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Abstract: In this study, the separation properties of Polyvinylidene fluoride (PVDF) hollow 

fiber hemodialysis membranes were improved by optimizing membrane morphology and 

structure. The results showed that the PVDF membrane had better mechanical and separation 

properties than Fresenius Polysulfone High-Flux (F60S) membrane. The PVDF membrane 

tensile stress at break, tensile elongation and bursting pressure were 11.3 MPa, 395% and 0.625 

MPa, respectively. Ultrafiltration (UF) flux of pure water reached 108.2 L∙h−1∙m−2 and rejection 

of Albumin from bovine serum was 82.3%. The PVDF dialyzers were prepared by centrifugal 

casting. The influences of membrane area and simulate fluid flow rate on dialysis performance 

were investigated. The results showed that the clearance rate of urea and Lysozyme (LZM) were 

improved with increasing membrane area and fluid flow rate while the rejection of albumin from 

bovine serum (BSA) had little influence. The high-flux PVDF dialyzer UF coefficient reached 

62.6 mL/h/mmHg. The PVDF dialyzer with membrane area 0.69 m2 has the highest clearance 

rate to LZM and urea. The clearance rate of LZM was 66.8% and urea was 87.7%. 

Keywords: Polyvinylidene fluoride (PVDF); preparation; separation properties; high flux; 

dialysis performance 
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1. Introduction 

Hemodialysis (HD) is a relatively safe purification technique for curing renal failure. The core 

element is Ultrafiltration hollow fiber membrane (HFM) [1,2]. The core aim for hemodialysis is to 

remove “middle” and “small” molecules toxin, such as β2-MG and urea nitrogen. There are more and 

more polymeric materials in HD to improve the clearance for small molecules and blood compatibility. 

Nowadays, polyethersulfone (PES) and polysulfone (PSF) hemodialysis membranes show better 

biocompatibility, functional effectiveness, and small substances clearance than other membranes; so 

they are widely used in hemodialysis [3–7]. However, the clearance for “middle” molecules toxin and 

Ultra filtration (UF) flux of pure water are not ideal. At the same time, the membranes are prone to 

rupture in the dialysis process. 

Great attention has been paid to Polyvinylidene fluoride (PVDF) by more and more people in the 

world for its outstanding properties. That can be explained by its high mechanical properties, thermal 

stability, and surface smoothness compared with other polymeric materials. Just for its outstanding 

properties, PVDF membranes have been extensively used in ultrafiltration/microfiltration and 

Membrane Bioreactor (MBR) separation technology. In addition, PVDF membranes are also widely 

applied in membrane distillation, membrane extraction, gas separation, and biomedical materials [8–12]. 

PVDF has gained worldwide attention in biomedical research owing to its excellent properties. Bouaziz 

A. considered PVDF as one of the artificial vascular materials [13].  

Polyethylene glycol (PEG) has been extensively applied in the process of membrane preparation as a 

common additive. That can be attributed to its unique properties, such as non-irritating, good solubility, 

and fine compatibility [14]. Because of its good biocompatibility, it is widely used in biomedical 

materials. At the same time, there are many studies on the modification of membrane surface with  

PEG [15,16] or by blending PEG graft polymer during membrane preparation [17,18]. 

We have done some studies on the preparation of PVDF hollow fiber hemodialysis membranes. From 

the results, it can be seen that the mechanical performance and albumin from bovine serum (BSA) 

adsorption of PVDF membranes were better while separation properties were worse than Fresenius 

Polysulfone High-Flux (F60S) membrane. The BSA rejection of PVDF membrane was only 69.2%, 

which was lower than F60S membrane [2]. Now, we are trying to improve the PVDF hollow fiber 

hemodialysis membranes separation and other properties by optimizing membrane morphology and 

structure. The dialysis performance of PVDF dialyzer was also evaluated in this study. 

2. Materials and Methods 

2.1. Materials 

The Polyvinylidene fluoride (SOLEF 1010) was purchased from Solvay So lexis Company (Lyon, 

France). Polyethylene glycol was purchased from Sigma-Aldrich Trading Co., Ltd. (Shanghai, China). 

