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Abstract: In recent years, the use of biogas as a natural gas substitute has gained great attention.
Typically, in addition to methane (CH4), biogas contains carbon dioxide (CO2), as well as small
amounts of impurities, e.g., hydrogen sulfide (H2S), nitrogen (N2), oxygen (O2) and volatile organic
compounds (VOCs). One of the latest trends in biogas purification is the application of membrane
processes. However, literature reports are ambiguous regarding the specific requirement for biogas
pretreatment prior to its upgrading using membranes. Therefore, the main aim of the present study
was to comprehensively examine and discuss the most recent achievements in the use of single-
membrane separation units for biogas upgrading. Performing a literature review allowed to indicate
that, in recent years, considerable progress has been made on the use of polymeric membranes for
this purpose. For instance, it has been documented that the application of thin-film composite (TFC)
membranes with a swollen polyamide (PA) layer ensures the successful upgrading of raw biogas
and eliminates the need for its pretreatment. The importance of the performed literature review is
the inference drawn that biogas enrichment performed in a single step allows to obtain upgraded
biogas that could be employed for household uses. Nevertheless, this solution may not be sufficient
for obtaining high-purity gas at high recovery efficiency. Hence, in order to obtain biogas that could
be used for applications designed for natural gas, a membrane cascade may be required. Moreover, it
has been documented that a significant number of experimental studies have been focused on the
upgrading of synthetic biogas; meanwhile, the data on the raw biogas are very limited. In addition, it
has been noted that, although ceramic membranes demonstrate several advantages, experimental
studies on their applications in single-membrane systems have been neglected. Summarizing the
literature data, it can be concluded that, in order to thoroughly evaluate the presented issue, the
long-term experimental studies on the upgrading of raw biogas with the use of polymeric and
ceramic membranes in pilot-scale systems are required. The presented literature review has practical
implications as it would be beneficial in supporting the development of membrane processes used
for biogas upgrading.

Keywords: biogas; biomethane; carbon dioxide; ceramic membranes; plasticization; polymeric
membranes; pretreatment; upgrading

1. Introduction

Biogas is regarded as a renewable energy carrier that may substitute conventional
energy sources. Hence, its production is well established and globally promoted. In 2022,
biogas production in Europe amounted to 21 billion cubic meters (bcm) [1], and undoubt-
edly, there is still significant potential for further increase in biogas production. Indeed,
according to the European Biogas Association data [2], it is believed that the biogas pro-
duction can double by 2030. Basically, biogas is generated as a result of a biochemical
conversion of organic matter via a four-step anaerobic digestion (AD) process. For this
purpose, the main feedstocks used in Europe are agricultural wastewaters, landfills and
sewage sludges (Figure 1). Correspondingly, it has been widely reported that AD is an
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energy-efficient, environmentally sustainable and marketable process for bioenergy pro-
duction [3–8].
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electricity production or can replace fossil fuels in the transport sector [14–20]. Neverthe-
less, the final application of biogas is determined by its composition. Although Europe is 
undoubtedly the world leader in terms of biogas production [21–24], it is mainly used 
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Undoubtedly, methane (CH4) is the most important component of biogas. Surprisingly,
biogas generated from AD is characterized by a slightly higher CH4 content than that
produced from landfills [10]. It must be stressed that CH4 is a valuable source of energy as
it is characterized by a higher calorific value than biodiesel, bioethanol and biomethanol [11].
Therefore, the global biogas and biomethane markets have been growing over the last
years [12]. Furthermore, as displayed in Figure 2, the number of biomethane plants have
systematically increased [13].
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Generally speaking, biogas can be used for heat production by direct combustion,
electricity production or can replace fossil fuels in the transport sector [14–20]. Never-
theless, the final application of biogas is determined by its composition. Although Eu-
rope is undoubtedly the world leader in terms of biogas production [21–24], it is mainly
used there to generate heat and electricity [7,25]. In turn, the composition of raw biogas
markedly depends on several factors, such as (I) substrate nature [26,27], (II) operational
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conditions [28,29] and (III) configuration of anaerobic digester [30]. Typically, in addition
to CH4, biogas contains CO2, as well as small amounts of impurities, the so called ‘trace
compounds’. Among them are nitrogen (N2), oxygen (O2), hydrogen (H2) and (H2S). It
should be pointed out that the above-mentioned gases are undesirable and have negative
effects on the performance of biogas production and plant safety [31,32]. Moreover, usually,
biogas consists of volatile organic compounds (VOCs) which include, for instance, alcohols,
alkanes, aromatic compounds and halogens [31,32]. As it has been indicated in [33], VOCs
have no significant impact on the process performance; however, they can lead to damage
to industrial installations.

It is immediately clear that the biogas cleaning is aimed to improve the biogas quality
by increasing the CH4 concentration. The first step, called ‘biogas purification’, is performed
in order to remove impurities that are toxic, reduce the biogas heat value and lead to
corrosion issues. In turn, the second step, called ‘biogas upgrading’, aims to separate CO2,
typically down to 2% vol. Consequently, it allows to obtain biomethane with properties
and a composition similar to those of natural gas [34] and meet the quality standards
of natural gas grids [35]. It has been widely reported that effectively upgraded biogas,
referred to as biomethane, should contain more than 95–97% CH4 [14,36–41]. Noteworthily,
according to data presented in the International Energy Agency report [42], currently, 90%
of biomethane produced worldwide is obtained by upgrading processes.

