date, the development of suitable polymer membrane reactor for OCM application is still a
difficult task because of the high operating temperature, membrane fouling and the low mechanical
strength. There are very few polymer-made membranes are commercially available that can sustain
the harsh reaction conditions. Polymer membranes have been reported for ethane-ethylene separation
consisting of silver polymer electrolyte membranes and silicate-1 membrane [381,382]. Polymeric
silica gel deposited on γ-Al2O3 support has been synthesized to achieve the pore size ~10 Å [383].
The hybrid membrane exhibited a very high SF of 160 when applied for the separation of C3H8-H2

mixture. However, the permeability and thermal stability was found very poor. Several membranes
including Matrimid® polyimide flat-sheet membrane have been used for the separation of CO2

from OCM process application [384–389]. However, as this membrane showed inferior selectivity,
a considerable amount of hydrocarbons usually escape from the stream leaving the OCM reactor.
Usually, these membranes are utilized primarily to separate large portion of the CO2 content (~40%).
Despite several disadvantages, PV membrane reactors are becoming highly attractive owing to the
simplicity of overall process, ease of separation and low energy requirement [390].

Water Gas Shift (WGS) Reaction

Since the past few decades, use of H2 as a carrier in the clean energy process has been under
prime consideration. Meanwhile, some new technologies have promoted improvements in the H2

production cycle. As light hydrocarbons provide better and simple ways to produce H2, many studies
based on the use of catalytic membrane reactors in integrated plants for H2 production with low CO
content have been reported [391]. Currently, H2 produced by reforming and/or partial oxidation of
light hydrocarbons, like natural gas, is found to contain CO, CO2, H2O and traces of CH4. Thus, in an
integrated membrane plant for H2 production, it is important to upgrade the streams coming from the
reformer, via the WGS reaction, to reduce the CO content and simultaneous generation of more H2.
As water gas reaction is exothermic [391,392], use of a membrane reactor for the WGS reaction allows
higher conversion at relatively higher temperature. As a consequence, the catalyst amount, required for
a given conversion, can significantly be reduced. For instance, the catalyst volume for the traditional
reactor equilibrium to reach the 99% conversion at 280 ◦C and 200 kPa reduces to 50% of a traditional
reactor at the same operating conditions [393]. H2-separation membranes have been developed using
various inorganic materials, such as palladium and its alloys, silica and alumina. One of the attractive
alternatives for the high permselective membrane is a silica layer formed on mesoporous γ-alumina
film, supported on a porous stainless steel. Brunetti and coworkers [394] investigated WGS reaction in
a membrane reactor using a porous stainless steel supported silica membrane and a CuO/CeO2 based
commercial catalyst in a temperature range of 220–290 ◦C up to 600 kPa. An excellent CO conversion
of 95% was noted at 280 ◦C and 400 kPa.

The production of H2 by employing the direct water splitting requires an efficient H2 and
O2 separation technique from its water vapor mixture. The availability and viability of polymeric
membrane materials are limited due to the limited thermal stability of the organic polymers [395].
The development of polymer electrolysis membrane (PEM) cells, using acidic ionomer, could
potentially supply the world’s hydrogen demand [396,397]. The advanced polymeric materials exhibit
a low-cost alternative to Pd at the cost of inferior gas permselectivities [398,399]. Investigations have
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been carried out that mainly focus on the enhancement in permeabilities and permselectivities through
alteration of the polymer membrane structures. Jamshidi et al. synthesized a Pd membrane reactor
by the electroless plating technique (ELP) “organic-inorganic” method for H2 production via WGS
reaction, where the Pd NPs were embedded with the polyethylene glycol (PEG) [400]. Depending
on operating conditions, the membrane exhibited an infinite selectivity for H2/N2 and a H2 flux
of 0.004–0.016 mol m−2 s−1. The membrane reactor performed 98.5% CO conversion with 16% H2

recovery at 450 ◦C. The membrane was found to be quite stable during WGS catalytic membrane
reactors (CMR) tests.