Industrial grade N, N-dimethylacetamide (DMAc) was purchased from Samsung Company (Seoul, 

Korea). Lysozyme (LZM), Albumin from bovine serum (BSA) and urea were purchased from Shanghai 

biomedical engineering technical service company (Shanghai, China).  
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2.2. Preparation of PVDF Hollow Fiber Membranes 

PVDF, Polyethylene glycol, N, N-dimethylacetamide (DMAc) and 1,4-diethylene dioxide were 

dissolved in a glass flask at 70 °C. The content of PVDF was about 22 wt %, PEG content was 18.8 wt % 

and 1, 4-diethylene dioxide was 3 wt %. The casting dopes were dropped into the container and air 

bubbles were eliminated. Subsequently, the PVDF membranes were prepared by the non-solvent-induced 

phase separation (NIPS) method using a tube-in orifice spinneret. The spinneret used had an inner 

diameter of 0.7 mm and an outer diameter of 1.4 mm. The external and internal coagulants were pure 

water mixed with DMAc. The bore flow rate was 4.5 mL/min and the uptake speed was 72 m/min. 

2.3. Membranes Characterization 

2.3.1. Morphology, Max Pore Size and Porosity 

The PVDF membranes morphology structure was studied using a scanning electron microscope 

(Hitachi S-4800, HITACHI, and Tokyo, Japan). The SEM micrographs of PVDF membranes are M-1, 

M-2, M-3 and M-4 with PEG molecular weights of 2, 4, 6 and 10 kDa, respectively. The SEM 

micrographs of PVDF membranes are M-14.8, M-16.8, M-3 and M-20.8 with PEG content 14.8, 16.8, 

18.8 and 20.8 wt %, respectively. M-0 was the membrane, which was prepared by the previous study [2]. 

The membrane, which has been soaked in ethanol for about 15 min, was immersed in ethyl alcohol. 

The bubble point pressure, P, was reached when the first string of bubbles came from the walls of the 

membrane with nitrogen.  

The maximum pore size can be calculated according to Equation (1) [19]: 

0.06378

2
r

P


 
(1) 

where r is the pore radius (µm); P is bubble point pressure (MPa); and the ethanol surface tension  

is 22.3 mN/m. 

 

Figure 1. The apparatus for determining the Max pore size of the hollow fiber  

membranes [2] 1: nitrogen bottle; 2: regulator; 3: precise pressure gauge; 4: valve; 5: 

container; 6: syringe needles; 7: Transparent cylinder; 8: PVDF membrane sample to be 

tested; and 9: absolute ethyl alcohol. 
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The membrane porosity, ε, was defined as the volume of the pores divided by the total volume of the 

porous membrane. The membrane was soaked in ethanol for about 15 min, and then immersed in  

pure water. 

The porosity was calculated using Equation (2): 

( )
100%

( )
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w d W d p

W W

W W W
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(2) 

where ε is the porosity of the membrane (%); Ww is the mass of the wet membrane; Wd is the mass of the 

dry membrane; ρw is the density of water (1.0 g/cm3) and ρp is the density of the membrane (1.78 g/cm3). 

2.3.2. Mechanical Properties, UF Flux of Pure Water and Rejection of BSA 

Mechanical properties of the fabricated membranes were measured with an electronic single yarn 

strength tester (YG061 F/PC, Lanzhou Electron Instrument Co., Ltd., Lanzhou, China) at room 

temperature. The experiments were repeated five times and averaged. 

Self-assembly widgets were made with 20 pieces of PVDF hollow fiber membranes by epoxy resin 

cast. The surface area of membranes was 25 cm2. The membranes were preloaded under 0.2 MPa for 

about 20 m. After adjusting the test temperature (25 °C), The UF flux was measured using the inlet 

pressure (0.102 MPa) and the outlet pressure (0.098 MPa). The transmembrane pressure (TMP) was 0.1 

MPa. BSA rejection was measured using the same method as UF flux.  

The UF flux and BSA rejection of PVDF membranes were calculated according to our previous  

study [2].  

Bursting pressure is a mechanical performance parameter of membranes. The membrane will be 

damaged when the pressure reaches bursting pressure. The value of bursting pressure was measured 

using the same equipment (Figure 1) as the Max pore size. 

2.4. Dialysis Performance Test 

2.4.1. Selection of Standard Dialysis Solution 

In this study, β2-MG and human serum albumin were replaced by Lysozyme and BSA. In this study, 

urea was chosen to characterize dialysis performance for removal of small molecules. In order to 

facilitate research, dialysis solutions were prepared by water, urea, LZM and BSA. The concentration of 

urea, LZM and BSA were 2000, 35 and 1000 mg/L, respectively. 

