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Abstract: The ubiquitous and highly conserved flotillin proteins, flotillin-1 and flotillin-2, 

have been shown to be involved in various cellular processes such as cell adhesion, signal 

transduction through receptor tyrosine kinases as well as in cellular trafficking pathways. 

Due to the fact that flotillins are acylated and form hetero-oligomers, they constitutively 

associate with cholesterol-enriched lipid microdomains. In recent years, such 

microdomains have been appreciated as platforms that participate in endocytosis and other 

cellular trafficking steps. This review summarizes the current findings on the role of 

flotillins in membrane-bound cargo endocytosis and endosomal trafficking events. We will 

discuss the proposed function of flotillins in endocytosis in the light of recent findings that 

point towards a role for flotillins in a step that precedes the actual endocytic uptake of 

cargo molecules. Recent findings have also revealed that flotillins may be important for 

endosomal sorting and recycling of specific cargo molecules. In addition to these aspects, 

the cellular trafficking pathway of flotillins themselves as potential cargo in the context of 

growth factor signaling will be discussed. 

Keywords: flotillin; endocytosis; lipid microdomains; clathrin independent endocytosis; 
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1. Lipid Microdomains and Endocytosis 

Initially, lipid microdomains were described in the early 1990s as membrane structures that are 

insoluble in cold non-ionic detergents such as Triton X-100 and thus float in low density fractions [1]. 

Ever since Simons and Ikonen proposed the principle of lipid rafts in 1997 [2], it has been refined over 

the years. Nowadays, such lipid microdomains are considered as specific nanoscale assemblies enriched 

in cholesterol and sphingolipids that constitute a liquid-ordered phase in cellular membranes. These 

microdomains are dynamic and can coalesce to serve as signaling platforms or to function in 

membrane trafficking [3].  

Certain modifications and properties of proteins increase their propensity to associate with lipid 

microdomains. For example, the association of glycosylphosphatidyl-inositol (GPI) anchored proteins 

with rafts is mediated by their glycolipid anchor [4,5]. Multiple acylation has been shown to enhance 

the affinity of proteins for the liquid-ordered membrane phase. For example, tyrosine kinases of the 

Src family are doubly acylated and thus associate with rafts [5–8]. Palmitoylation, which is a reversible 

process that takes place in Cys residues, was suggested to serve as regulatory means to recruit or 

exclude proteins from lipid microdomains [9]. However, single palmitoylation alone is not sufficient to 

recruit proteins into rafts, as evidenced by the transferrin receptor which can be palmitoylated but is 

constitutively localized outside of rafts [9]. Apart from GPI anchors and acylation, oligomerization of 

proteins enhances their affinity for rafts and can also serve to stabilize the respective microdomain in a 

scaffolding manner [9–12].  

Endocytosis can be roughly classified in two categories: clathrin mediated endocytosis (CME) and 

clathrin independent endocytosis (CIE). For recent reviews, the reader is referred to [13–16]. In 

contrast to the detailed mechanistic insights that are available for CME and its structural component 

clathrin, CIE is far less understood. So far, it appears that a major hallmark of CIE is that even 

uncoated membrane pits can be invaginated and internalized into the cell. While CME depends on 

dynamin for vesicle scission, both dynamin dependent and independent CIE pathways have been 

described. The fission of caveolae, invaginated structures in the plasma membrane that are decorated 

with caveolins and cavins [17], depends on dynamin [18,19]. On the other hand, flotillin mediated 

endocytosis of some cargo molecules was suggested to be dynamin independent [20,21], whereas the 

growth factor induced internalization of flotillins clearly depends on dynamin [22]. In this review, we 

will only shortly summarize the suggested role of flotillins in CIE. For a more comprehensive review 

on flotillins in the endocytosis of specific cargo molecules, please refer to a recent review by Otto and 

Nichols [23]. The purpose of the present review is to critically discuss recent findings that suggest that 

in the case of some cargo molecules, flotillins might not actively participate in endocytosis but rather 

in a step preceding the endocytic uptake that may even take place by means of CME. In addition, we 

will provide insights into the emerging role of flotillins in cargo sorting within endosomes. 

