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Abstract: In air-breathing proton exchange membrane fuel cells (Air PEM FCs), a high rate of water
evaporation from the cathode might influence the resistance of the membrane electrode assembly
(MEA), which is highly dependent on the water content of the Nafion membrane. We propose a dead-
end hydrogen anode as a means of intermediate storage of water/humidity for self-humidification of
the membrane. Such an inflatable bag integrated with a single lightweight MEA FC has the potential
in blimp applications for anode self-humidification. A dynamic numerical water balance model,
validated by experimental measurements, is derived to predict the effect of MEA configuration,
and the membrane’s hydration state and water transfer rate at the anode on MEA resistance and
performance. The experimental setup included humidity measurements, and polarization and
electrochemical impedance spectroscopy tests to quantify the effect of membrane hydration on its
resistance in a lightweight MEA (12 g) integrated with an inflatable dead-end hydrogen storage bag.
Varying current densities (5, 10, and 15 mA/cm2) and cathode humidity levels (20, 50, and 80%)
were examined and compared with the numerical results. The validated model predicts that the
hydration state of the membrane and water transfer rate at the anode can be increased by using a
thin membrane and thicker gas diffusion layer.

Keywords: hydrogen fuel cell; proton exchange membrane; humidity; water content; inflatable
hydrogen storage system; anode self-humidification; water storage; air breathing; membrane electrode
assembly; hydration state

1. Introduction

Proton-exchange-membrane (PEM) fuel cells (FCs) have come out as a promising
alternative to grid-based power generation as they can produce clean energy by directly
converting the chemical energy of the fuel (hydrogen) into electrical power and have a
relatively low operating temperature compared to other types of FCs [1,2]. PEM FCs consist
of units of a membrane electrode assembly (MEA), each of which includes two electrodes
called a cathode and an anode separated by an electrolyte. Over the years, it has been
proposed to reduce the complexity and weight of PEM FCs by exposing the cathode to
free convection ambient airflow to supply oxygen to its cathode and to have a simpler
lightweight design [1,3–5]. This transition to an air-breathing cathode PEM FC allows for a
lower weight but poses a challenge in terms of water management.

The electrolyte membrane is the pivotal component of the air-breathing PEM FC,
which is responsible for the ion transfer between the anode and the cathode in order to
maintain the charge balance and allow for power output. In addition, the membrane
prevents the cross-mixing of the gas between the anode and the cathode. A NafionTM mem-
brane is the most commonly used electrolyte due to its good mechanical properties, high
proton conductivity, chemical stability, and low internal resistance [6,7]. Hydrogen-based
air-breathing proton-exchange-membrane fuel cells (Air PEM FC) mostly use NafionTM
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membranes, which are perfluorosulfonic acid (PFSA) membranes with perfluorinated
backbones and sulfonic acid as the terminal group.

The gas diffusion layer (GDL) is another significant component of the MEA. It is a mi-
croporous layer of carbon fiber or cloth placed in contact with the catalyst layer on both sides
of the membrane. The GDL is a critical component of an FC, as it facilitates the transport of
reactants and products and plays a key role in water and thermal management [8–10].

One of the major disadvantages of Air PEM FCs is that the water evaporation from
the cathode to the ambient atmosphere is high, thereby influencing the resistance of the
Nafion membrane and leading to unstable power output [11–15]. Therefore, sufficient
humidity of the membrane must be maintained during the fuel cell operation to improve
the power output and prolong its service life. Several humidification methods have been
suggested, including internal humidification [16], external humidification [17], and self-
humidification [18,19]. Internal methods, such as water stored in cathode end plates, and
external techniques, such as bubble humidifiers, are more effective but require heavier
and more complex monitoring and control subcomponents. Water injection to electrodes
in direct or indirect modes has improved FC performance [20,21]. Self-humidification
methods such as adding hydrophilic nanoparticles to the membrane [22–24] or catalyst
layer [25–28] and using a double gas diffusion layer [18] have been effective for low-power
applications. Still, they are also significantly influenced by the operating conditions. In a
worst-case scenario, when the Air PEM FC is required to operate in a dry ambient condition,
the self-humidification method must rely solely on water produced electrochemically at
the cathode.