2.4.2. Dialysis Simulation 

The standard dialysis solution comprised pure water, urea, lysozyme and bovine serum albumin. The 

flow rate of the simulated dialysis fluid was 200 mL/min. The concentrations of the simulated dialysis 

fluid were measured with UV-Vis spectrophotometer (TU-1810, Purkinje, Beijing, China). The dialysis 

time was about 4 h. 
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2.4.3. Rejection of BSA and Clearance Rate of LZM and Urea 

BSA rejection as well as Urea and LZM passage was measured using the same method as UF flux. 

After pre-flushing the membranes with the solute for about 30 minutes at a temperature of 25 °C, The 

BSA rejection as well as Urea and LZM passage of membranes were measured at the inlet pressure 

(0.100 MPa) and outlet pressure (0.0600 MPa). 

The rejection of BSA (R) was calculated by the following Equation (5): 

p

f

C
R

C
  (3) 

where Cp and Cf (mg∙L−1) are BSA concentrations of after dialysis and Pre-dialysis solution, respectively. 

The clearance rate of LZM and urea was calculated by the following Equation (6): 

1
p

f

C
R

C
   (4) 

where Cp and Cf (mg∙L−1) are LZM and urea concentrations of after dialysis and Pre-dialysis solution, 

respectively; the concentration was determined by UV-V is spectrophotometer. 

3. Results and Discussion 

3.1. Morphology and Structure of PVDF Membranes 

3.1.1. Morphology and Structure of Different PEG Molecular Weight 

The PVDF hollow fiber membranes SEM morphologies are shown in Figure 2. In this study, the 

PVDF membranes were prepared by NIPS method. The membrane matrix is PVDF. Polyethylene glycol 

and 1, 4-diethylene dioxide are modifiers to enhance membrane hydrophilicity. There was typical 

asymmetric structure in PVDF membranes. The structure was made of a skin layer, an intermediate layer 

with finger-like structure, and a bottom layer with fully developed macrospores. Finger-like structures 

dominate the cross section in M-1 and M-2 membranes. The sponge-structure in M-3 membrane 

becomes more and more obvious when compared to other membranes. There are some defective 

structures in M-4 membrane. The altered viscosity influences membrane structures. When PEG 

molecular weight is not very high (2–4 kDa), the viscosities of doping solutions changed slightly  

(Table 1). In that case, addition of PEG polymers has little influence on membrane structures. As PEG 

molecular weight is high (6 kDa), the asymmetric structure becomes more distinct. The casting solution 

viscosity becomes bigger and bigger with PEG molecular weight increasing when PVDF concentration 

is under certain preconditions, which can decrease the formation of macro voids [20]. The higher weight 

PEG can effectively influence the diffusion speed of casting solution, which can increase the formation 

of thick dense asymmetric layer. That can be explained by the diffusivity of additives and the solvent. 

Generally, the solvent is much faster than higher molecular weight PEG. However, when PEG molecular 

weight continues to increase (10 kDa), the casting solution stability is deteriorated and some defective 

pores appear in the PVDF membrane. 
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M-1 

   

M-2 

   

M-3 

   

M-4 

   

 Cross section (1500×) External cross section (5000×) Outer surface (50000×) 

Figure 2. The SEM morphologies of different PVDF membranes, the labels M-1, M-2, M-3 

and M-4 are membranes with PEG molecular weights 2, 4, 6 and 10 kDa, respectively. 

Table 1. Selected performances of different PVDF membranes; the labels M-1, M-2, M-3 

and M-4 are membranes with PEG molecular weights 2, 4, 6 and 10 kDa, respectively. 

Membrane Label Porosity (%) Bursting pressure (MPa) Viscosity (mPa∙s) 

M-1 88.9 0.395 3136 

M-2 87.3 0.375 3421 

M-3 85.1 0.625 3976 

M-4 87.8 0.465 7352 

From SEM morphologies of different PVDF membranes, it can be seen that the outer surface of the 

M-3 membrane is much denser, and the max pore size cannot be observed clearly while the outer surface 

of other membranes is rough and porous. The formation of pores becomes suppressed and smaller in the 
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M-3 membrane. The diminishing of finger-like pores can increase the separation properties of PVDF 

membranes [21]. The max pore size of different membranes is shown in Figure 3. 

 

Figure 3. The max pore size of PVDF membranes with different PEG molecular weight 

3.1.2. Morphology and Structure of Different PEG Content 

The PVDF hollow fiber membranes SEM morphologies with different PEG content are shown in 

Figure 4. There was typical asymmetric structure in different PVDF membranes. The structure was made 

of a skin layer; an intermediate layer with finger-like structure; and a bottom layer with fully developed 

macrospores [22]. Finger-like structure dominates the cross section in M-14.8 and M-16.8 membranes. 