Membrane Reactors in the Petrochemical Industries

In petrochemical industries, olefins, like ethylene and propylene, are the most frequently used
raw ingredients for producing different polyolefins, such as polyethylene, polypropylene, styrene,
ethyl benzene, ethylene dichloride, AN and isopropanol. However, one of the most important steps of
such manufacture is the large-scale continuous separation of olefin from the corresponding paraffin.
In addition, dehydrogenation, oxidative coupling and steam reformation of methane and water gas
shift reaction are also important in petrochemical industries. The membrane based separation technique
has been established as the most effective, low-cost and green technique. Petrochemical waste streams
may contain phenolic compounds or aromatic amines. They are highly toxic and inhibitory to biological
treatment at high concentrations. Membrane aromatic recovery system (MARS) is a relatively new
process for recovery of aromatic acids and bases (Figure 7). Wastewater in petrochemical industry is
currently treated by activated sludge process with pretreatment of oil-water separation. Tightening
effluent regulations and an increasing need for reuse of the treated water have generated added interest
for the treatment of petrochemical wastewater with advanced membrane bio-reactor (MBR) process.
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Esterification Reaction

Recent increasing demands for organic esters in biotechnology and in chemical industry,
esterification reaction has received significant attention. The enzyme-catalyzed esterification, especially
the lipase, is of great importance. The energy demand, cost and lower selectivity limit the reaction
success in commercial scale production. In a conventional esterification reaction, presence of excess
water plays a negative role on overall production rate and enzyme activity. Constant removal
of water at low temperature by PV could help to achieve higher productivity [401]. Inoue et al.
employed different types of zeolite membranes to study the water removal from various organic
aqueous solutions, such as equimolar mixture of water, ethanol, acetic acid and ethyl acetate, by PV
process [402]. These membranes were observed to be highly hydrophilic and resistant to acid solution.
It was observed that higher selectivity could be attainable at milder reaction condition [403]. The
stoichiometric ester condensation reactions have been performed at lower temperature (<50 ◦C)
by these membranes. The ester yields were found to be more than 20% of that of the equilibrium
values [402].

Several researches have been carried out with NCMs for the dehydration of esters.
The incorporation of NMs effectively removes the water from the system, generated during the
reaction that eventually, helps enhanced conversion of the reactants into the desired product [131].
Torabi et al. synthesized cross-linked PVA-silica NCMs for the dehydration of the reaction mixture of
methyl acetate through the coupled PV-reaction [404]. The optimum reaction conversion was observed
to be 94%, which was achieved with 20 wt % silica in the NCMs over a period of 240 min. In another
study, an enhanced performance in the esterification process of acetic acid with methanol was observed
with the incorporation of treated MWCNT into the cross-linked PVA membrane, using citric acid as
the cross-linking agent [361]. The final amount of product was increased from 52.30% to 99.25% using
the membrane with 2 wt % TCN in comparison with pure membrane at optimized condition and 4 h of
operation. The NCM fabricated with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and fullerene C60

(3 wt %) as a selective layer of composite membranes has been studied in PV coupling esterification
reaction [405].

5.2. Pervaporative Desalination

Shortage of water resources is one of the biggest problems in the world. In fact, more than
one-third of the world’s total population suffer from the scarcity of safe drinking water [406]. Again,
pollution and exploitation of groundwater decreases the quantity of surface water and/or quality
of the available natural water resources in many regions. In addition, higher living standards,
especially in first-world countries, results in higher per capita water consumption enhancing the
water scarcity. Desalination of saltwater, including seawater and brackish water, possessing salinity
values of ~3.5 and 0.05–3%, respectively, is an important technology for solving such water crisis [407].
RO, the most commonly used desalination technique for producing fresh water, also faces some severe
disadvantages, including high operational pressure, high energy cost and easy fouling. Moreover,
the potential of RO system for desalination is only limited up to 50%. Again, the concentrated sea
water, a by-product of RO, may also induce secondary pollution towards the eco-system. In order
to cope with such limitations, PV, an efficient membrane separation technology, has been adopted
for saltwater desalination. In fact, pervaporative desalination of the seawater is considered to be the
potential alternative methods for solving the water scarcity owing to several advantages, like high
energy conservation at the expense of low cost, high efficiency (~100% of salt rejection) [406] and better
handling ability of water with high salinity [408–411]. Compared with the membrane distillation,
pervaporative desalination using hydrophilic materials can effectively reduce membrane fouling and
maintain membrane separation performance.