To ensure high FC efficiency, the MEA units are stacked in rigid fixtures of heavy
bipolar plates to allow sufficient sealing pressure and flow-field channels. In very small and
light applications, where a single MEA is sufficient, the heavy rigid structure can be avoided
and the super lightweight MEA may supply extremely high energy densities for extended
operation durations at a relatively low power and voltage (0.5–0.7 V). Such applications
may include small sensors, tracking systems, metrological stations, miniature drones, or
blimps that may benefit from an extremely high energy density at a low power [29,30].

In such applications, where a single MEA is used as an FC, water balance over the
MEA is critical for obtaining optimal results. On one hand, the efficient use of the FC at
high current densities tends to dehydrate the membrane, and on the other hand, the accu-
mulation of water produced at the cathode could induce electrode flooding, which impedes
gas diffusion to the electrodes [31–34]. Specifically, the NafionTM membrane’s conductivity
properties are strongly affected by its humidification/hydration state, i.e., the water content
of the membrane, which is defined by the amount of water absorbed on the sulfonic sites
and the temperature of the fuel cell [35,36]. Therefore, understanding the transport of water
produced at the cathode across the MEA during FC operation and the suitable selection of
membrane and GDL characteristics are essential for developing suitable water management
strategies for the large-scale commercialization of single MEA applications.

In the MEA, current flow is associated with the drag of water molecules from the
anode to the cathode side, a phenomenon known as electro-osmotic drag (EOD) transport,
which depends on the water content of the membrane [37]. These dragged water molecules,
combined with water produced at the cathode, accumulate on the cathode side of the
membrane. This accumulation creates a water content gradient within the membrane,
leading to the back-diffusion of water molecules in the opposite direction [38]. The net
transport of water across the membrane is influenced by the water concentration at the
electrodes and other factors such as temperature, pressure, membrane water content,
membrane thickness, gas diffusion layer (GDL), and the humidity of the reactant gases [39].
Therefore, achieving a balanced water management condition is essential to controlling
the desired direction of water transport across the MEA during FC operation to ensure
that the cathode is not flooded due to water accumulation or that the anode does not
become too dry due to strong electro-osmotic drag. Maintaining this balance is crucial for
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an effective self-humidification design to prevent membrane damage and ensure a reliable
power output even in severe temperature and environmental conditions [27,39–41].

In this study, we propose a dead-end hydrogen anode chamber as a means of inter-
mediate water storage to maintain the hydration level of the membrane and the hydrogen
gas feed stream. A compliant dead-end hydrogen storage chamber at the anode, such as
a balloon, a local pocket, or a small container at ambient pressure, is utilized to trap the
water produced at the cathode traveling to the anode side. This low-cost and lightweight
self-humidification method can be applied in small applications, such as a local pocket or a
small container at ambient pressure, to keep the membrane hydrated under dry ambient
conditions—for example, a hydrogen blimp powered by Air PEM FCs [40,41].

To illustrate the benefits of the suggested dead-end anode chamber, we developed a
simple water balance analytical model to describe the transfer of water in an air-open PEM
FC integrated with a dead-ended inflatable hydrogen bag at the anode. We constructed an
experimental setup to validate this model. The model allows us to predict the impact of
variables such as GDL thickness, membrane thickness, current density, cathode humidity,
and bag volume.

2. Materials and Methods

Figure 1 shows a schematic diagram of the water balance model, including a membrane
electrode assembly (MEA) placed between the ambient cathode and a dead-end hydrogen
storage bag (anode). The MEA is composed of a Nafion membrane, anode and cathode
catalytic layers, and anode and cathode GDLs.
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Figure 1. A schematic diagram illustrating the numerical model of water transfer across the membrane
electrode assembly (MEA), which includes anode and cathode gas chambers, gas diffusion layers
(GDL-anode and cathode), catalyst layers, and a proton exchange membrane (NafionTM). The anode
is confined by a closed compartment filled with hydrogen gas.

As shown in Figure 1, the electrochemical process results in the production of water at
the cathode (

.
Wpro) as per the following electrochemical reaction mechanism.