An important point that should be noted is that the selection of the appropriate process
for this purpose is a key step that may have a significant impact on the overall technology
cost. Obviously, it requires the knowledge of the characteristics of the biogas components.
Hence, nowadays, significant research focus is being placed on biogas purification. More-
over, the performed literature review indicates that the number of research articles devoted
to the issue of biogas upgrading has been systematically increasing over the last 10 years
(Figure 3). The most remarkable result to emerge from the data is that this number has
increased 4.5 times from 2014 to 2022.
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It is interesting to note that there are several methods for biogas purification and
upgrading. Conventional technologies include processes such as (I) water scrubbing [43,44]
that shares 41% of the global upgrading market [30], (II) cryogenics [45,46], (III) chemical
absorption [47,48] and (IV) swing adsorption [49,50]. Advantages and disadvantages of
the above-mentioned methods have been presented in detail in several papers [3,51–56].
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Moreover, Mulu et al. have demonstrated in recently published articles [57–60] that biogas
purification and upgrading can also be achieved by the applications of several natural
materials, such as zeolite, clay, fly ash and wood ash. Moreover, in recent years, many
attempts have been made by researchers to investigate CO2 conversion using alternative
technologies. Remarkable achievements in this field have been presented and discussed in
several review articles [61–63].

The membrane gas separation process is a well-known technology since it was first
established in the 1980s in order to remove CO2 from natural gas [64–66]. With regard to
Europe, a commercial biogas upgrading installation using the gas permeation method was
installed for the first time in Netherlands in 1990 [67]. As can be seen from the literature
review, the separation of generated gases with the use of various membranes is of growing
importance. Moreover, it is expected that the market of the membranes used for biogas
upgrading will grow from USD 525.8 million in 2022 at a compound annual growth rate of
19.04% to USD 1495.91 million by 2028 [42]. It is due to the fact that this technology stands out
among other methods. Indeed, membrane processes are characterized by multiple practical
advantages, such as (I) high energy efficiency without generation of toxic waste, (II) small
footprint due to high packing densities of membranes in modules, (III) reliability and (IV) low
capital cost [3,35,52,68,69]. Moreover, as it has been indicated by Khan et al. [70], membrane
processes have been shown to be a relatively straight forward. This observation is in line with
that presented in [71] wherein it has been indicated that, generally, membrane plants for gas
separation can be operated without supervision.

Roughly speaking, the separation of biogas with the use of membrane processes can
be achieved by using a gas permeation membrane or a membrane contactor [67], which
is defined as a device containing a porous membrane that separates two fluid phases
(gas–liquid or liquid–liquid) [72]. Basically, the separation process is driven by a pressure
difference across the membrane [73] that plays a role of a specific boundary between the
permeate gas stream and the inlet gas. As a consequence, CO2 goes through the membrane
and CH4 is retained [74]. The separation with the use of dense membranes is based on
the solution–diffusion mechanism. It is clearly related to the affinity of molecules with the
membrane material and the diffusion via the polymeric film [34]. Although this technology
has several promising advantages [75–77], gas permeation is the most commonly used.
Indeed, it has been effectively implemented on an industrial scale [64]. With the use of
porous membrane, the separation mechanism is based on the difference between the sizes of
molecules and membrane pores. As reported by Seong et al. [78], the recovery performance
of the membrane technology is mainly defined by both the separation efficiency and the
configuration design of the multi-stage membrane process. Noteworthily, the efficiency of
the gas separation process is determined by the product gas purity and the gas fraction
in the feed recovered with the product [79]. Importantly, according to [49], membrane
technology may provide methane purity higher than 96%.

It is important to note that the appropriate design of the process depends on the
further application of the upgraded biogas. Generally, biogas upgrading can be performed
with the use of a single-membrane system, which consists of a membrane module, or with
the use of a multi-stage process, which employs several membrane modules [80]. In the
literature, there is agreement that prior to the CO2 removal, the biogas purification from
impurities is required in order to avoid the membrane deterioration [69,71,81,82]. However,
it leads to the complexity of the process variable control and the increased costs [83]. A less
exhaustive solution is biogas upgrading with the use of a single-membrane separation units
without pretreatment steps. It is undeniable that it is a less expensive solution and hence
increases the competitiveness of membrane processes on the biogas market [69]. However,
it is related to the high methane loss and CO2 traces [67,84]. Hence, improving the overall
efficiency of this solution is an ambitious task.

Finally, to be complete, it should be pointed out that most of the information available
from the literature in terms of membrane separation systems used for biogas upgrad-
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ing comes from experimental studies; however, several studies have been focused on
mathematical modelling as well as simulation and economic approaches [85–87].

In the light of the above-cited literature, the main aim of the present paper was
to comprehensively examine and discuss the most recent achievements in the use of
single-membrane separation units for biogas upgrading. More specifically, the present
paper is in line with the conclusion presented in the recently published review article [88],
wherein it has been indicated that, in the future, the enhancement in technology of biogas
upgrading is expected. This suggestion, in turn, is in accordance with that presented by
Kapoor et al. [89] who highlighted that although biogas upgrading is a commercially
available and increasingly implemented technology, it is still not as developed as required
by the biogas production sector. In this context, the importance of the presented literature
review has practical implications. Indeed, the study would be beneficial in supporting the
development of membrane technology used for the biogas purification.

2. Characteristics of the Main Biogas Impurities

The typical composition of biogas is presented in Table 1. It has been previously
indicated that among the main biogas impurities are CO2, H2S, H2O, N2 and O2. The
current section briefly presents their characteristics.

Table 1. Biogas composition from AD reported in the literature [6,43,90–95].

Compound Formula Unit Value

CH4 vol% 55–70
CO2 vol% 30–45
H2S ppm 0–10,000
H20 vol% 1–5
N2 vol% 0–15
O2 vol% 0–3
H2 vol% 0–1

NH3 ppm 0–100

2.1. CO2

CO2 is a colorless gas with a molar mass of 44.01 g/mol. It is approximately
1.5 times heavier than air at ambient temperature [96–99]. It is a major contaminant
in raw biogas. Indeed, typically, its content is in the range between 30 and 45 vol% (Table 1).
Considering the state of research into the biogas composition, it can be clearly indicated
that the CO2 concentration in biogas depends on several factors, such as (I) temperature,
(II) pressure and (III) liquid content in the digester [41]. It is non-toxic gas; however,
it decreases the calorific value of biogas, reduces its density, laminar flame speed and
combustion efficiency [34,57,88]. This implies that its high content reduces the economic
feasibility of direct biogas application [40] and limits its use mainly to heat and elec-
tricity generation. Furthermore, the CO2 leads to the corrosion of the pipeline and the
wear out of the installation equipment [100–104]. Finally, its capture is one of the most
significant technologies in biogas production [105], which allows to increase the Wobbe
Index (WI) [92] (Figure 4). Generally speaking, WI is recognized as an indicator of fuel
composition [106]. It is defined as the ratio of the calorific value of fuel to the square root of
its specific gravity [107–110].