The sponge-structure in M-3 membrane becomes more and more obvious when compared to other 

membranes that have more finger-like structure. There are some defective structures in M-20.8 

membrane. That can be explained by the solvent and non-solvent diffusion rate. 

The outer surfaces of different PVDF membranes are shown in Figure 5. With PEG content ranged 

from 14.8 wt % to 18.8 wt %, the outer surface changed from porous to dense. As PEG content reached 

20.8 wt %, the surface becomes porous again. 
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Figure 4. Cont. 
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M-3 

   

M-20.8 

   

 Cross section (1500×) External cross section (5000×) Outer surface (50000×) 

Figure 4. The SEM morphologies of different PVDF membranes, the labels M-14.8,  

M-16.8, M-3 and M-20.8 are membranes with PEG content 14.8, 16.8, 18.8 and 20.8 wt %. 

  

Figure 5. The max pore size of PVDF membranes with different PEG content. 

3.2. Mechanical and Separation Performance of PVDF Membranes 

3.2.1. Mechanical and Separation Performance of PVDF Membranes with Different PEG  

Molecular Weight 

The tensile stress and bursting pressure at break increases with increasing PEG molecular weight at 

first, and then decreases, as shown in Table 1 and Figure 6. M-3 membrane has the best mechanical 

properties. The membrane tensile stress at break is 11.3 MPa and bursting pressure at break is  

0.625 MPa. This can be explained by two reasons: (1) the cross-sectional structure can affect the 

membrane mechanical performance. From morphologies (Figure 2), it can be seen that the finger-like 

structure becomes less and less with increasing PEG molecular weigh, which can increase the tensile 

stress. With PEG molecular weight continuing to increase, the casting solution stability is deteriorated 

and the membrane mechanical performance begins to decrease; (2) the porosity can also affect the 
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mechanical performance. From Table 1, the porosity decreases from 88.9% to 85.1%, and then increases 

to 87.8%. The higher porosity membrane has lower mechanical performance. 

 

Figure 6. The stress-strain curves of different PVDF membranes, the labels M-1, M-2, M-3 

and M-4 are membranes with PEG molecular weights 2, 4, 6 and 10 kDa, respectively. 

The BSA rejection rate of different PVDF membranes is shown in Table 2. It is observed that the  

M-3 membrane exhibits the highest BSA rejection (82.3%) while M-4 shows the lowest. These results 

can be illustrated by different outer surfaces of dialysis membranes. The outer surface becomes denser 

with PEG molecular weight increasing at first, and then becomes looser (as shown in Figure 2). Recently, 

high molecular weight additives have become more and more popular in the preparation of blood dialysis 

membranes, which can form dense layers easily. Meanwhile, dense structure can increase BSA rejection. 

This result is consistent with the study of Yuan et al. [23]. The study showed that the surface roughness 

of membranes was effectively reduced with molecular weight of PEG increasing. With the PEG 

molecular weight continuing to increase, the casting solution stability is deteriorated and easily forms 

lager pore sizes, which decreases the separation performance of membranes. 

Table 2. Separation performance and water contact angle of PVDF membranes with 

different PEG molecular weight. 

Membrane label UF flux of pure water (L∙h−1∙m−2) Rejection of BSA (%) Water contact angle (°) 

M-1 45.2 4.4 57 ± 3 

M-2 35.4 40.9 54 ± 2 

M-3 108.2 82.3 52 ± 2 

M-4 124.8 8.8 42 ± 2 

As shown in Table 2, UF flux of pure water increases when PEG molecular weight increases. From 

the study of Jung et al. [24], it is well known that the solubility of additives decreases when molecular 

weight increases. On the one hand, low molecular weight additives can easily be washed out together 

with the solvent from membranes. On the other hand, the higher molecular weight additives are often 

left in the membranes. There are more additives that stay in the membranes. PEG is an uncharged 

polymer with hydrophilicity, which can increase the hydrophilicity of PVDF membranes. 
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3.2.2. Mechanical and Separation Performance of PVDF Membranes with Different PEG Content 

As shown in Table 3 and Figure 7, the tensile stress increases from 7.4 MPa to 11.3 MPa and the 

porosity decreases from 88.8% to 85.1% at first, and then the tensile stress decreases from 11.3 MPa to 

8.1 MPa and the porosity increases from 85.1% to 87.5%. The results also indicate that the bursting 

pressure increases with membrane porosity decreasing. Therefore, both the casting solution composition 

and membrane porosity can affect the tensile stress at break. The M-3 membrane has better mechanical 

properties than the other PVDF hollow fiber membranes. 