Anode (Oxidation): H2 → 2 H+ + 2e− E0
anode = 0

Cathode (Reduction): ½O2 + 2e− + 2H+ → H2O E0
cathode = 1.229 V
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Overall reaction: H2 + ½O2 → H2O E0
cell = 1.229 V

Two primary mechanisms of water transport work across the membrane at the same

time: (1) the electro-osmotic drag (
.

W
mem
drag) of water molecules from the anode to the cathode,

and (2) back-diffusion flow (
.

W
ca−mem
di f f ) of water from the cathode to the membrane. A

part of the produced water is evaporated from the cathode through the cathode GDL

(
.

W
GDL−ca
di f f ). The remaining portion is absorbed into the membrane and subsequently

trapped in the anode chamber (
.

W
GDL−an
di f f ). Cathode humidity (RHca) is considered a fixed

value determined by the ambient condition and the anode humidity (RHan) is calculated
as a function of time.

The hydration level of the membrane (λw) is defined by the molar ratio of water and
the sulfonic acid groups and strongly influences the ionic resistance of the membrane. A
maximum value of λw = 22 is reported with liquid water saturation [42,43]. In practice, this
value cannot be achieved in an FC MEA due to the hot-pressing process that leads to the
shrinking of the hydrophilic channels. The water content of the membrane at the interface
of the membrane–cathode (λca) and membrane–anode (λan) determines the resultant water
content of the membrane (λw), which depends on water transfer dynamics across the MEA.

A numerical model of the water balance is derived as detailed below to predict the
effect of changes in current density (I), ambient cathode relative humidity (RHca), GDL
thickness (δan

GDL = δca
GDL), and membrane thickness (δmem) on anode humidity (RHan), the

water content of the membrane (λw), and the ionic resistance of the membrane.

2.1. Transient Water Balance Model of the Membrane Electrode Assembly (MEA)

The main objective of the model is to predict the general trend in water transfer
over a simplified representation of the membrane. The model assumes one-dimensional
water transfer, as water transport occurs perpendicular to the membrane. Additionally, an
isothermal condition is considered due to the low working temperature of an air-breathing
single MEA (20–40 ◦C) compared to a standard FC (50–90 ◦C). The low working temperature
of air-breathing FCs is mainly caused by the high activation energy of the oxygen reduction
reaction at the cathode due to weak natural convective mass transfer that reduces the
current density [44,45]. Moreover, the direct contact of the electrodes with the ambient
air in the single air-breathing MEA configuration, along with the relatively low power,
maintains a low-temperature regime. Thus, modeling the effect of temperature rise is out
of the scope of this study. Water diffusion from the anode to the membrane is neglected
due to the higher concentration of produced water at the cathode. Gas crossover across the
membrane is also neglected.

A transient mass balance of water at the cathode catalyst layer, anode catalyst layer,
and across the membrane shown in Figure 1 can be represented by Equations (1)–(3). Water
transport from cathode to anode is considered positive.

.
Wpro =

.
W

GDL−ca
di f f +

.
W

ca−mem
di f f −

.
W

mem
drag , (1)

.
W

GDL−an
di f f =

.
W

mem−an
di f f −

.
W

mem
drag , (2)

Amem δmemρmem,dry

EW

(
dλw

dt

)
=

.
W

ca−mem
di f f −

.
W

mem−an
di f f −

.
W

mem
drag , (3)

where Amem is the active area of the MEA, δmem is the membrane thickness, dλw
dt is the

change in membrane water content with time (t), ρmem,dry is the membrane’s dry density,
and EW is the equivalent weight of the membrane. The terms in Equations (1)–(3) can be
calculated based on the standard relationship between the variables as follows:



Membranes 2024, 14, 4 5 of 18

Rate of water production at the cathode,

.
Wpro

[
kg
s

]
=

Amem Mw I
2F

, (4)

where the molecular weight of water vapor Mw = 0.018
[

kg
mol

]
and Faraday’s constant

F = 96485
[

sA
mol

]
. The current density (I) is an operating variable.