Membranes 2024, 14, 80 6 of 21Membranes 2024, 14, 80 6 of 24 
 

 

 
Figure 4. Wobbe Index as a function of CH4 content in biogas based on data from [111,112]. 

Consequently, an increase in the use of biogas can be achieved in a wide range of 
applications. On top of that, capturing CO2 from biogas ensures reduction in its emissions, 
which is equal to 57.3 t of CO2 per TJ of energy [113–117]. As a result, global warming, 
which may have a negative impact on the environment and human health, can be stopped. 
Finally, it should be pointed out that CO2 captured at biogas plants can be used for various 
industrial applications, such as the syntheses of (I) polymers, (II) urea, (III) methanol and 
(IV) salicylic acid [118–120]. Furthermore, recent studies on this topic [37,121–123] con-
cluded that CO2 captured from biogas, in combination with H2, can be applied for obtain-
ing an additional CH4 stream (hydrogenation process), according to the Sabatier reaction: 

CO + 4H → CH + 2H O (1)

2.2. H2S 
H2S is a colorless and flammable gas slightly heavier than air [47,96] with a molar 

mass of 34.08 g/mol. It is the significant impurity in the raw biogas in a concentration of 
up to 10,000 ppm (Table 1). Certainly, it has a negative impact on human health and is 
harmful to the environment [32,34,41,88,92,124,125]. A toxic concentration of H2S remain-
ing in biogas is considered to be higher than 5 cm3/m3 [12,111]. Moreover, it should be 
noted that H2S is a problematic biogas compound since it is characterized by strong and 
peculiar odor [34,57,126–128]. Noteworthily, the H2S concentration equal to 200–300 ppm 
may lead to respiratory arrest [32]. In addition, it is a corrosive substance leading to the 
destruction of installation and piping [81,88,89,129–131]. For instance, the maximum al-
lowable concentrations of H2S for boilers is below 1000 ppm, meanwhile for reciprocating 
engines, the acceptable range is below 250 ppm [49]. Its content in raw biogas depends on 
the percentage of proteinaceous and other sulfur compounds present in the substrate [41]. 
The important finding is that H2S concentration in biogas produced from wastewater 
treatment plants is generally higher than that in biogas obtained with the use of landfills 
as a feedstock [41,129]. The removal of H2S from biogas is crucial since the use of biogas 
as a fuel without the purification leads to the formation of sulfur dioxide (SO2), which is 
toxic to human health and has harmful environmental effects [132–138]. With regard to 
biogas, removing this impurity may have the crucial impact on the technological and eco-
nomic feasibility of the upgrading process [54]. The choice of the most suitable technique 

Figure 4. Wobbe Index as a function of CH4 content in biogas based on data from [111,112].

Consequently, an increase in the use of biogas can be achieved in a wide range of
applications. On top of that, capturing CO2 from biogas ensures reduction in its emis-
sions, which is equal to 57.3 t of CO2 per TJ of energy [113–117]. As a result, global
warming, which may have a negative impact on the environment and human health,
can be stopped. Finally, it should be pointed out that CO2 captured at biogas plants
can be used for various industrial applications, such as the syntheses of (I) polymers,
(II) urea, (III) methanol and (IV) salicylic acid [118–120]. Furthermore, recent studies on this
topic [37,121–123] concluded that CO2 captured from biogas, in combination with H2, can
be applied for obtaining an additional CH4 stream (hydrogenation process), according to the
Sabatier reaction:

CO2 + 4H2 → CH4 + 2H2O (1)

2.2. H2S

H2S is a colorless and flammable gas slightly heavier than air [47,96] with a molar
mass of 34.08 g/mol. It is the significant impurity in the raw biogas in a concentration of up
to 10,000 ppm (Table 1). Certainly, it has a negative impact on human health and is harmful
to the environment [32,34,41,88,92,124,125]. A toxic concentration of H2S remaining in
biogas is considered to be higher than 5 cm3/m3 [12,111]. Moreover, it should be noted
that H2S is a problematic biogas compound since it is characterized by strong and peculiar
odor [34,57,126–128]. Noteworthily, the H2S concentration equal to 200–300 ppm may lead
to respiratory arrest [32]. In addition, it is a corrosive substance leading to the destruction
of installation and piping [81,88,89,129–131]. For instance, the maximum allowable con-
centrations of H2S for boilers is below 1000 ppm, meanwhile for reciprocating engines,
the acceptable range is below 250 ppm [49]. Its content in raw biogas depends on the
percentage of proteinaceous and other sulfur compounds present in the substrate [41].
The important finding is that H2S concentration in biogas produced from wastewater
treatment plants is generally higher than that in biogas obtained with the use of landfills as
a feedstock [41,129]. The removal of H2S from biogas is crucial since the use of biogas as a
fuel without the purification leads to the formation of sulfur dioxide (SO2), which is toxic
to human health and has harmful environmental effects [132–138]. With regard to biogas,
removing this impurity may have the crucial impact on the technological and economic
feasibility of the upgrading process [54]. The choice of the most suitable technique for H2S
removal from raw biogas depends on several factors. Among them are, for instance, (I) gas
concentrations, (II) treatment cost and (III) H2S content [126].
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2.3. H2O

In general, raw biogas contains saturated water vapor, with a content in the range
of 1–5% (Table 1). It reduces the heating value of biogas, and in the presence of H2S and
CO2, it accelerates the corrosion process [40,139]. Furthermore, it can react with H2S to
form sulfuric acid (H2SO4) [140]. Noteworthily, Sahin and Ilbas [141] investigated the
impact of H2O content on the biogas combustion behavior. The above-mentioned authors
have demonstrated that an increase in the H2O content leads to a reduction in the biogas
flame temperature due to the mixture dilution. In addition, the removal of H2O from
biogas is required in order to avoid water condensation [142]. In general, the removal of
water from raw biogas is conducted with the use of condenser or by the application of
adsorption technologies [143].