Table 3. Selected performance of different PVDF membranes; the labels M-14.8, M-16.8, M-3, 

and M-20.8 are membranes with PEG content: 14.8, 16.8, 18.8 and 20.8 wt %, respectively. 

Membrane label Porosity (%) Bursting pressure (MPa) Viscosity (mPa.s) 

M-14.8 88.8 0.495 2736 

M-16.8 87.3 0.605 3124 

M-3 85.1 0.625 3976 

M-20.8 87.5 0.510 2846 
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Figure 7. The stress-strain curves of different PVDF membranes; the labels M-14.8, M-16.8, 

M-3, and M-20.8 are membranes with PEG content: 14.8, 16.8, 18.8 and 20.8 wt %, respectively. 

UF flux, BSA rejection and water contact angle results of PVDF membranes with different PEG 

content are shown in Table 4. BSA rejection increases from 60.6% to 82.3% as a result of denser surface 

structure, which makes the max pore size smaller (As shown in Figure 4). With PEG content continuing 

to increase, the BSA rejection decreases from 82.3% to 70.2%. That can be explained by the max pore 

size becoming larger again. The UF flux increases with increasing PEG content. From the study of  

Kim and Lee, it is well known that PEG content can effectively improve the water permeability of 

membranes [25]. 

Table 4. Separation performance and contact angle of PVDF membranes with different PEG content. 

Membrane label UF flux of pure water (L∙h−1∙m−2) Rejection of BSA (%) Water contact angle (°) 

M-14.8 45.5 60.6 59 ± 3 

M-16.8 65.4 66.2 56 ± 2 

M-3 108.2 82.3 52 ± 2 

M-20.8 106.6 70.2 43 ± 2 
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3.3. Contrast of PVDF and F60S Membranes 

3.3.1. Morphology  

The SEM micrographs of PVDF and Fresenius F60S membrane are shown in Figure 8. The Fresenius 

F60S membrane exhibits more finger-like pores while there are few finger-like structures in M-3 and 

M-0 membranes. The outer surface of M-0 is rougher and more porous than M-3 and F60S membranes. 

M-3 

   

M-0 

   

F60S 

   

 Cross section (1500×) External cross section (5000×) Outer surface (50,000×) 

Figure 8. The PVDF and F60S membranes SEM morphologies; M-0 is the PVDF membrane 

that was prepared in a previous study [2]. 

3.3.2. Mechanical and Separation Properties 

From Figure 9 the results show that the stretching strength of different PVDF membranes is much 

stronger than F60S membrane. At the same time, the stretching strain of M-3 and M-0 membranes is 

about 400%, which is much higher than F60S membrane. The tensile stress at break of PVDF membranes 

was about 11 MP and much higher than that of F60S membrane (7.9 MPa). This can be explained by 

different materials and different morphology structures (Such as Figure 9). UF flux and BSA rejection 

of different membranes are shown in Table 5. UF flux and BSA rejection of M-3 membrane are 108.2 

L∙h−1∙m−2 and 82.3%, respectively, which are higher than M-0 (98.7 L∙h−1∙m−2 and 69.2%) and F60S 

membranes. The F60S membrane UF flux is 78.6 L∙h−1∙m−2 and BSA rejection is 78.2%. Compared with 

F60S membrane; the M-3 membrane has better mechanical and separation properties. 
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Table 5. Bursting pressure, Rejection of BSA and UF flux of pure water of different membranes. 

Membrane label Bursting pressure (MPa) Rejection of BSA (%) UF flux of pure water(L∙h−1m−2) 

M-3 0.625 82.3 108.2 

M-0 0.645 69.2 98.7 

F60S 0.475 78.2 78.6 

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

 

 

S
t
r
e
s
s
/
M
P
a

Strain/%

 M-3
 M-0
 F60S

 

Figure 9. The PVDF and F60S membranes stress-strain curve, M-0 is the PVDF membrane 

that was prepared in a previous study [2]. 

3.4. Research of PVDF Dialyzer 

3.4.1. UF Coefficient of PVDF Dialyzer 

PVDF dialyzers were prepared using M-3 membrane. Membrane permeability to water is generally 

expressed by UF coefficient. From Figure 10, it can be seen that the PVDF dialyzer UF coefficient 

reaches 62.6 mL/h/mmHg. 