.
W

GDL−i
di f f

[
kg
s

]
= −

AmemDi
GDL

δi
GDL

(Ci
w − Ci), (5)

where ‘i’ represents the cathode (ca) or anode (an). Di
GDL and δi

GDL are the diffusion coeffi-
cient and thickness of the cathode/anode GDL. ‘Ci

w’ and ‘Ci’ are the molar concentrations of
water vapor at the two membrane–electrode (cathode/anode) interfaces and in the ambient
air, respectively, which are defined as:

Ci
w =

ρmem,dry

EW
λi, (6)

Ci =
Mw RHi Psat

R T
, (7)

where ρmem,dry = 2000
[

kg
m3

]
, EW = 1.1

[
kg

mol

]
, the temperature of anode and cathode

chambers is T = 295[K], and the gas constant is R = 8.314[ kgm2

s2Kmol ]. Here, the water
concentration at the surface of the anode and cathode GDLs is assumed to be equal to the
chamber concentration for the described air-breathing dead-end anode system, and water
is considered to be present in the vapor phase. Psat represents the saturation pressure of
water vapor and can be calculated as [46,47]:

Psat[atm] = 10−2.1794+0.02953(T−273.15)−9.1837×10−5(T−273.15)2+1.14454×10−7(T−273.15)3
, (8)

The ambient cathode humidity (RHca) is fixed, and a measure of transient anode
chamber humidity (RHan) can be expressed as:

RHan(t) =

∫ t
0

.
W

GDL−an
di f f dt(

ρH2 Vb +
∫ t

0

.
W

GDL−an
di f f dt

) , (9)

The volume (Vb) of the inflatable anode bag can be calculated as,

Vb = V0 −
Amem MH2 I

2F. ρH2

t, (10)

where ρH2 = 0.08 [ kg
m3 ] is the density of hydrogen gas, V0 is the initial volume of the hydrogen

bag, and MH2 = 0.002 [ kg
mole ] is the molar mass of hydrogen gas.

The rate of water transfer from the (cathode/anode) membrane interface surface to
the membrane is defined as

.
W

i−mem
di f f

[
kg
s

]
=

Amem Dw ρmem,dry |λi − λw|
δmem

, (11)
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where Dw is the water diffusivity relation, derived from experimental data in the membrane,
and can be expressed as [48]

Dw =

{
3.1 × 10−7λw

(
e0.28λw − 1

)
e(−2346/T), 0 ≤ λw < 3

4.17 × 10−8λw

(
161e−λw + 1

)
e(−2346/T), λw ≥ 3

. (12)

The drag of water molecules due to proton movement,

.
W

mem
drag

[
kg
s

]
=

Amem λw I
22 F

nd Mw, (13)

where the electro-osmotic drag coefficient nd is defined as the number of water molecules
dragged from anode to cathode per proton and can be considered to vary as per water con-
tent or a constant. In this work, it was assumed to be a constant value (nd = 1) [37,46,49–51].

The electrolyte Nafion membrane conductivity (σmem) is an important property that
depends on the water content of the membrane [46,52–54]:

σmem = (0.514λw − 0.326)e[1268( 1
303−

1
T )], (14)

The membrane ionic resistance can be determined as

Rmem =
1

σmem
(15)

Table 1 summarizes the base parameters used in the model study unless stated otherwise.

Table 1. Base model parameters.

S. No. Parameter Name Value

1 Amem Area of MEA 4 × 10−4 m2

2 δmem Thickness of membrane 50 µm

3 δca
GDL Thickness of cathode GDL 100 µm

4 δan
GDL Thickness of anode GDL 100 µm

5 I Current density 5 mA/cm2

5 RHca Cathode chamber humidity 0.2

6 V0 Bag initial volume 1 L

The transient water balance Equations (1)–(3) are solved using MATLAB as per the
above relationships to estimate the dynamic water content of the membrane (λw), anode
humidity (RHan), and resistance of the membrane (Rmem).

2.2. Experimental Setup for Model Validation

An experimental setup was designed to validate the model, as shown in Figure 2.
The setup consists of a cylindrical inflatable plastic bag (#1 in the figure) with a

diameter of 6 cm and a length of 20 cm, serving as the hydrogen storage/supply chamber
(anode). This plastic bag is supported by a rigid cylinder (ID = 6 cm and OD = 8 cm). A small
flat weight (#5 in the figure) of 5 g is placed on top of the bag to keep the pressure constant
and to facilitate easy measurements of the consumed hydrogen volume. It maintains a
modest pressure difference between the anode and cathode sides to minimize the influence
of water movement over the membrane due to the pressure gradient.
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Figure 2. The experimental setup (a schematic illustration and a photo), including a cylinder with an
inflatable dead-end hydrogen storage bag (1) connected to a lightweight MEA (2), a cathode chamber
(3) with ports for humid airflow (4), a weight (5), humidity sensors (6), and a Potentiostat (7).