2. The Flotillin Protein Family 

Flotillin-1/reggie-2 and flotillin-2/reggie-1 constitutively associate with specific membrane 

microdomains by acylation (a single palmitate in flotillin-1, a myristate and three palmitates in 

flotillin-2) [11,24,25], oligomerization [11,12,21,26] and cholesterol binding ([27]; our unpublished 
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data). Upon the discovery by Bickel et al., flotillins were implicated to exert a functional role in 

membrane trafficking processes [28]. Originally, it was proposed that flotillins associate with  

caveolae [28,29], but later findings clearly have shown that flotillins participate in the formation of 

specific non-caveolar microdomains [20,30]. Furthermore, our unpublished results from flotillin-2 

knockout mice do not reveal any significant changes in caveolin protein expression. Nowadays, 

flotillins are commonly used as marker proteins for non-caveolar rafts. Their ability to float in low 

density fractions of Triton X-100 insoluble membrane preparations coined their name as flotillins and 

indicated their association with rafts [28].  

Structurally, flotillins are composed of two domains, the function of which has not been clarified in 

detail. The N-terminal SPFH (stomatin/prohibitin/flotillin/HflK/C) domain contains the sites for 

acylation [11,24,25,27,31], whereas the so-called flotillin domain in the C-terminus mediates the 

oligomerization and contains Ala-Glu repeats and phosphorylatable tyrosines that are important for 

flotillin function [11,12,26,32–34]. Both flotillins are ubiquitously expressed, conserved among 

species and homologous to each other [35,36], although they appear to be functionally distinct. 

However, the expression of one flotillin depends on that of the other one, and depletion or deletion of 

one flotillin also reduces the stability of the other. However, flotillin-1 appears to be more dependent 

on flotillin-2 than vice versa [26,37,38]. Functionally, flotillins have been implicated in several cellular 

processes, such as cellular migration and adhesion, signaling by receptor tyrosine kinases and mitogen 

activated protein kinases (MAPK) as well as membrane trafficking. For detailed information on the 

role of flotillins in signal transduction and putative roles in cancer, we would like to refer the reader to 

our recent review articles [34,39,40].  

Flotillins display a dynamic cellular localization that considerably varies between different cell 

types [21,31]. Under growth conditions, flotillins predominantly localize to the plasma membrane and 

endosomal structures, i.e., late endosomes, recycling endosomes and exosomes [12,27,31,41–46]. 

However, under growth factor deprivation, flotillins relocate to the plasma membrane by means of 

recycling from intracellular compartments. Upon stimulation with epidermal growth factor (EGF), Src 

family kinases phosphorylate flotillins at several tyrosine residues, and flotillin oligomers increase in 

size and translocate to late endosomes [12,32,33]. Furthermore, flotillins actively participate in 

signaling pathways, e.g., receptor tyrosine kinase signaling and MAPK signaling [37–40,47].  

3. Discovery of the Putative Flotillin Dependent Endocytosis Pathway 

To date, several cargo molecules, such as the GPI-anchored protein CD59, cholera toxin B subunit 

(CTxB), cationic molecules and polyplexes, proteoglycans and proteoglycan bound ligands, as well as 

the Niemann-Pick C1-like 1 protein (NPC1L1) [20,21,48–50] have been suggested to utilize an 

internalization pathway that depends on flotillin-1 (Table 1). The initial idea that flotillins would 

establish their own CIE pathway, was suggested by Glebov et al., who found increasing amounts of 

flotillin-1 in early endocytic vesicles after fluid-phase uptake of magnetic nanoparticles (ferrofluid) [20]. 

However, they did not observe a colocalization of flotillin-1 with transferrin (Tfn), a classical cargo for 

CME, or with clathrin in these early endocytic vesicles. Due to these findings, together with the 

observation that flotillin-1 colocalizes in HeLa and COS-7 cells with the GPI-anchored protein CD59 

and the ganglioside GM1, Glebov et al. reasoned that flotillins participate in an internalization 
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pathway that is different from CME. This was further supported by the findings demonstrating that 

upon expression of a dominant negative version of AP180, a molecule required for the formation of 

clathrin coated pits (CCPs) [51], ectopically expressed flotillin-1-GFP still colocalized with CTxB in 

endocytic vesicles, and depletion of flotillin-1 partially inhibited the uptake of an antibody directed 

towards CD59 [20,52]. However, CTxB, which binds to its receptor GM1, is somewhat controversial 

as a raft marker, since CTxB/GM1 have been found to be internalized not only by CIE, but also via 

