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Abstract: In power generating terms, a pressure retarded osmosis (PRO) energy generating plant, on
a river entering a sea or ocean, is equivalent to a hydroelectric dam with a height of about 60 meters.
Therefore, PRO can add significantly to existing renewable power generation capacity if economical
constrains of the method are resolved. PRO energy generation relies on a semipermeable membrane
that is permeable to water and impermeable to salt. Mathematical modelling plays an important part
in understanding flows of water and salt near and across semipermeable membranes and helps to
optimize PRO energy generation. Therefore, the modelling can help realizing PRO energy generation
potential. In this work, a few aspects of mathematical modelling of the PRO process are reviewed
and discussed.
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1. Introduction

When fresh river water mixes with salty sea water, energy equal to the one that is produced in a
waterfall about 200 meters high is lost [1]. If only 25%—-30% of this energy is converted to electricity
it will be equivalent to damming a river with a hydroelectric dam with a height of about 60 meters.
The concept of using salinity gradient for power generation was first introduced by Pattle [1] in 1954
who described “hydroelectric pile” apparatus (now called reversed electrodialysis) to harness this
energy. Hitherto, it appears that a method based on osmosis, proposed by Loeb in 1973 and first
published in 1975 [2], is closer to practical realization. The first, and hitherto the only power plant
prototype based on pressure retarded osmosis (PRO) was commissioned by Norwegian state-owned
power company Statkraft in 2009 and is now in operation.

Generating energy based on PRO relies on creating a pressure in a more salty draw solution using
the osmotic flow of water from a less salty feed solution through a semipermeable membrane (see
Figure 1). Energy is produced by a generator using the “excess” pressure and flow due to the osmotic
flow of water.
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Figure 1. Schematic representation of a classic pressure retarded osmosis (PRO) energy generation plant
with a compartmental geometry (adapted from [3]). The feed and draw compartments are assumed
to be well stirred, so that the concentration at the membrane surface is the same as the outflowing
concentration: Cr oyt = Cf and Cy oyt = Ci -

PRO energy generation has recently been extended to include closed loop systems, for example,
one based on ammonia-carbon dioxide [4] and novel PRO coupled with electric power generation
from the electrokinetic streaming potential [5]. A PRO system capable of utilizing low-grade heat not
recoverable with existing technologies was presented and investigated [6]. For up to date information
on these new developments as well as the applicability and practical viability and current limitations
of PRO systems readers are referred to recent comprehensive reviews [7-11].

This short review aims to describe mathematical modelling most relevant to energy generation
using PRO. Mathematical modelling where analytical approach is possible is given a priority with
mathematical derivations somewhat more detailed than usual in the PRO literature. It is hoped that
this detailed description of mathematical solutions will be beneficial for students and scientists new to
this area of research who need to understand the details of mathematical modelling.

2. Ideal Membrane

2.1. Compartmental Configuration

The power output of the PRO power generation scheme presented in Figure 1 is the difference
between the power produced by the generator (W) and that used by the pump (W,). Assuming that
the pressure difference across the pump and the generator (A P, also called working pressure) is the
same and is equal to the hydrostatic pressure difference across the membrane, the generator and pump
powers can be expressed as: Wy = (Sm]w + Fd,in) AP and W, = F;;,AP respectively, where | is the
osmotic water flux, S, is the surface area of the membrane and Fj ;, is the draw solution pump flow
rate or flow rate into the draw compartment. Therefore, the power generated per unit area of the
membrane (W = (Wg — W,) /Sy is [3]:

W = JuAP M

The osmotic water flux is positive (that is, from the feed to the draw solution) if the osmotic
pressure difference across the membrane (A7) is greater than the hydrostatic pressure (At > A P) and
is linearly proportional to the difference between the osmotic and hydrostatic pressures [3]:

Jo = Aw(Am— AP) )
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where Ay is the water permeation coefficient of the semipermeable membrane. It is important to note
that Equation (1) does not account for losses due to the low pressure water pumping (feed solution
side) required for the operation of a PRO plant and inefficiencies of converting energy at the generator
and the high pressure pump (draw solution side).