An MEA (#2 in the figure) with a catalyst-coated (0.5 mg/cm2 Pt-C) PEM (NafionTM

N212, purchased from Fuelcellstore) with an area of Amem = 2 × 2 cm2 and a thickness
of δmem = 50 µm was prepared in our lab according to previously published protocols as
described [55–57]. Catalyst ink was prepared by mixing 50 wt.% Pt/C in distilled water
(18.2 MΩ cm), 5 wt.% Nafion solution (LQ 1105–1100 EW purchased from Ion Power
Inc. TLV, Israel), and isopropyl alcohol (Sigma-Aldrich, St Louis, MO, USA) inside an
ultrasonic ice bath for 30 min. The ink was sprayed using a manual airbrush on both sides
of the membrane mounted on a vacuum hot plate set at 70 ◦C. Then, the catalyst-coated
membrane was hot pressed between two GDLs (Toray carbon paper TGP-030) by metal
blocks maintained at 100 ◦C inside a hydrostatic press (10 MPa) for 6 min. The aluminum
mesh (current collectors) was pressed on top of the GDL surface on each side using a
lightweight clip. Thus, a very lightweight assembly was achieved, weighing only around
12 g. The MEA was connected at the bottom of the bag, separating the anode chamber from
the cathode chamber (#3 in the figure). To create the necessary humidity level (RHca) of
the cathode chamber, a controlled flow of humid air was supplied (#4 in the figure) by a
controlled mixture of dry and fully humidified air from a glass water bubbler.

The transferred water through the membrane was measured as a change in the hu-
midity level inside the anode chamber (RHan). This measurement was performed using
a microprocessor (Arduino) that reads a humidity-cum-temperature sensor (DHT22) po-
sitioned 1 cm away from the anode and the cathode (#6 in the figure). A Potentiostat
(Bio-logicTM) coupled to the FC’s cathode and anode was used to draw a steady current
from the cell and measure the impedance/resistance.
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3. Results

The results are organized into three sections. Section 3.1 summarizes the effect of the
steady-state membrane hydration effect on the current output and its resistance. Section 3.2
shows the dynamic characteristic changes in membrane hydration over time. Section 3.3
presents the model‘s predictions regarding the effect of the MEA and bag configurations on
the water content and membrane resistance.

3.1. Steady-State Characteristics of the MEA

First, a set of experiments examining the effect of membrane hydration on MEA’s over-
potential and resistance were conducted. The setup was conditioned as follows to ensure
uniform water concentration across the membrane during the start of each experiment:

Step 1: At the onset of each experiment, the cathode and anode chambers were purged
with a flow of dry nitrogen for 30 min to eliminate trapped humidity and air inside the
anode chamber.
Step 2: Then, the anode and cathode chambers were maintained at the same selected
constant humidity (RHca = RHan = 20–95%) by continuously flowing humid air and
hydrogen into the chambers for 30 min.

After performing the conditioning step 1 and step 2 as detailed above, polarization
tests were conducted where the electrode potential was swept linearly between the open
circuit voltage and 0.05 V at a scan rate of 20 mV/minute and the current was measured.
The measured current density, cell voltage, and power density at varying humidity levels
are shown in Figure 3.
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Figure 3. Experimental result of (a) polarization test (cell voltage vs. current density) and (b) power
density at selected humidity levels.

Figure 3 displays an open-circuit voltage (OCV) of approximately 0.8 V with no
discernible mass transport limits as the reactant flow was sufficient for the electrochemical
reaction and the current was controlled mostly by the ohmic losses. The temperature
rise was measured to be negligible (<2 ◦C). An increase in the maximum current density
was evident with an increasing humidity level due to a decrease in the membrane’s ionic
resistance, highlighting the critical importance of the hydration level of the membrane in
achieving the maximum power output.