2.4. N2 and O2

It is considered that the typical contents of N2 and O2 in the raw biogas are up to 15%
and 3%, respectively (Table 1). It is widely accepted that, due to the anaerobic conditions,
N2 should be absent in the reactor. Hence, its presence in the raw biogas may mean there
is a denitrification issue or an air leakage in the reactor. Although N2 has no harmful
environment effect [144,145], it leads to the decrease in the calorific value of biogas [40,92].
Likewise, the present of O2 in raw biogas clearly indicates that air has entered the digester.
O2 binds hydrogen and partly binds carbon, leading to the production of compounds
such as hydroxides, water and oxides [96]. Depending on the biogas temperature, the O2
concentration higher than 6% may lead to an explosion [142].

3. Application of Membranes for Biogas Upgrading
3.1. Membrane Types Used for Biogas Upgrading

It is well known that the worldwide use of biogas is limited. Undoubtedly, it is mainly
due to its purification requirements [53]. According to the data presented in the report of
IEA Bioenergy [146], the required effectiveness of the raw biogas purification depends on
its future application (Table 2).

Table 2. Requirements to remove biogas impurities based on data from [146].

Biogas Application H2S CO2 H2O

gas heater required, concentration lower than 1000 ppm not required not required
kitchen stove required not required not required

stationary engine required, concentration lower than 1000 ppm not required no condensation required
natural gas grid required required required

vehicle fuel required recommended required

With regard to industry, for gas separation, nonporous membranes are the most com-
monly used [147]. With regard to material, polymeric, ceramic and composite membranes
can be used. Among them, only polymeric membranes are used on an industrial scale,
which is clearly related to their lower cost and the possibility to fabricate them into hollow
fibers [64,148,149]. According to [52], among the most popular materials used for mem-
branes fabrication are polyimide, polyamide (PA) and cellulose acetate (CA). Noteworthily,
membranes based on CA were the first to be commercialized for biogas purification [150].
Performing the literature review indicated that the upgrading of both raw and synthetic
biogas has been thoroughly investigated with the use of membranes fabricated from
various polymers. Among them are mainly cellulose-based carbon [35], PI [52,151–153],
polyetheretherketone (PEEK) [54,154], CA [64,155], polydimethylsiloxane (PDMS) [64],
polyester carbonate (PEC) [69], thin-film composite polyamide (TFC PA) [82,87,156,157],
polysulfone (PSf) [83] and polyethersulfone (PES) [158] membranes. It is worth noting that,
with regard to gas separation, other membrane materials are also investigated. For instance,
in the recently published paper [159], the separation performance of the cellulose triacetate
(CTA) membrane material in humid high-H2S natural gas feed streams has been evaluated.
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Generally, the above-mentioned membrane types are characterized by high permeabil-
ity to CO2 and low permeability to CH4. As a consequence, during the biogas purification
process, CO2 is concentrated in permeate stream, meanwhile CH4 is concentrated in the
retentate stream. As it has been indicated in [160], the CH4 concentration in the retentate
stream depends mainly on the following factors: (I) membrane selectivity, (II) ratio of the
pressures applied on the membrane sides and (III) membrane stage-cut defined as the
fraction of biogas feed that is allowed to permeate via the membrane [133,151,160,161]. An
important issue that must always be considered is related to the fact that that raw biogas
also contains several impurities, such as H2S and water vapor. Hence, it is necessary to
mention that the materials used for membranes utilized in biogas upgrading should be
chemically stable and resistant to these compounds [52].

Table 3 shows the ideal permeability and selectivity of selected materials for CO2 and
CH4 separation reported in the literature [10,64,148,162,163].

Table 3. Ideal permeability and selectivity of selected materials reported in the literature [10,64,148,162,163].

Membrane Material CO2 Permeability at 30 ◦C [Barrer] CH4 Permeability at 30 ◦C [Barrer] Selectivity CO2/CH4

cellulose acetate (CA) 6.30 0.21 30.0
polyimide (PI) 10.70 0.25 42.8

polysulfone (PSf) 5.60 0.25 6.89
polydimethylsiloxane (PDMS) 2700 800 3.38

It is important to note that polymeric membranes are stable at high operated pressures
and easily scalable [83,148]. However, the most well-known limitations of this membrane
type is plasticization [35], which is the swelling of the membrane structure and has come
to be used to refer a ‘phenomenon, caused by the dissolution of certain substances in the
polymeric matrix’ [64]. In general, it leads to an increase in the fractional free volume of
the membrane [164–167]. As a consequence, a permeability of CO2 increases, and finally, a
decrease in the membrane selectivity is observed [82,148,168]. CO2 is the most significant
impurity present in biogas affecting this phenomenon; however, water vapor and trace
components (e.g., siloxanes, hydrocarbons) may also have a significant impact [151].

Membranes can be classified as hollow-fiber, spiral-wound and enveloped membranes.
According to Pak et al. [155], for gas separation, hollow fiber membranes are the most
popular. The above-mentioned authors have indicated that it is related to the fact that they
have several significant advantages, such as (I) high flexibility, (II) large area to unit volume
ratio and (III) high productivity. Noteworthily, Chmielewski et al. [151] have indicated
that asymmetric hollow-fiber modules may have a three times larger area per unit volume
compared to spiral-wound ones. These findings are in line with those presented in the
current study. Indeed, performing the literature review allowed to demonstrate that, in
most of the studies aimed to investigate the upgrading of both synthetic and raw biogas,
the hollow-fiber membranes have been used (Table 4).