PV is equipped with non-porous, dense polymeric membranes and the separation mechanism is
based on the differential rate of diffusion of constituents through these membranes. PV of an aqueous
salt solution can be considered as the separation of a pseudo-liquid mixture containing free water
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molecules and bulkier hydrated ions formed in solution upon dissociation of the salt in water [412].
One of the main limitations for PV desalination is the lack of the high performance membranes with
both high permeate flux and good salt rejection [412,413]. In this context, Xie et al. reported the
development of a new type of hybrid composite membrane based on PVA-MA-silica for pervaporative
desalination [414]. Similarly, a novel thin film nanofiber PV composite (TFNPVC) membrane for
pervaporative desalination was first synthesized by Liang et al. [415], via electro spraying a smooth
and ultra-thin PVA skin layer. In addition, Cheng et al. fabricated a robust GO thin-film nanofibrous
composite membrane with integrated structure, exhibited a remarkably high water flux and salt
rejection of 69.1 L m −2 h−1 and 99.9%, respectively, from the feed water of 35 g L−1 NaCl at 70 ◦C.
The NCM also demonstrated excellent stability over a long testing period of 24 h [416].

In fact, the chemical properties of membrane materials, used in PV, play the key role in designing
a high-performance PV set-up. Currently, PV membranes for desalination have been fabricated by
different polymeric materials/elastomers (i.e., crosslinked PVA/PDMS), inorganic materials (i.e., NaA
zeolite) and polymer-inorganic hybrid materials (i.e., PVA-maleic acid (MA)-silica) [415]. Although all
such membranes have shown significantly high rejection performance, for monovalent ions, the water
flux of all these membranes is generally quite low. In this context, GO, an ultra-thin 2D smart material
is under supreme consideration due to its multi-functional surface chemistry [417], having a variety of
functional groups, like epoxide, carbonyl and hydroxyl. GO has been used as a starting material for
preparation of thin films, paper-like materials or membranes suitable for salt rejection [418]. Many
efforts have been made to fabricate highly permeable GO containing membranes to facilitate the
water transport along the nanochannels between graphene sheets [419,420]. Liang et al. [367] reported
that the as-prepared GO-PAN composite PV membranes exhibited sufficiently high water flux, up
to 65.1 L m−2 h−1, with the high rejection for desalination (~99.8% at 90 ◦C). It is noteworthy that
the composite membranes retain high performance in treating high salinity water even with a salt
concentration up to 100,000 ppm. A new preparation route of silica-PVA membrane is reported by
Chaudhari et al. [421], carried out in acidified and hydrated ethanol via a sol-gel reaction to form hybrid
membrane structure, which was found to exhibit superior water permeability of 96 L m−2 h−1 than
the other reported membranes in PV desalination of saline water of 2000 ppm NaCl. Feng et al. [422]
developed GO-PI MMMs for seawater desalination by the incorporation of GO into PI polymer matrix
through a phase inversion method. Due to the combination of both advantages of GO and PI, the
GO-PI MMMs exhibited water permeation flux as high as 36.1 kg m−2 h−1 and a high ion rejection
~99.9% to envisage the excellent water permeability and salt rejection for seawater desalination at 90 ◦C.
The desalination performances of GO-PI MMMs kept unchanged for 120 h at 75 ◦C. PV under various
operating conditions was carried out by Xie et al. [423] to evaluate the separation performance of
aqueous salt solution through the hybrid PVA-MA-silica membrane. The PV desalination performance
of hybrid PVA-MA-silica membrane is observed to be independent of the operating conditions due
to the non-volatile nature of NaCl and a high water flux of 11.7 kg m−2 h−1 was achieved at a feed
temperature of 65 ◦C and a vacuum of 6 torr. The salt rejection remained high, up to 99.9%, under all
operating conditions.