Combining Equations (1) and (2) yields:

W = Ay (ATc— AP) AP 3)

Since the hydrostatic pressure (A P) can be varied, W can be maximized with regard to AP.
Differentiating Equation (3) with respect to AP and finding where the derivative of power is zero
(W' = Ay (At — 2AP) = 0) gives optimal hydrostatic pressure: AP = Art/2. Therefore, the maximum
power is:

A
e @

Equation (4) indicates ways to increase power output of PRO, which is possible by selecting
membranes with higher permeability (A ), or increasing osmotic pressure difference (Am), for example,

Wmax = Aw

by increasing salt concentration of the draw solution. Increasing the osmotic pressure difference is
especially attractive as dependence of the maximum power in (4) on A is quadratic, but this option
can be limited by what solutions are available.
The osmotic pressure difference is determined by the concentration difference across
the membrane:
At =1(C ) — 7(Chm) ®)

where Cy,, and Cg,are concentrations of salt on the feed and draw sides of the membrane
respectively and 7(C) is a monotonically increasing function (see Equation (7)). For the compartmental
configuration it is assumed that, due to the effective stirring, concentrations near membrane surfaces are
the same as bulk concentrations, which in turn are equal to the outflowing concentrations: Cy o,; = Cy iy
and Cy o, = Cy,,. Due to the osmotic water flow through the membrane (J;,), these concentrations
are not equal to the feed and draw concentrations flawing into the compartments (Cy ;) and (Cy,ix)
respectively, but can be related to them by considering mass conservation of water (Ff 5.t = Ff,in — SmJw
and Fd,out = Fd,in + Sm]w) and salt (Cf,outPf,out = Cf,ian,in and Cd,outh,out = Cd,ian,in) in the
system, yielding:

F ,' Fd
Cf,m = Cf,out = Cf,in% and Cy = Cyout = Cd,inm (6)

where Fy;, and Fy o, are the feed solution flow rates into and out of the feed compartment and
it is assumed that the draw and feed compartments are well stirred and there is no concentration
polarization (see Section 3) at the membrane surface. Increasing the difference between concentrations
of the feed and draw sides of the membrane (Cy ,, — Cy,,) increases Am and therefore Wmax. The power
can be increased further by increasing the feed and draw pump flow rates, as according to Equation (6)
this will increase Cg , — Cy - The latter could be counterproductive if losses caused by the increased
pumping rates are higher than gains due to the rise in the osmotic pressure.

The osmotic pressure is linearly proportional to a salt concentration (C, expressed in moles per
volume) when the concentration is not large [12]:

7(C) = iCRT @)

where R is the ideal gas constant, T is the absolute temperature and i is the dimensionless van't Hoff
factor. The van’t Hoff factor for electrolytes depends on the degree of the dissociation and the number
of ions. For NaCl solutions of up to the concertation of sea water i ~1.9 was suggested [12].
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If the feed and draw concentrations are known, Equations (4) to (7) can be used to calculate the
maximum power per unit area of a membrane for a given membrane permeability.

2.2. Counterflow Configuration

Compartmental geometry is easy to realize and analyze in laboratory conditions and where
only a small area of the membrane is necessary. In this case, draw and feed compartments volumes
to the surface of the membrane ratio are not small and it is easy to arrange the effective stirring
so that the compartments are well stirred. When stirring is effective, the concertation inside the
compartments is uniform and practically the same near the input and the output of the draw and
feed solutions (top and bottom in Figure 1 respectively). In practical applications of PRO very large
areas of membrane are required: millions of square meters of the membrane to generate just tens of
megawatts of power. In this case, the effective stirring is not practical and a concentration gradient will
form between the input and the output of the draw and feed solutions due to the water flow through
the membrane. Schematic diagram of a PRO unit with the counterflow configuration is presented in
Figure 2. The tubular membrane shape is perhaps the most practical similar to desalination units where
membranes are organized as multiple small bore tubes that are placed in a much larger metal tube
casing. The small diameter of the tubes leads to a large surface area of the membrane in a relatively
small volume.