 

Figure 10. The UF coefficient of PVDF dialyzer. 

3.4.2. Dialysis Performance of PVDF Dialyzer 

From Table 6, it can be seen that the dialyzers with different membrane area have different dialysis 
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similar that can reach 80% while the clearance rate to lysozyme and urea is different. The clearance rate 

to Lysozyme is 63%, 66.8% and 57.4%, respectively. The clearance rate to urea is 78.8%, 87.7% and 

82.5%. The PVDF dialyzer with membrane area 0.69 m2 has highest clearance rate to LZM and urea. 

This is because the exchange rate between dialysis and simulation fluid increases with increasing 

membrane area. The exchange rate can be limited with membrane area continuing to increase. That can 

be due to a certain area of the dialysis shell. 

Table 6. Dialysis performance of different dialyzer area. 

Area 

(m2) 

Concentration of BSA /mg∙L−1 Concentration of LZM /mg∙L−1 Concentration of Urea /mg∙L−1 

Pre 

dialysis 

After 

dialysis 

Rejection 

(%) 

Pre 

dialysis 

After 

dialysis 

Clearance 

(%) 

Pre 

dialysis 

After 

dialysis 

Clearance 

(%) 

0.43 934 767 82.1 36.2 13.4 63.0 2080 442 78.8 

0.69 934 770 83.1 36.2 12.4 66.8 2080 283 87.7 

0.95 934 781 83.6 36.2 11.8 57.4 2080 364 82.5 

3.4.3. Dialysis Performance of Different Simulation Fluid Flow Rate 

Table 7 shows that BSA rejection is almost the same under three flow rates of simulation fluid. The 

retention rate of BSA is 82.0%, 81.6% and 83.1%, respectively, which indicates that increasing 

simulation fluid flow rates has little effect on the retention of BSA. The clearance rate of lysozyme 

increases from 61.0% to 66.8% with the simulation fluid flow rate increasing from 100 mL/min to 200 

mL/min. The clearance rate of Urea is also different under three simulation fluid flow rates; when the 

flow rate increased from 100mL/min to 200 mL/min, the clearance rate increased from 84.3% to 87.7%. 

From the results, it can be seen that increasing simulation fluid flow rate can improve the clearance rate 

of lysozyme and Urea. 

Table 7. Dialysis performance at different simulation fluid flow rates. 

Flow rate 

(mL/min) 

Concentration of BSA /mg∙L−1 Concentration of LZM /mg∙L−1 Concentration of Urea /mg∙L−1 

Pre 

dialysis 

After 

dialysis 

Rejection 

(%) 

Pre 

dialysis 

After 

dialysis 

Clearance 

(%) 

Pre 

dialysis 

After 

dialysis 

Clearance 

(%) 

100 934 765 82.0 36.2 14.1 61.0 2080 326 84.3 

150 934 762 81.6 36.2 13.5 62.7 2080 320 84.6 

200 934 770 83.1 36.2 12.4 66.8 2080 283 87.7 

4. Conclusions 

The membrane morphology structure can affect the mechanical and separation performance of PVDF 

membranes. The M-3 membrane with PEG molecular weight of 6 kDa and content 18.8 wt % has the 

best mechanical and separation properties when compared to other PVDF membranes with respect to 

optimized membrane morphology and structure. The PVDF hemodialysis membrane has better 

mechanical and separation properties compared to medical F60S membrane. The PVDF membrane 

tensile stress at break, tensile elongation, and bursting pressure were 11.3 MPa, 395% and 0.625MPa, 

respectively, while F60S membrane were 7.9 MPa, 59% and 0.475 MPa, respectively. UF flux and BSA 
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rejection of M-3 membrane are 108.2 L∙h−1∙m−2 and 82.3%, which are higher than M-0 (98.7 L∙h−1∙m−2 

and 69.2%) and F60S membranes. The F60S membrane UF flux is 78.6 L∙h−1∙m−2 and BSA rejection is 

78.2%. Dialyzer membrane area and simulated fluid flow rate affect dialysis performance. The clearance 

rate of urea and LZM were improved by increasing the membrane area and fluid flow rate, while this 

had little influence on the rejection of BSA. The high-flux PVDF dialyzer, with 62.6 mL/h/mmHg (UF 

coefficient), had better clearance rates for LZM and urea. The clearance rate of LZM was 66.8% and 

urea was 87.7% in for a 4 h dialysis process. 
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