CCPs and thus CME [53,54]. Upon immunolabeling of ultra-thin cryosections, vesicles positive for 

flotillin-1-GFP and CTxB were detected. However, according to the authors, only 15% of the total 

flotillin-1-GFP was found in these vesicles, and neither CTxB nor CD59 were significantly enriched in 

flotillin-1-GFP positive vesicles and invaginations at the plasma membrane. Live imaging with total 

internal reflection of fluorescence (TIRF) showed a very dynamic behavior of flotillin-1-GFP at the 

plasma membrane, with vesicles that disappeared towards the cellular interior. It was observed that 

flotillin-1-GFP positive vesicles and microdomains at the plasma membrane are very dynamic and 

move with a high mean velocity as compared to CCVs [20,21]. The dynamic movement of flotillins at 

the plasma membrane is in line with the fluctuating and varying lifetime of lipid microdomains [55,56]. 

However, flotillin-1-GFP containing vesicles bud into the cell at a frequency that is less than one third 

of that of CCPs [20]. Pursuing the idea that flotillins would define a CIE pathway, Frick and 

colleagues proposed that flotillins might serve as structural components for this pathway [21]. They 

observed that ectopic expression of flotillin-1-GFP and flotillin-2-GFP induces their coassembly to 

specific flotillin microdomains which induce membrane curvature and thus generate membrane buds 

that in turn bud towards the cellular interior. They suggested that the highly dynamic flotillin 

microdomains become static just prior to their internalization [21], which might be caused by 

coalescence of flotillin oligomers into larger oligomeric structures, as we have shown to occur upon 

EGF stimulation of the cells [12]. Since the study of Frick et al. was based on overexpression of  

GFP-tagged flotillins, which do not necessarily fully resemble the endogenous proteins in terms of 

their trafficking and oligomerization, the suggested capability of flotillins to induce membrane buds 

needs to be dissected in further studies. However, this study elegantly shows that flotillins assemble 

into microdomains, a property which is based on their propensity to form oligomers, as has later also 

been observed by us and others [12,21,26].  

Table 1. Overview of the literature on flotillins in cellular sorting and endocytosis. 

Sorting Process References 

Flotillin assisted endocytosis [37,41,50,57,58] 
Polarized sorting [59–65] 

Exosomes [27,44,46,66] 
Endosomal sorting [42,67–69] 

Flotillin oligomerization [11,12,26,32] 
Flotillin dependent endocytosis [20,21] 
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4. Flotillin Dependent Cargo Trafficking and Sorting: Beyond Endocytosis 

4.1. Flotillins in Sorting Events within Endosomes  

In recent years, a number of publications have indicated a role for flotillins in endosomal sorting 

processes and in the formation of exosomal vesicles in endosomes. Generation and release of 

exosomes frequently occurs within multivesicular bodies (MVBs), which then fuse with the plasma 

membrane and thereby release their intraluminal vesicles (ILV) as exosomes to the extracellular  

space [70,71]. Several publications have suggested a role for lipid microdomains and flotillins in 

exosome generation [27,44,46,72]. The tetraspanin CD63 and Alix are commonly considered as 

proteins enriched in exosomes and can thus be used as markers to study exosome release [66]. Strauss 

and colleagues found that cholesterol treatment of oligodendrocytes resulted in an increased exosome 

release and these exosomes were enriched in flotillin-2, Alix and EGFP-CD63 [27]. In contrast,  

Baietti et al. found that Alix and CD63, together with syntenin, reside in flotillin-negative exosomes 

released from MCF-7 cells [73]. According to Phuyal and colleagues, depletion of neither flotillin-1 

nor flotillin-2 influenced the number of exosomes released, whereas the sorting of caveolin-1 and 

annexin A2 to exosomes was impaired [46]. Thus, flotillins might participate in the sorting of specific 

proteins towards ILVs that are destined to generate exosomes that do not contain Alix and CD63. 

However, detailed mechanistic insights into how flotillins sort cargo for exosomal release is still missing. 