Pressure retarded osmosis (PRO) with Counterflow Configuration

(a) Tukular geometry

Feed solution

Draw solution

| O\

Semipermeable
membrane
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representation
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Figure 2. (a) A diagram representing tubular geometry and counterflow configuration for PRO.
(b) Simplified representation of the tubular geometry as a square channel. Concentrations (C;(x) and
Cr(x)) and flows (Ju(x), F;(x) and Ff(x)) are the functions of the position x along the channel for the
counterflow configuration.

In Figure 2b the tubular geometry is replaced with the square channel representation for
simplicity and better visualization of the problem. To derive transport equations for this counterflow
configuration we will generally follow the approach presented by Sharqawy et al. [13], changing to
notations consistent with this work. As concentrations and flows in the feed and draw channels are
now functions of x, where x is the distance along the channel, Equation (2) for the water flow across
the membrane becomes:

Jao(x) = Aw |7(Ca(x)) = (Cp(x)) = AP] ®)

where C4(x), Cf(x) and Ju(x) are the draw and feed concentrations and the water flow per unit area
of the membrane at position x along the channel respectively. Here we assumed that the hydrostatic
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pressure, AP, is constant along the channel, even though pressure gradient may form in a thin tube
due to the water viscosity, this pressure is likely to be small compared to the hydrostatic pressure.
We have also assumed in Equation (8) that concentrations in the feed and draw channels are uniform
across the channel. This is only possible if there is no concentration polarization (see Section 3).

We further assume, as for the compartmental geometry, that only the pure water flows through
the membrane. Taking into account the pure water flow through the section of the membrane from x
to x + dx away from the feed to the draw solution the feed flow rate can be expressed as:

Fr(x) = Fe(x +dx) + Ju(x)dSm )

where 4S5, is the area of the membrane between x and x + dx. This area can be further expressed as
dS,, = wdx, where w is the width of the channel or the circumference of the tubular membrane.
Substituting Fr(x +dx) = Fr(x) + P}(x)dx in Equation (9) yields:

ay _

o —Jw(x)w (10)

Using the initial condition F¢(0) = Fy,;, and integrating Equation (10) gives:

Fr(x) = Fpp — ffw<x>wdx — Fr iy — Fulx) (1)
0

where the integral in Equation (11) was replaced with F,(x), the flow of pure water through the
membrane from feed to draw solution between 0 and x.

A similar consideration for the draw flow rate leads to the differential equation identical to
Equation (10), with a change of f — d. Using the initial condition F;(L) = F; ;,, where L is the length
of the channel, yields:

Fd(x) = Fd,in+Fw(L)_Fw(x) (12)

Here we assumed for simplicity that F;(x) is positive, even though F; is directed against the
positive direction of the x axis (Figure 2b).

As there is no salt flow through the membrane the flux of salt for the feed and draw sides is
constant: Ff(X)Cf(JC) = Ff(O)Cf(O) = Ff,incf,in and F;(x)Cy(x) = F4(L)Cy4(L) = F4i,Cg . Using these
equations and Equations (11) and (12), concentrations in the feed and draw solutions can be

expressed as:
F, d,in Cd,in

i Calx) = ' (13)

E;- Cr:
o fin'-f,in _
Cf(x) Fd,in JFFw(L) *Fw(x)’

- Ff,in - Fw(x)

In Equations (13) parameters [y, Fyin, Crin and Cy;, are operational parameters of the
PRO system that are determined, and the only undetermined function is Fy(x) = Sg Jw(x)wdx.
The differential equation for this function can be derived by noting that F/,(x) = J,(x)w and using
Equations (8) and (13):

dFy
dx

= Aypw

F,inCain Ff inCf,in
g , _ — = 2 ) AP 14
T[(Fd,in+Fw(L)_Fw(x)) Tc(Pf,in_Fw(x) ( )

Equation (14) is a separable first order differential equation which can be solved by integration:

Fo(x)

J [ 4Fo = Aypwx (15)