As defined above in steps 1 and 2, the setup was also conditioned at varying humidity
levels before each impedance test. An electrochemical impedance test measures the high-
frequency resistance (HFR) by applying an AC potential (frequency scans: 100 kHz–10 Hz
and AC amplitude: 10 mV) to the cell.

HFR measures the ohmic losses in the fuel cell, mainly caused by the ionic resistance
of the membrane, effective catalyst layer resistance, and membrane–electrode contact resis-
tance. HFR is commonly used to study the effect of various factors, such as temperature, hu-
midity, gas composition, catalyst loading, membrane thickness, and cell geometry [58–60].
The experimental HFR shown in Figure 4 was calculated as presented in Equation (16)
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to remove any constant resistance (electrical resistance of the wire, etc.) unaffected by
humidity changes.

HFRmem = HFRtotal, %RH − HFRtotal, RH=95 % (16)
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Figure 4 displays the experimental membrane resistance (solid line) measurements as a
function of membrane humidity and model-predicted (dashed lines) results for membrane
resistance at selected current and humidity values. In the model, the membrane resistance
was calculated using Equation (15), while the steady-state water content in the membrane
(λw) was calculated using the parameters in Table 1 at various combinations of current
density (I = 5, 15, 40, and 100 mA/cm2) and cathode humidity (RHca = 20, 40, 60, 80,
and 95%).

The model results indicate a decrease in membrane resistance with an increase in the
membrane’s hydration. The model results show a high slope of membrane resistance vs.
humidity at a lower current density suggesting that electrochemically produced water is
relatively insufficient to contribute any significant hydration to the membrane and the
effect of humidity on membrane resistance is more profound. At a high current density
(>40 mA/cm2), the produced water was significantly higher to maintain the high hydration
of the membrane; thus, the effect of the chamber RH becomes minimal in the hydration of
the membrane. Both the model and experimental results suggest that a chamber humidity
greater than 40% must be maintained to achieve 2–3 times lower membrane resistance
compared to dry membrane conditions (RH = 20% and I = 5 mA/cm2).

Humidity affects membrane hydration, contact resistance, and mass transport [61,62].
Higher humidity reduces the HFR by increasing membrane hydration and lowering contact
resistance due to better membrane–electrode interface wetting. However, high humidity
can also increase the HFR due to increased mass transfer resistance, as a high water
concentration can hinder the gas diffusion to electrodes by flooding the electrode pores.
The experimental results support the model-predicted trend that the MEA’s resistance
decreases with increased humidity. At a low humidity (RH < 40%), the membrane and
contact resistance was high, which decreased with the increase in RH due to the rise in
water content of the membrane and improved wettability of the interface. A detailed
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interfacial model to calculate the HFR has been published elsewhere and is out of the scope
of this work [63,64].

3.2. Transient Dynamics of MEA Hydration over Time

After establishing the effect of membrane hydration on its resistance, experimental
and numerical methods were used to analyze the transient water transfer dynamics and
water content gradient across the membrane over time.

At the start of the experiment, the cathode was equilibrated at the required humidity
and the anode chamber was purged with a flow of dry nitrogen for 30 min to eliminate
any trapped humidity and air. Then, the anode bag was filled with V0 = 1000 mL of
dry hydrogen, and the current was drawn from the MEA via constant current-controlled
discharge. The humidity rise inside the bag was recorded every two seconds for 2 h. Nine
experiments were conducted at room temperature (T = 20–22 ◦C) to study the effect of cell
current density (I = 5, 10, and 15 mA/cm2) and cathode humidity (RHca = 20, 50, and 80%)
on the humidity inside the anode chamber (RHan).

The numerical simulations were performed by setting a constant cathode humidity
(RHca = 20, 50, or 80%) and the change in anode chamber humidity concerning the initial
value (RHan = 0 at t = 0) was calculated over time (t) for a selected current density.