Membranes 2024, 14, 80 9 of 21

Table 4. Single-membrane permeation systems for upgrading of synthetic and raw biogas based on literature data.

Biogas
System
Scale

Membrane Operation Conditions Feed Content Permeate Content Retentate Content
CH4

Recovery
[%]

Ref.
Manufacturer Module Material Area [m2] T [K]

Feed
Pressure

[Bar]

Permeate
Pressure

[Bar]
Feed Flow Rate CH4 CO2 H2S CH4 CO2 H2S CH4 CO2 H2S

synthetic laboratory - hollow fiber
cellulose-
based
carbon

0.0009 308 9.6 1.03–1.20 300–500
mL(STP)/min 60.2 mol% 39.8 mol% - N.A. N.A. - N.A. N.A. - N.A. [35]

synthetic laboratory - hollow fiber
cellulose-
based
carbon

0.0009 308 9.6 1.03–1.20 300–500 mL/min 56.9 mol% 37.3 mol% 203
ppm N.A. N.A. N.A. N.A. N.A. N.A. N.A. [35]

synthetic N.A. PoroGen Corp.
(Woburn, MA, USA) hollow fiber PEEK N.A. N.A. 3.9–7.8 0.2–0.4 25.5–41.0 kg/h 53.5 vol% 40.2 vol% 0.2

vol% N.A. N.A. 0.01–0.16
vol% N.A. N.A. 0.05–0.22

vol% 65.0–71.0 [54]

synthetic laboratory - spiral wound CA 0.0010 298 6.0; 11.0
and 16.0 N.A. N.A. 50.0 mol% 50.0 mol% - N.A. N.A. - N.A. N.A. - 86.8 [64]

synthetic laboratory - hollow fiber PDMS 0.0010 298 6.0 and
16.0 N.A. N.A. 50.0 mol% 50.0 mol% - N.A. N.A. - N.A. N.A. - 19.8 [64]

synthetic pilot DuPont-Filmtec
(Edina, MN, USA) spiral wound TFC PA 1.2100 293 3.0 N.A. 0.46–0.50 L/min 52.0 vol% 48.0 vol% - N.A. N.A. - 94.3–95.8

vol%
~1.5–7.0
vol% 1 - 48.2 [82]

synthetic laboratory - hollow fiber PSf N.A. 293 2.0–20.0 N.A. N.A. 65.0 vol% 35.0 vol% - N.A. N.A. - N.A. N.A. - N.A. [83]

synthetic laboratory Toray Membrane USA,
Inc. (Poway, CA, USA) N.A. TFC PA 0.0125 294 0.7–1.2 N.A. 32 mL(STP)/min 53.7 mol% 46.3 mol% - 15.5 mol% 44.9 mol% - 79.6 mol% 20.5–mol% - N.A. [87]

synthetic laboratory
Koch Membrane

Systems, Inc.
(Wilmington, DE, USA)

N.A. TFC PA 0.0125 294 2.5–4.5 N.A. 30 mL(STP)/min 90.0 mol% 10.0 mol% - 1.6 mol% 3.5 mol% - 91.3 mol% 8.7 mol% - N.A. [87]

synthetic laboratory UBE Europe GmbH
(Düsseldorf, Germany) hollow fiber PI 0.1800 N.A. 2.0–8.0 N.A. 10–1200 Nl/h 50.0–80.0

vol%
20.0–50.0

vol% - ~10.0 vol% 1 <5% - up to 90.0
vol% N.A. - N.A. [151]

synthetic bench UBE Europe GmbH
(Düsseldorf, Germany) hollow fiber PI N.A. 313 6.0 0 100 N dm3/h 68.0 mol% 30.0 mol% 2 mol% 35.7 mol% 61.0 mol% 3.35 mol% 93.5 mol% 5.7 mol% 0.95 mol% N.A. [152]

synthetic laboratory Ube Industries, Ltd.
(Düsseldorf, Germany) hollow fiber PI N.A. 303 7.0–14.5 N.A. N.A. 80.0 vol% 20.0 vol% - 53.2 vol% 46.8 vol% - 93.8 vol% 6.2 vol% - 72.7–90.8 [153]

synthetic N.A. PoroGen Corp.
(Woburn, MA, USA) hollow fiber PEEK 18.5800 298 3.0–20.0 N.A. 18–96 kg/h 54.4 vol% 45.6 vol% - N.A. N.A. - ~97.0 vol% 1 N.A. - 40.0–85.0 1 [154]

synthetic N.A. PoroGen Corp.
(Woburn, MA, USA) hollow fiber PEEK 18.5800 298 3.0–20.0 N.A. 18–96 kg/h 60.0 vol% 40 vol% - N.A. N.A. - ~100 vol% 1 N.A. - 25.0–90.0 1 [154]

synthetic laboratory - hollow fiber CA 0.1800 room 3.0 N.A. 2.4 cc/min 60.0 mol% 40.0 mol% - N.A. N.A. - >97.0 mol% N.A. - 77.0 [155]

synthetic laboratory Toray Membrane USA,
Inc. (Poway, CA, USA) spiral wound TFC PA 0.1246 287-