ﬂ( Fy,inCain ) o[ ErinCin Y
Fd,in + Fw(L) —Fy Ff,in — Fy
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The integral in this equation can only be integrated analytically when the osmotic pressure is
linearly proportional to a salt concentration (see Equation (7)). In this case the integrand in Equation (15)
can be presented as two simple fractions of the form a/ (b — Fy), where a and b are constants, and the
integration yields logarithmic expressions (for details see Equation [13]). Even in this simpler linear case
it is not possible to represent Fy,(x) explicitly and numerical approach is required. Sharqawy et al. [13]
analyzed in detail the linear osmotic pressure case by dimensionalising Equation (15) and introducing
notations analogous to a mathematical modelling of heat exchangers. The non-linear osmotic pressure
case was also considered for both the counterflow and parallel flow (F r and F; in the same direction)
configurations, but it was found that for the case of the seawater as the draw solution and the
river water as the feed solution the error of using the linear approximation is not significant [13].
Sharqawy et al. [13] also modelled parallel-flow configuration for PRO, but concluded that, just as
for the heat exchanges, that the counterflow configuration is more efficient for the same area of the
membrane used. Approach similar to work of Sharqawy et al. [13] was used to analyze limits of power
generation due to finite membrane area [14].

After numerically solving Equation (15), the total power generated by the PRO system (W)
can be determined as:

Whotal = FIU(L)AP (16)

and further analyzed to maximize the power relative to the operational parameters of the PRO system,
including the hydrostatic pressure (AP). Given the number of parameters, this is not a straightforward
exercise and requires a numerical approach.

3. Concentration Polarization

Concentration polarization is arguably the most significant problem that dramatically reduces
the power output of the PRO process and reduces the applicability of equations presented above
for the ideal membrane. The polarization had been experimentally investigated and mathematically
modelled for the first time more than 30 years ago [3,15]. Experimental work on the polarization
was later conducted with more modern membranes [16]. In this review the mathematical modelling
of the polarization will be presented for a realistic asymmetric membrane with the porous support
layer against the feed solution as shown in Figure 3. The diagram of the concentration polarization
is shown in Figure 3 and is represented by the significant increase in the feed solution concentration
at the surface of the active layer. This increase is due to the convective transport of salt by the
water flow in the support layer of membrane, as the salt cannot penetrate through the active layer
of membrane and needs to diffuse against the flow. It is also shown that concentration changes in
the unstirred boundary layers near the membrane surfaces (Figure 3). Mathematical modelling of
concentration polarization that takes into account the unstirred boundary layers was presented in [17].
The concentration polarization in this case is inversely proportional to the Sherwood number, which in
turn depends on the Reynolds number, Schmidt number and geometric dimensions of the channel [18].
Salt leakage/flow across the active layer of the membrane in the direction opposite to the water flow
due to the membrane imperfections further increases the concentration polarization.

For simplicity, let’s assume that the concentration changes in the unstirred boundary layers near
the membrane surfaces are negligible. Then the boundary condition at the support layer will be: [3]

C(x = 0) = Cf,b (17)

where it was assumed that x = 0 at the left boundary of the support layer and the positive x is in the
direction of the osmotic water flow.
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Support layer

Active layer

Figure 3. A diagram representing the concentration polarization for an asymmetric membrane with
the support layer due to the water flow through the membrane. Here Cy ,, and C ,, are concentrations
of salt on the feed and draw sides of the active layer respectively and Cy; and C, are the bulk
concentrations on the feed and draw sides of the membrane respectively.

The salt flux in the support layer is the sum of diffusive and convective fluxes: [17]

dC(x)

Js = —De dx

+ JwC(x) (18)

where D is the diffusion coefficient of salt and ¢ is the porosity of the support layer. For the steady state
Js is constant, and Equation (18) is the first order inhomogeneous differential equation with constant
coefficients and can be easily integrated yielding:

A Ju
C(x) = » + E exp (D€x> (19)
where E is the integrating constant which can be determined using boundary condition (Equation (17)),
so that:

Js < Js > ( Jw >

Clx)=—=+(Crp—— |exp | =x 20

) Jw b w P De (20)

The concentration at the feed side of the active layer can now be determined as Cy ,, = C(x = Tt),
where ¢ is the thickness and 7 the tortuosity of the support layer, therefore:

Cf,m = & + <Cf,b - ]S> exp (]wK) (21)
Jw Jw
where K = tt/(De) is a measure of diffusional resistance to salt transport in the support layer.
The support layer structural parameter S (= tt/¢) depends only on the microstructure of the support
membrane and is now commonly used in the PRO literature [17,19,20] to describe the concentration
polarization. It follows from definition of these parameter that K= S/D.
It is appropriate to assume that the salt leakage across the active layer (J) is linearly proportional
to the salt concentration difference across the layer: [3]

Js =B (cf,m - cd,m) ~ B (cf,m - cd,b) (22)
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where B is the salt permeation coefficient across the active layer. Substituting Js from Equations (22) to
(21) yields linear equation for Cy ,, that can be easily solved:

e, _ CrpJuexp (JuK) + CqyB (exp (JoK) — 1)
fom = Jw + B (exp (JuK) = 1)

(23)

In this equation, the concentration at the feed side of the active layer is expressed using parameters
of the membrane, the bulk salt concentrations and osmotic water flow (J,). Equation (23) together with
Equations (2) and (5) form an explicit set of equations which allow determination of J;, from parameters
of the membrane, the bulk salt concentrations and the hydrostatic pressure (A P). These equations
generally need to be solved numerically.

Lee et al. [3] using equations similar to Equation (23), Equation (2) and Equation (5), assuming the
linear relationship between concentration and osmotic pressure (Equation (7)) with pure water as a
feed solution (Cs, = 0) and zero hydrostatic pressure (AP = 0) derived expression for the diffusional

resistance (K):

A Cip) —

K= L (A (Cap) = Jwo (24)
Jwo B

where 0 is experimentally measured water flow for Cyj, = 0 and AP = 0.

The mathematical approach is very similar when the concentration changes in the unstirred
boundary layers near the membrane surfaces are not negligible. Readers are referred to works by
Yip et al. [17] and McCutcheon et al. [18,21] for equations in this case.

4. Module-Scale Analysis of PRO

In Section 2.1 the optimal hydrostatic pressure for an ideal membrane with simple compartmental
geometry was determined. For realistic osmotic membranes with significant concentration polarization
the process of finding the optimal hydrostatic pressure in general involves a numerical solution with
iterations [22,23]. The problem becomes even more challenging for module-scale analysis of PRO when
concentration polarization has to be combined with the realistic flow and membrane configurations.
Numerical modelling of parallel-flow configuration for PRO was given for the case of concentration
polarization [24]. In this work authors introduced a two-dimensional model similar to that presented
for crossflow microfiltration and ultrafiltration [25].

Module-scale analysis of PRO for counterflow (or counter-current) and parallel-flow (co-current)
configurations were recently investigated taking into account the unfavorable effects of reverse salt
flux, internal concentration polarization, and external concentration polarization [20]. In this case, the
water and salt fluxes can be represented as: [17,20]

4 ex o) _ f ex JuwS
d eXp k f exXp D
Jw = Aw B JwS T — AP (25)
bl (5) er ()
Cy exp (—]IZU) —Crexp (]wDS>
Js = Aw — AP (26)

B ZUS w
vl () e (55

where k (=D/J, 6 — effective unstirred layer thickness) is the mass transfer coefficient of the draw
solution and 71y, 7y are osmotic pressures corresponding to draw and feed solutions respectively.
Yip et al. [17] presented detailed derivations of Equations (25) and (26). They also demonstrated that
membrane that balances permeability and selectivity allows to achieve the highest potential peak
power density for given feed and draw solution concentrations [17].
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These equations have to be solved together with the mass transfer equations, which in the case of
the counter-current flow operation are: [20]

dF;S(S) = Ju <Cd(s),cf(s),AP) o
ngS(S) = Ju (Cd(S)/Cf(S),AP> 28)
w =—Js (Cd(s),cf(s),AP> 29)
d ( Fy (s) Cy(s)
(fdsf> (o) .

where s is the relative position along the module represented as membrane area from the draw solution
entrance to the position in the module and normalized to the total area of the membrane (S,;). Note that
Equation (28) is similar to Equation (10), but has the positive sign in front of [, as the direction of
x selected for Equation (10) is opposite to that for s in Equation (28). The boundary conditions for
Equations (27)~(30) are F; (0) = Fjin, Fr (1) = Fin, Ci (0) = Cyin and Cr (1) = Cy i, [20].