Other studies have implicated a role for flotillins in cargo recycling. Saslowsky et al. observed that 

flotillins participate in the sorting of the cholera toxin-GM1 complex from endosomes via the TGN to 

the ER in zebrafish [67]. Interestingly, depletion of both flotillins rendered the fish resistant to 

intoxication with cholera toxin. Similar results were observed in mammalian COS-1 cells, in which 

cholera toxin requires flotillins to exert its cytotoxic effects. Interestingly, the averted toxicity of 

cholera toxin in flotillin depleted cells was shown not to be due to a reduced binding of cholera toxin 

to the plasma membrane GM1 or a defect in endocytosis, but rather due to a defect in the transport of 

cholera toxin from the plasma membrane to the ER [67]. Since neither the binding of cholera toxin to 

GM1 at the plasma membrane nor its endocytosis were affected by depletion of flotillins, the authors 

indicated that flotillins might play a role in endosomal sorting of cargo towards the ER or TGN. In line 

with these findings, Pust and coworkers analyzed the role of flotillins in the cellular transport of ricin 

and Shiga toxin [68]. Again, the endocytic uptake of both toxins was not affected by depletion of 

flotillins, whereas the retrograde transport of the toxins towards the TGN and ER was impaired and 

caused an accumulation of both toxins, thus increasing their toxicity [68].  

Well in line with the above findings, we have recently described a novel role for flotillins in the 

endosomal sorting of the β-secretase BACE1 [69]. Flotillin-1 binds to a di-leucine sorting motif in the 

cytoplasmic tail of BACE1 and thereby competes with the adapter protein Golgi-localized, gamma 

adaptin ear-containing, ADP ribosylation factor binding protein 2 (GGA2) for the binding to BACE1 

tail. Previous studies have shown that GGA proteins are important for both the retrograde trafficking 

and recycling of BACE1 towards Golgi and plasma membrane and for sorting to lysosomes for 

degradation [25,74–78]. Depletion of flotillins leads to an accumulation of BACE1 in endosomes, 

which in turn increased the amyloidogenic processing of the Alzheimer amyloid precursor protein 

(APP) [69]. Our study showed for the first time a direct binding of flotillins to a canonical sorting 
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motif in a transmembrane cargo protein. Based on our data, flotillins might thus participate in cargo 

sorting towards recycling. This is in line with recent findings by Solis and colleagues, who found that 

overexpressed flotillins associated with tubulovesicular recycling compartments positive for Rab11a, 

sorting nexin-4 and EH domain containing-1 in A431 cells [42] and that depletion of flotillins affected 

the recycling of the transferrin receptor and E-cadherin [42,79]. Thus, a novel and highly intriguing 

role for flotillins in the regulation of cargo sorting events within endosomes appears to be emerging. 

4.2. An Indirect Role of Flotillins in Endocytosis: Pre-Endocytic Clustering at the Plasma Membrane 

Recent findings have casted some doubt on the direct role of flotillins in the endocytic uptake of 

some cargo molecules, as flotillins were shown to specifically cluster cargo molecules, such as APP, 

the dopamine transporter (DAT) and the epidermal growth factor receptor (EGFR), at the plasma 

membrane prior to endocytosis by means of CME [37,57,80]. Figure 1 summarizes the potential role 

of flotillins in the endocytosis of cargo proteins. Depletion of flotillin-2, but not of flotillin-1, impairs 

APP endocytosis in neuroblastoma cells and in primary hippocampal neurons [57]. Strikingly, using 

STED microscopy, Schneider and colleagues showed that APP requires flotillin-2 for the formation of 

pre-endocytic clusters at the plasma membrane that are necessary for a proper endocytic uptake of  

APP [57]. Since APP is a classical cargo protein of CME [81–83], the authors suggested that APP is 

internalized by a specialized CME pathway that is regulated by flotillin-2, but the details of the 

mechanism how flotillins affect CME still await further characterization.  

Figure 1. Flotillin assisted endocytosis. Flotillin microdomains are dynamic, and upon 

certain stimuli, flotillins form higher order oligomers that can recruit transmembrane 

proteins, such as EGFR, DAT and APP, into flotillin rafts for pre-endocytic cluster formation 

(middle). Cargo can then be internalized via endocytosis without a direct involvement of 

flotillins, e.g., by clathrin mediated endocytosis (right). In resting or growth factor deprived 

cells, flotillins and the cargo may not reside in the same microdomains (left). 
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The role of flotillins in the endocytosis of the dopamine transporter DAT has recently been set 

under debate. While Cremona and co-workers suggested an essential role for flotillins during DAT 

endocytosis, which goes along with a phosphorylation of flotillin-1 on Ser 315 by protein kinase C 

(PKC), Sorkina and colleagues established that flotillins actually are necessary for the decreased mobility 

and clustering of the transporter in the plasma membrane prior to its CME mediated uptake [58,84]. In 

line with this, we have observed that flotillin-1 influences the clustering of EGFR upon EGF 

stimulation at the plasma membrane, but not EGFR endocytosis [37]. Even though EGFR has been 

suggested to utilize both CME or CIE pathways, depending on the ligand dosage [85,86], we did not 

observe any effect on EGFR uptake upon depletion of flotillin-1 [37], nor did we see a colocalization 

of flotillins and EGFR in early endocytic vesicles [12,37]. Thus, it appears that although APP, DAT 

and EGFR are internalized by CME, they all depend on flotillins for preassembly prior to endocytosis. 