296 4.0–5.0 N.A. 14–100
mL(STP)/min 56.1 mol% 43.8 mol% 1155

ppm 36.1 mol% 63.7 mol% 1362 ppm 99.0 1.0 mol% 3 ppm N.A. [156]

raw pilot Ube Industries, Ltd.
(Düsseldorf, Germany) hollow fiber PI N.A. 288-

298 6.0–8.0 N.A. 7 m3/h 61.8 vol% 37.9 vol% 100
mg/m3 25.2 vol% 74.9 vol% 72.86

mg/m3 96.4 vol% 2.2 vol% 21.25
mg/m3 N.A. [52]

raw laboratory Generon
(Houston, TX, USA) hollow fiber PEC 0.0110 308 7.0 19.9 m3/h 54 m3/h 51.0 mol% 48.0 mol% 0.09

mol% 96 mol% 3 mol% 0.07 mol% 24.0 mol% 74 mol% 0.1 mol% 69.4 [69]

raw pilot Dupont Dow Filmtec
(Edina, MN, USA) spiral wound TFC PA 1.2100 293 3.0 N.A. 0.861–1.072 L/min 52.5 vol% 42.8 vol% 55 ppm N.A. N.A. N.A. 97.0 vol% 0.9 vol% 5 ppm 46.9–49.1 [82]

raw pilot N.A. hollow fiber PI 0.1800 N.A. 2.0–90.0 N.A. 100 Nl/h 69.0 vol% 30.0 vol% 20 ppm ~3.5 vol% 1 <5% N.A. up to
90.0 vol% N.A. - N.A. [151]

raw laboratory Ube Industries, Ltd.
(Düsseldorf, Germany) hollow fiber PI N.A. 303 4.3–8.5 N.A. N.A. 70.0 vol% 19.8 vol% N.A. 49.3 vol% 42.8 vol% N.A. 80.7 vol% 7.5 vol% N.A. 76.0–94.3 [153]

raw industrial Ube Industries, Ltd.
(Düsseldorf, Germany) hollow fiber PI N.A. 303 10.8 N.A. N.A. 57.4 vol% 39.0 vol% N.A. 21.6 vol% 75.8 vol% N.A. 81.7 vol% 14.6 vol% N.A. [153]

raw N.A.
Koch Membrane

System Inc.
(Wilmington, DE, USA)

flat sheet TFC PA N.A. 294 2.0–5.0 N.A. 13.5 mL/min 62.5 vol% 35.5 vol% N.A. N.A. N.A. N.A. 95.0 vol% N.A. N.A. N.A. [157]

raw bench N.A. hollow fiber N.A. 0.9300 305 36.0 and
29.0 N.A.

2.4·10−4

–2.8·10−4 m3/s
and 1.7·10−4

–1.9·10−4 m3/s

62.0–63.0
mol%

36.5–37.5
mol%

~0.5
mol% N.A. 16.0–21.0

mol% N.A. 97.0 mol% N.A. N.A. 83.0 [160]

1 Data from a figure. CA—cellulose acetate; PDMS—polydimethylsiloxane; PEC—polyester carbonate; PEEK—polyetheretherketone; PES—polyethersulfone; PA—polyamide;
PI—polyimide; PIM-TMN-Trip—ultrapermeable benzotriptycene-based polymer of intrinsic microporosity; PPSU—polyphenylsulfone; PSf—polysulfone; TFC—thin-film composite;
and N.A.—not available.
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In turn, ceramic membranes are characterized by unique advantages, such as excel-
lent resistance as well as thermal and mechanical stability. It is equally important that
they exhibit a longer service as well as provide higher selectivity and permeability than
polymeric ones; nevertheless, they are more expensive [148,149,169–174]. The performed
literature review allows to demonstrate that experimental studies on their application in
this field have been neglected. Indeed, to the best of the authors’ knowledge, the open-
access literature contains no experimental studies investigating the application of ceramic
membranes in single-membrane systems for biogas upgrading. It is essential to mention
that this finding is in line with that presented in [175], wherein it has been indicated that
ceramic membranes for gas separation are still in an early technological stage. Taking
the above-mentioned into account, it can be concluded that further studies are needed to
investigate the efficiency of ceramic membranes in biogas enrichment.

Finally, it should be emphasized that the choice of the most suitable membrane
for biogas separation is a great challenge. It is related to the fact that it depends on
several factors. Among them, for instance, are (I) membrane cost and material availability,
(II) tolerance to impurities present in biogas, (III) thermal and chemical resistance and
(iv) fundamental parameters defining membrane separation performance: permeability
and selectivity [52,148,176] (Figure 5). Clearly, the permeability is equal to the product of
gas solubility and membrane diffusivity [177]. In turn, the membrane selectivity α describes
its ability to separate two gases, A and B, and it is defined as the ratio of permeability
coefficients pA and pB and is as follows [147,178–180]:

αA/B =
pA
pB

(2)

Permeability coefficients indicate the rate at which gas molecules are transported through
the membrane [181].
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3.2. Upgrading of Synthetic Biogas

Performing the literature review allows for demonstrating that the applications of
single-membrane permeation systems have been investigated for synthetic biogas charac-
terized by CH4 content in the range from 50 to 90 mol% (Table 4). Noteworthily, in several
studies [35,54,152,156], the H2S present in the gas was considered. However, it has been
found that most of the studies have been performed in order to determine membrane
applications for short-term processes. Meanwhile, the development of membrane processes
used for biogas upgrading requires the investigations on long-term stability and durability
of membranes used for this purpose.

Sedláková et al. [156] have thoroughly investigated the removal of CO2 and H2S
from synthetic biogas. For this purpose, thin-film composite (TFC) membranes with PA
skin layer have been used. The authors have clearly indicated that the application of the
above-mentioned membrane type has a significant advantage. Indeed, due to the fact
that membranes show the good ability to work in a humid environment, the pretreatment
of gas from water vapor is not required. At the same time, it has been demonstrated
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that the use of membranes for 120 h allowed for maintaining the performance of the
membranes. It becomes apparent from the discussed study that the application of this
membrane type ensured the effective removal of H2S and CO2 from synthetic biogas in a
single step. However, their successful separation requires relative humidity of feed above
90%. The process allowed for obtaining the CH4 concentration in the retentate stream of up
to 99 mol%.