Straub et al. [20] numerically solved Equations (25)—(30) and analyzed power density (PD = J,A P,
the power generated per membrane area) and the specific energy (SE = APAF/ (Pf,in + Fd,in), the
energy extracted per total volume of the feed and draw solutions combined) using simplifying
assumptions of no pressure loss due to pumping of solutions through the feed and draw channels
and no inefficiencies in the pressure exchanger or turbine. The approach allows optimizing operating
conditions of a realistic PRO system. It also allowed to determine that the maximum specific energy
for the current commercial membranes is 1.1 W/m?, only 15% of the power density available for the
small scale compartmental (coupon scale) PRO system [20] and well short of 5 W/m? necessary to
produce osmotic power on commercial basis [26].

5. Other Aspects of Mathematical Modelling of PRO

Another potentially practical configuration for PRO energy system is a spiral wound
module [27,28]. The experimental and mathematical modelling research for this configuration was
conducted by Xu et al. [28]. The dilution of the bulk draw solution for this case is to some extent similar
to the counterflow configuration but is further complicated by two different flow paths, axial and
spiral [27].

An important aspect of PRO analysis not covered in this review is the thermodynamic efficiency
of a PRO process in terms of energy extraction of the Gibbs free energy of mixing. Readers are referred
to works by the Elimelech group [29,30] for comprehensive analyses.

Another important factor in realistic module-scale PRO systems are feed and draw channels
geometry and a pressure loss due to viscose flow of solutions through the channels. Seppalad and
Lampinen [31] derived transport equation for osmosis inside a hollow cylindrical fiber, taking into
account the cylindrical geometry and hydrostatic pressure drop in the fiber. They solved the equations
numerically and found the optimal values of the initial hydrostatic pressure difference between the
feed and draw sides of the fiber [31].

In this review, only concentration of a single solute was considered. Such modelling only fully

7

applies for non-dissociating solutes like glucose. In reality PRO systems are most likely to be based
on sea and river waters [2] which have multi-ionic composition. In most cases considering NaCl is
sufficient to model operation of the PRO systems [24,32], but as NaCl dissociates in water to Na* and
Cl™ ions, that creates two ionic species which can differ in their permeability through the membrane.
In general, solution diffusion and electro-migration have to be taken into account for multi-ionic
systems [33]. Yaroshchuk et al. [33] considered mathematical modelling of transport of multiple ions
where diffusion was coupled to electro-migration and concluded that such modelling was important
to understand phenomenon such as negative rejection for some ions in particular that spontaneously
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arising electric fields may yield much higher NaCl rejection, which could be relevant for energy
generating PRO systems.

It is clear from discussions in this work that the mathematical problem of optimizing realistic PRO
systems is quite challenging. To help with this optimization Sivertsen et al. [12] introduced Iso-watt
diagrams that are relatively easy to understand and use, and allow an evaluation of power per unit
area of the membrane on basis of membrane characteristics. These diagrams are generated for realistic
membranes with concentration polarization and are a useful tool in optimizing PRO energy generating
systems, but so far have not been developed to apply to cases of counterflow configurations.

6. Conclusions

Mathematical modelling plays an important part in experimental analysis, development and
optimization of PRO energy generating systems. In this work the mathematical modelling for
compartmental and counterflow configurations were reviewed and presented in some detail for the
simple case of an ideal membrane without concentration polarization. The equations presented in this
work for these configurations can be used for getting some insight into optimizing energy generation
through varying parameters of the system, but are limited to an ideal membrane. Operating realistic
PRO systems leads to a very significant concentration polarization, especially in the support layer
of a membrane. Basic approach to mathematical modelling of the concentration polarization and
main concepts were reviewed. Although there are approaches that allow optimization of parameters
of a PRO system with the concentration polarization for the simple compartmental configuration,
more modelling work is required to consider the more practical counterflow configuration and
concentration polarization.
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