However, a direct molecular connection between flotillin microdomains and clathrin coated structures 

at the plasma membrane is currently missing, and there is a very limited degree of overlap of clathrin 

with flotillins at the plasma membrane [20]. Interestingly, there is some evidence suggesting that 

clathrin coated structures may assemble in plasma membrane microdomains [87], but there are no data 

as yet if these structures contain flotillins. It is highly unlikely that flotillins function as essential 

components of CME or coated pit assembly, since endocytosis of clathrin dependent cargo, e.g., 

transferrin receptor, is not generally impaired upon flotillin depletion (Our unpublished findings). 

However, it is possible that there may be a specific subset of cargo that is endocytosed by means of 

CME that takes place from microdomains that contain flotillins.  

Interestingly, flotillins contain cholesterol recognition/interaction amino acid consensus (CRAC) motifs 

and have been suggested to bind cholesterol ([27,88]; our unpublished findings). The transmembrane 

NPC1L1 protein mediates cellular cholesterol uptake and cycles between the plasma membrane and 

recycling endosomes [50,89]. Upon its endocytic uptake, NPC1L1 utilizes a CME pathway [89]. 

Interestingly, by co-immunoprecipitation and FRET analysis, flotillins were shown to associate with 

NPC1L1 and to be required for a cholesterol induced uptake of NPC1L1 [50]. Furthermore, the 

presence of NPC1L1 in flotillin microdomains is in line with the binding of flotillins to cholesterol 

([50,88]; our unpublished findings) and their scaffolding microdomain activity. Strikingly, Ge et al. 

suggest that flotillins mediate the recruitment of clathrin and its adaptor protein AP-2 to NPC1L1 and 

thereby facilitate the uptake of NPC1L1 [50,89]. Therefore, flotillins, due to their propensity to form 

oligomers and to bind cholesterol, might contribute to microdomain scaffolding in the pre-assembly or 

clustering of cargo proteins destined for endocytosis. Similar observations have been published by 

Abrami et al. [90–92] who found that the anthrax toxin is endocytosed by CME, but depends on lipid 

microdomains for the clustering during CCP assembly [90], as has also been shown for the tetanus 

neurotoxin [93]. Thus, one could assume a general role for lipid microdomains in the pre-endocytic 

clustering and assembly of cargo molecules destined for endocytosis, independent of the final 

endocytosis pathway used.  

5. Flotillins as Endocytic Cargo during Signaling 

So far, most studies addressing flotillins and endocytosis have neglected the possibility that 

flotillins themselves might be cargo molecules for a CIE pathway. Adding to the controversy as to 
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whether flotillins establish their own endocytosis pathway or only assist in cargo clustering for 

endocytosis, Glebov and co-workers could not exclude that flotillin-1 might itself be a cargo molecule 

that is recognized by a CIE pathway [20]. Most studies so far have addressed only steady state 

endocytic pathways [20,21]. However, it has been conclusively shown that flotillins participate in 

growth factor signaling and that flotillin microdomains increase in size and translocate to endosomes 

upon EGF stimulation [12,32,33,37]. These two pathways, the steady state uptake and the growth 

factor induced translocation, might represent two different routes that flotillins utilize for their 

internalization. This is also supported by recent findings on dynamin dependency of flotillin uptake. 

Inhibition of dynamin GTPase activity showed that EGF mediated flotillin uptake requires dynamin 

activity [22], whereas uptake of some of the suggested flotillin cargo molecules appears to be dynamin 

independent (reviewed in [23]). However, flotillin uptake – irrespective of whether as a cargo 

molecule or as a structural endocytic component – depends on cholesterol [50,57]. Dissection of the 

role of dynamin in the cellular trafficking of flotillins is complicated by the fact that expression of 

dominant-negative dynamin mutants (K44A, T65A or R399A) impairs the recycling of flotillins from 

endosomes to the plasma membrane, which also, somewhat surprisingly, appears to require clathrin [22]. 