The application of TFC membranes with PA skin layer for the upgrading of synthetic
biogas has also been documented in [82,87]. However, in the above-mentioned studies,
experimental investigations have been performed for biogas free of H2S. For instance,
Wojnarova et al. [82] investigated the applicability of the membrane on pilot-scale systems.
It has been demonstrated that a spiral-wound membrane module based on TFC membrane
allowed to increase the CH4 content from 52 vol% in the feed to about 95 vol% in the
retentate stream. Over the entire separation process, the obtained methane recovery ranged
between 46.4 and 49.9%, with an average value equal to 48.24%.

Several researchers have made remarkable achievements in the investigation of the
application of hollow-fiber PA membranes for the upgrading of synthetic biogas [151–153].
For instance, Harasimowicz et al. [152] have shown that, for this purpose, multi-stage
systems including special gas pretreatment are not required. Indeed, the used membranes
demonstrated a high permeability to common impurities present in biogas, such as H2O and
H2S. In addition, the above-mentioned study demonstrated that a single-stage unit ensures
the achievement of 77.4% CH4 recovery. The above-discussed results are in agreement with
those obtained in [153], wherein it has been documented that a hollow-fiber PA membrane
used for upgrading the model gas (80 vol% CH4 and 20 vol% CO2) allowed to obtain a
retentate with 93.8 vol% of CH4.

Preliminaries experimental test presented in [154] have demonstrated a feasibility
of integrating anaerobic digestion plant with PEEK hollow-fiber membranes in terms of
biomethane production. With regard to the impact of biogas impurities on the membrane
selectivity and permeability, in study [54], it has been documented that the presence of H2S
does not have any impact on the selectivity of the PEEK hollow-fiber membranes. In turn,
Brunetti et al. [35] in a recently published paper have demonstrated that the H2S present in
synthetic biogas led to a reduction in the permeability of cellulose-based carbon hollow-
fiber membranes in terms of both CO2 and CH4 by 43% and 25%, respectively. In addition,
it has been noted that humidified gas streams caused a decrease in the CO2 permeability of
about 67%. However, for more than 180 days of the process run, the membranes used in
the above-mentioned study exhibited a remarkable CO2/CH4 selectivity.

In turn, Pak et al. [155] have performed separation tests in order to verify the separa-
tion performance of CA asymmetric hollow-fiber membranes, which have been prepared
through a dry/wet spinning process. For this purpose, a binary gas (CO2/CH4 60:40) was
used. Results presented in the above-mentioned study showed that this type of membrane
allows the obtainment of methane with a purity higher than 97% and a recovery efficiency
equal to 77% in a single-stage permeation. The above-mentioned authors have indicated
that the single-stage process may not be sufficient for recovering high-purity gas at a high
recovery efficiency. In a later published study, Cerveira et al. [64] in order to attain CO2 re-
moval investigated the application of a composite commercial cellulose acetate membrane
and a dense film of PDMS. For this purpose, gases mixture with a molar composition of
50% CH4 and 50% CO2 have been used. It has been clearly documented that CA mem-
brane was characterized by the higher CO2/CH4 selectivity compared to the PDMS one.
Consequently, a CH4 recovery for the CA and PDMS membranes was equal to 86.8% and
19.8%, respectively. This finding can be attributed to the molecular structures of polymers.
Indeed, glassy polymeric membranes, such as made of CA, are more selective towards the
size and shape of gas molecules compared to rubbery ones, including PDMS ones. Indeed,
glassy polymers are characterized by densely packed polymer chains that have restricted
mobility. Contrarily, rubbery polymeric membranes are flexible and may provide more
fractional free volume, resulting in decreased membrane selectivity [182–185].



Membranes 2024, 14, 80 12 of 21

To sum up, the conclusion can be drawn that most of the available experimental
studies reported in the literature have been conducted with the use of laboratory-scale
membrane systems. Hence, it can be concluded that further experimental investigations are
needed to study the application of pilot-scale single systems for synthetic biogas upgrading.

3.3. Upgrading of Raw Biogas

Performing the literature review allows to indicate that experimental studies focused
on the upgrading of the raw biogas by single-membrane permeation systems are quite
limited (Table 4). More specifically, investigations have been carried out with the use of
both laboratory- and pilot-scale systems. Moreover, although studies on process stability
and long-term durability of membranes are key aspects for industrial applications, most of
the experiments reported in the literature were short-term.

Results presented in [52] are of great importance for the design of membrane separation
units for biogas upgrading. In the above-mentioned study on upgrading real biogas from
the anaerobic fermentation of sewage sludge, the polyimide fiber membranes have been
used. As a matter of fact, membrane separation was tested on a pilot scale. The obtained
results have demonstrated that the performed process allowed to achieve a CH4 content
higher than 95 vol% in the produced biomethane. This noteworthy finding indicated that
the membrane separation unit used in the discussed study can be successfully used for the
upgrading of biogas. Indeed, it allows to obtain biogas characterized by a concentration of
H2S of up to 100 mg/m3 and a relative humidity at a level of 40−50%. Hence, it has been
recommended for biogas units in wastewater treatment plants.

In turn, the application of polyimide hollow-fiber module for the purification of biogas
from agricultural plant has been investigated by Chmielewski et al. [151]. It has been
noted that the hollow-fiber PA membranes used in the above-mentioned study are efficient.
Indeed, they demonstrated a high selectivity for separating CH4 from CO2, H2S and
H2O. More specifically, performing the membrane process allowed to obtain the retentate
characterized by a high methane concentration (of up to 90% volume). In addition, it
was free of H2S, which was recirculated to the hydrolyzer in order to achieve an O2-free
atmosphere. On the other hand, the permeate contained less than 5 vol.% of CH4, which
indicated that the membranes ensured low losses of this biogas component. Finally, the
above-mentioned authors have pointed out that the upgraded biogas could be employed
for household uses.