5.3. Pervaporative Desulfurization

The sulfur derivatives, used in automobile fuel, are the main sources of various sulfur oxides (SOx),
in atmosphere [424,425], which cause severe health damage and serious environmental pollution [426].
In fact, such sulfur poisoning leads to the formation acid rain, which creates adverse effects on all the
living organisms as well as the archaeological establishments. Again, the presence of sulfur in gasoline
deteriorates the activity of vehicle catalytic converters, via poisoning the active sites of motor vehicles,
and enhances the emission of poisoning SOx [427]. Gasoline desulfurization has therefore become
an essential task worldwide, particularly in the developed countries, in order to eliminate or at least
reduce the sulfur content in automobile fuels. In fact, development of cost-/performance-efficient
desulfurization technologies, for removing sulfur from gasoline, is gaining high insight all over the
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world. The most important sulfur-containing components, present in fluid catalytic cracking (FCC)
gasoline, are thiophenes, mercaptans, sulfides, disulfides and its derivatives.

Of the two main desulfurization techniques, i.e., hydrodesulfurization (HDS) and non-HDS [428],
HDS is the most commonly used desulfurization technique at present [429]. However, the HDS is
associated with the high cost of H2 along with the simultaneous reduction in the octane number of
gasoline. Furthermore, the removal of thiophenes from gasoline by the conventional HDS is the most
difficult, due to the harsh operating conditions, such as high temperature, pressure and H2 atmosphere.
Therefore, some alternative technologies, like adsorption, biological method, extraction and PV, have
recently been developed for gasoline desulfurization [430].

Pervaporative desulfurization involves the extraction of aromatics from aliphatic hydrocarbons,
via solvent diffusion transport, through a non-porous membrane. In fact, partial vaporization, during
pervaporative desulfurization, occurs due to the application of vacuum, while the membrane acts as
a sulfur-selective barrier between the two phases: liquid phase retentate and vapor phase permeate
(Figure 8). The non-porous polymeric membrane, serving as the separating barrier, effectively diffuses
sulfur containing molecules and some other hydrocarbon molecules, via dissolution, when these
components pass through the membrane. As a result, the sulfur containing molecules can be dragged
through the membrane and concentrated at the permeate side. Another approach is to use a membrane
that enriches the sulfur content in the retentate side by the opposite effect. However, as the PV
alone cannot drastically reduce the sulfur content in the mixture to make it below the desired
level, a multi-stage process design, comprising of the combination of PV and adsorption, namely
predesulfurization and fine desulfurization are generally used.
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Pervaporative desulfurization is gaining increasing attention due to its distinct advantages,
such as lower capital and operating expenses, higher selectivity as well as easier scale up [430,431].
The S-Brane™ technology, developed by W.R. Grace & Co., Columbia, MD, USA, is a renowned
PV-based industrially viable technology, which has utilized for selective removal of sulfur-containing
hydrocarbon molecules from FCC and other naphtha streams with a production efficiency of
300 barrels per day. Pervaporative desulfurization, applied alone or coupled with the conventional
HDS process, effectively reduces the capital expenditure and operating cost without scarifying the
octane number. In this context, Kong et al. applied crosslinked PEG membranes for sulfur removal from
FCC gasoline [432]. PDMS membranes were studied and applied for pervaporative desulfurization of
gasoline [433].