However, both dynamin and clathrin have been shown to participate in sorting events in endosomes 

that mediate recycling of cargo towards the plasma membrane [94,95], making their role in the 

recycling of flotillins plausible. 

6. A New Era: From Flotillin Dependent to Flotillin Assisted Endocytosis  

Due to the findings showing that flotillin depletion reduces the uptake of some proteins from the 

plasma membrane, the term “flotillin dependent endocytosis” has been established. However, this term 

implies that flotillins are essential mechanistic components of a specific endocytic pathway that is at 

least severely impaired in their absence (as with “clathrin dependent”). In the case of clathrin and 

dynamin, the dependency is well established, and the use of the word “dependent” well justified. 

However, as the evidence for a similar, essential mechanistic role for flotillins and the details of the 

nature of the endocytic carriers are currently lacking, we suggest that the term “flotillin assisted 

endocytosis” should rather be used. In our opinion, the word “assisted” describes a process that is 

facilitated by flotillins (e.g., by cargo sequestering prior to endocytosis) but is not strictly and 

mechanistically dependent on flotillins as structural component. Thus, as long as the essential nature of 

flotillins in the endocytosis of a specific set of cargo that is endocytosed by means of the said pathway 

has not been shown, we feel that “flotillin assisted endocytosis” is currently more adequate.  

7. Conclusions: Flotillins in Membrane Trafficking–Getting the Bigger Picture  

The above findings show that although flotillins undoubtedly regulate various membrane trafficking 

events of numerous cargo proteins, the exact step that involves flotillins needs to be carefully dissected 

to avoid wrong conclusions. In Figure 2, we have summarized the various trafficking steps in which 

flotillins have been suggested to play a functional role. To define and substantiate the molecular details 

of an endocytic pathway that depends on flotillins, further evidence needs to be gathered. For example, 

several studies showed that flotillins colocalize with their putative cargo, e.g., CD59, in early endosomes. 

Strikingly, most cargo molecules, irrespective of their internalization route, merge in early or sorting 
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endosomes, and therefore, a colocalization in early endosomes does not provide a final proof that the 

two proteins arrived via the same endocytic uptake route. To visualize that two specific proteins take 

the same internalization pathway, photo-activatable tags in combination with live imaging should be 

used. On the other hand, such analysis is always based on ectopic expression of tagged proteins, which 

may not be identical with the endogenous ones. As already indicated by Glebov et al., isolation of 

flotillin positive endocytic vesicles with a consecutive mass spectrometric analysis would help 

characterize the nature of these vesicles and facilitate the identification of structural as well as 

accessory proteins. The isolation of flotillin positive vesicles could be done in two ways, in order to 

distinguish between flotillin assisted endocytosis and endocytosis of flotillins as cargo: (1) As described 

by Glebov et al. using the fluid phase uptake of ferrofluid to analyze vesicles generated by steady-state 

uptake; and (2) using ferrofluid coupled to EGF to analyze the growth factor induced translocation of 

flotillins and the respective carrier vesicle composition. To address the question whether flotillins 

serve as structural components of endocytosis, it would be necessary to not only observe flotillin 

containing regions with electron microscopy but also to understand the protein structure of flotillins 

and to define how flotillins might induce invaginations and buds at the plasma membrane.  

Figure 2. Function of flotillins in cellular cargo sorting processes. Flotillin microdomains 

have been described at the plasma membrane, in early, late and recycling endosomes as 

well as in exosomes. At the plasma membrane, flotillins assist transmembrane cargo 

proteins during cluster formation prior to endocytosis. In endosomes, flotillins appear to be 

involved in cargo sorting towards recycling to the plasma membrane, retrograde transport 

to the Golgi and ER or to intraluminal vesicles of multivesicular bodies, which then fuse 

with the plasma membrane and release the internal vesicles as exosomes. 
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In the future, another important issue will be to dissect the details of flotillin function in endosomal 

sorting. This will require the identification of cargo molecules—proteins as well as lipids and  

toxins—that are sorted within the endosomal system by means of flotillin microdomains. Some of the 

potential cargos have been identified by us and others [67–69], but the next challenge will be to 

identify the accessory proteins and adaptors involved in flotillin mediated sorting. So far, none have 

been characterized for flotillin assisted endocytic pathways, whereas our findings strongly suggest that 

the adaptors of the GGA family might be involved in endosomal cargo sorting by flotillins [69]. It will 

also be important to dissect how flotillins interact with the cargo and the accessory proteins/coats 

during their sorting function.  
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