Nemestóthy et al. [153] have demonstrated the results of a long-term biogas upgrading
process with the use of hollow-fiber PA membranes. The tested real gaseous mixtures
contained CH4, CO2, N2 and unknown trace substances. It has been reported that the
membranes used in the above-mentioned study allowed to increase the CH4 concentration
in biogas from 57.4 to 81.7 vol% in the retentate. As a matter of fact, the steady level of
CH4 recovery was equal to 82.9%. Moreover, it should be pointed out that the performed
experiments revealed the adequate time stability of membrane purification. Hence, the
above-mentioned authors have indicated that the application of this membrane type is
worthy of further investigation under industrial conditions in the field.

Stern et al. [160] have investigated the performance of a bench-scale membrane pilot
plant for biogas upgrading in a municipal wastewater treatment plant. For this purpose,
hollow-fiber membranes with unknown polymeric material have been used. In order to
prevent the condensation of organic impurities in the system, the biogas pretreatment
was conducted by heat exchange and a slight feed heating. It has been documented that
the application of a bench-scale membrane pilot allows to increase the CH4 concentration
from 62–63 to 97 mol%. However, it has been found that the used membranes cannot
be successfully applied for reducing the H2S concentration injected in the raw biogas.
Indeed, the H2S concentration decreases from 0.5 mol% to about 0.2 mol%. Hence, the
above-mentioned authors have indicated that, for this purpose, it is recommended to apply
two different types of membranes systems, characterized by high CO2/CH4 and H2S/CH4
selectivities, respectively.
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Efficient raw biogas upgrading to biomethane quality with the use of thin asymmetric
non-porous hollow-fiber polyester carbonate membranes has been presented in study [69].
The authors have documented that the used membranes are able to operate in the presence
of humidity and sulfur species present in biogas. Moreover, it has been clearly demon-
strated that there is a possibility of having a membrane operation without any pretreatment
steps for removing of contaminants in biogas from the agricultural plant. More specifically,
the application of the single-stage configuration allowed to obtain 96 mol% purity of CH4
in the permeate. Hence, membrane separation is undoubtedly competitive with other
known methods used for biogas upgrading. Indeed, the authors have pointed out that it
allows to obtain the methane recovery with a decrease in the investment expenditure of
approximately 20%. To sum up, it should be pointed out that the use of polyester carbonate
hollow-fiber membranes is a promising method for a wide application in gas separations,
and it is worth investigating further.

In a follow up study [82], the application of a swollen TFC polyamide membrane for
the upgrading of raw biogas obtained from the first digestion stage of an agricultural plant
has been demonstrated. As it has been mentioned in the Introduction Section, it is generally
accepted that biogas purification from impurities is required in order to avoid membrane
deportation. On the other hand, according to the discussed study, TFC membranes used
extensively for reverse osmosis desalination do not require a biogas pretreatment to remove
water vapor as well as other impurities such as hydrogen sulfide and ammonia. In addi-
tion, it has been documented that the used membranes ensured an increase in CH4 from
52 vol% in the feed to 98 vol% in the retentate stream. Moreover, it allowed to achieve H2S
concentration in the retentate at the level of 10 ppm. Similar results have been obtained
in [157], wherein it has been shown that a reverse osmotic thin-film composite membrane
with a swollen PI layer allows to increase CH4 content from 62.5% in raw biogas to 95% in
the retentate.

As it has been mentioned above, studies focused on the application of membrane
systems for the upgrading of raw biogas are very limited. Hence, it should be pointed
out that further experimental investigations are needed to determine the effectiveness
of such systems for the upgrading of real biogas under various operational parameters.
This conclusion is supported by the fact that the separation of synthetic and raw biogas
should be considered differently. It is due to the differences in the framework of designing
membrane systems for such purposes. In addition, it is highly recommended to perform
long-term experimental studies with the use of pilot-scale membrane installations, which is
necessary from the technological point of view.

4. Conclusions and Further Challenges

It is well known that the worldwide use of biogas is limited mainly due to its purifi-
cation requirements. For this purpose, membrane systems can be successfully applied.
Indeed, many researchers have reported that membrane technology is suitable to replace
conventional technologies. In addition, biogas upgrading with the use of membranes
without pretreatment steps increases the competitiveness of this technology on the bio-
gas market. Hence, the main aim of this review was to comprehensively examine and
discuss the most recent achievements in the use of single-membrane separation units for
biogas upgrading.

It has been clearly demonstrated, in recent years, that considerable progress has
been made with the use of polymeric membranes for this purpose. For instance, it has
been documented that the application of thin-film composite membranes with a swollen
polyamide layer ensures the successful upgrading of raw biogas and eliminates the need
for its pretreatment. The importance of the performed literature review is that the biogas
enrichment in a single step allows to obtain upgraded biogas that could be employed for
household uses. Nevertheless, this solution may not be sufficient for obtaining high-purity
gas at high recovery efficiency. Hence, in order to obtain biogas that could be used for
applications designed for natural gas, a membrane cascade may be required.
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However, most of the studies available in the literature have been conducted on
synthetic biogas; meanwhile, the data on the raw biogas are very limited and have not been
dealt with in depth. Finally, it has been noted that most of the studies have been performed
with the use of laboratory-scale membrane systems.

The evidence from this study implies that in order to thoroughly evaluate the possibil-
ity of raw biogas upgrading with the use of membrane technology, the further experimental
studies are required. Although ceramic membranes demonstrate several advantages, to
the best of the authors’ knowledge, the open-access literature contains no experimental
study investigating their application in this field. Hence, the studies on biogas upgrading
with the use of ceramic membranes in single-membrane systems are required. It is impor-
tant to note that the recommended specific areas of future research also include studies
aimed at examining the long-term stability and durability of various membranes under
industrial conditions. It is due to the fact that long-term investigations are a key aspect for
industrial applications.

Finally, the importance of the presented literature review has practical implications
as it would be beneficial in supporting the development of membrane processes used for
biogas upgrading.
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