PDMS possesses an SP of 15.5 kJ1/2 cm−3/2, closely resembling thiophene and hence, is
perfectly suitable for the preferential transport from gasoline. In fact, recently developed
PDMS-based membranes have been found to possess significantly high β of ~4.2–4.9 and flux
of 1500–5370 g m−2 h−1 for the desulfurization of thiophene-n-octane gasoline, as reported by
Cao et al. [434]. In order to improve the stability and performance of PDMS membranes, various
inorganic particles, especially in the nano range, are incorporated into the polymeric matrix.
Organic-inorganic nanocomposite materials can preserve chemical reactivity and flexibility of the
organo-functional groups, while strengthening the mechanical and thermal stabilities. Li et al. [435]
investigated the effect of SiO2-NPs, present into the PDMS membrane matrix, for the pervaporative
desulfurization of thiophene-n-octane binary mixture as model gasoline. Various membranes were
prepared by the incorporation of a varying amount of SiO2, and the membrane performance,
towards thiophene removal, was observed to be manifoldly enhanced with the increase in
SiO2 of the composite membrane. The fabricated NCMs exhibited enhanced permeability and
permselectivity in the pervaporative desulfurization. It was observed that under the condition
of 500 ppm sulfur in feed (40 L h−1) at 30 ◦C, the β of 4.83–5.82 with a normalized permeation
rate of 6.61–10.76 × 10−5 kg m m−2 h−1 was obtained. The enrichment of performance potential
of PDMS membranes due to the incorporation of NPs encouraged Yang et al. [436] to fabricate
PDMS-graphene nanosheets (PDMS-GNS) hybrid membranes for the pervaporative desulfurization of
n-octane-thiophene mixture. These hybrid NCMs not only exhibited excellent thermal and mechanical
stabilities, but also showed excellent potential for thiophene permeation. In fact, the NCM, comprising
of 0.2 wt % mass ratio of GNS-PDMS, was found to exhibit the permeation flux of 6.22 kg m−2 h−1,
which was ~66% higher than the mere PDMS membrane.

6. Perceptions and Conclusions

PV captures a special position as an impressive separation technique in chemical industry.
Currently, more than hundreds of PV units are operating throughout the world, primarily to purify the
chemicals. The development of enhanced PV technology has visualized a clean and invulnerable future
that encourages the interest of energy conservation, accompanied by generation of minimum waste
and zero emission around the ecosphere. The PV process is a pioneering and fast emerging separation
technology that could be employed to a great extent in environmental protection, clean resources, food,
chemical and pharmaceutical areas. Among all available technologies, PV is considered as the most
energy-efficient and green technology for separation of azeotropic/close boiling mixtures, recovery
of traces of impurities from aqueous solutions as well as treating the heat sensitive biomaterials.
Although distillation is the most commonly used separation method to separate liquid mixtures,
this method is not suitable to obtain high purity solvents from azeotropic mixtures. In fact, membrane
based separation technologies have drawn utmost attention due to high selectivity, low energy
consumption, moderate cost-to-performance ratio and compact modular design. However, in spite of
the prevalent excellent separation potential, the availability of pure inorganic membranes is inadequate
for cost-friendly commercial applications. Conversely, organic polymers constitute versatile barrier
membranes owing to better film-forming ability, low cost and susceptible towards physicochemical
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modification. Nevertheless, the amount of material permFeates through such homogeneous dense
membranes are usually very low and remains a critical issue obstructing the large scale industrial
application of PV. Moreover, the technology is also suffering a ‘trade off’ relationship between flux and
selectivity, which restricts its commercial acceptability.

In fact, the primary function of fillers is to act as physical/chemical binders, within the
polymeric chains of composite membranes, for optimizing the essential mechanical properties,
like TS, EAB, modulus etc. Indeed, incorporation of fillers into the polymer matrix engenders
covalent and/or van der Waals force of interactions with the polymer matrix that is the basic
cause of reinforcement. However, the variation in particle size of fillers has been found to possess
dominant effect of the reinforcement property. In fact, fillers, having particle sizes within 100 nm,
i.e., nanoparticles, have been found to possess the strongest reinforcement strength. Therefore,
recently, nanotechnology is being considered as one of the most prospective regions for resolving
the technical and commercial challenges, coupled with the separation and purification technologies.
The development of well-defined nanostructured materials with unique properties renewed the
traditional opinion of separation methods, streaming new separation approaches that surpass the
existing accomplishments. The utilization of these NMs in membrane separation techniques not only
answers the ‘trade off’ issue associated with PV technologies, but also opens the path towards real time
applications. The newly fabricated NCMs are found to be superior in terms of permeability, selectivity
and long-term stability. These novel NCMs will continue to develop improved cost efficient systems
and module design, help to construct an optimized alliance and integration with existent technologies,
and to reduce the overall capital investment.
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