Figure 5a–c depicts the humidity inside the bag (RHan) vs. time obtained from the
experiment (solid lines with marker) and simulation (dashed lines) at varying current
densities (I) and cathode humidity levels (RHca).
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The model results agree with the experimentally observed trends that the humidity
rise inside the bag increased with an increase in drawn current. More water was produced
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at the cathode at a higher current density, leading to increased back-diffusion across the
membrane from the cathode to the anode. Also, water molecules dragged along with
protons from anode to cathode (electro-osmotic drag) increases with increasing current.
Our experimental result using a thin membrane suggests that the electro-osmotic drag
is lower than back-diffusion at a low current density, resulting in net water flux from
the cathode to the anode. This shows that the water coming to the anode side can be
trapped/stored in a dead-ended anode chamber for hydrogen and membrane hydration.
A thinner membrane is crucial for the effectiveness of such a self-humidification system at
a lower current as a thick membrane will reduce both the current and production of water
and thus the back-diffusion.

A comparison of the anode humidity at the same current levels in Figure 5a–c shows
that the humidity inside the bag increased with an increase in cathode humidity. For
instance, a comparison of the experimental humidity results (RHan) at 15 mA/cm2 shows
that the time required to reach a 95% RH in the bag was >120, 60, and 50 min for a cathode
humidity of 20, 50, and 80%, respectively. Exposure of the cathode to higher environmental
humidity increases the water vapor activity at the cathode. It decreases the concentration
gradient between the cathode and the ambient environment. Thus, the evaporation of
electrochemically produced water from the cathode air is reduced, resulting in increased
water mitigation toward the anode. Consequently, this is seen as a faster increase in
RHan inside the bag at higher cathode chamber humidity levels (RHca). The hydrogen
consumption rates increased with the increase in current density and were determined to
be 0.26, 0.44, and 0.76 mL/min at 5, 10, and 15 mA/cm2, respectively.

Based on the measured humidity, the amount of water vapor collected inside the bag
in 2 h with the base parameters described in Table 1 was estimated to be 0.07 and 0.2 g
for current densities of 5 mA/cm2 and 15 mA/cm2, respectively. The volume of collected
water vapor was the same as the volume of the bag (~1 L). It corresponds to a water vapor
partial pressure of 0.09 and 0.26 bar for 5 mA/cm2 and 15 mA/cm2, respectively. The water
evaporation rate from the anode to the bag first increased and reached its maximum and
then it decreased due to the humidity rise in the bag slowing down the back-diffusion. The
maximum was estimated to be 3.27 × 10−5 and 5.52 × 10−5 g/s for current densities of
5 mA/cm2 and 15 mA/cm2, respectively.

3.3. Effect of MEA and Storage Configurations

Figure 6a,b show the effect of varying membrane thicknesses (δmem = 50, 100, and 150 µm)
on membrane hydration/water content and membrane resistance (Rmem), respectively, as
predicted by the model using the parameters in Table 1.
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The dynamic response measurement showed that the fuel cell response time to reach a
steady state exceeded 40 min. The accumulation of produced water at the cathode increased
with time; thus, the water flux and the relative humidity inside the anode chamber also
increased. Increasing the water concentration in the anode chamber reduced the back-
diffusion. Initially, the back-diffusion was stronger due to the high water concentration
gradient across the membrane, which decreased with time. Thus, the membrane’s water
content increased until a steady water balance was established, as shown in Figure 6a. An in-
crease in the water content of the membrane is predicted with a decrease in the membrane’s
thickness. A thinner membrane eased the back-diffusion of cathode-produced water to the
anode, as diffusion flux is inversely proportional to the thickness. A higher back-diffusion
increased the hydration level of the membrane and reduced the ionic resistance, as shown
in Figure 6b.

Figure 7a,b show the effect of varying GDL thicknesses (δca
GDL = δan

GDL = 100, 200, and
300 µm) on membrane water content and resistance (Rmem), respectively.
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A higher GDL thickness reduced the water evaporation at the cathode, leading to in-
creased water accumulation, which was subsequently absorbed toward the anode chamber.
Thus, a thicker GDL increases the membrane’s back-diffusion and water content. Mem-
brane resistance decreased as the membrane uptake of water increased with an increase in
the GDL thickness, as shown in Figure 7b.

The membrane resistance was observed to be more sensitive to membrane thickness
than GDL thickness. The resistance of the membrane is a strong function of the water
content and is inversely proportional to the thickness. A reduced thickness of the membrane
increases the water content and reduces the path resistance. The effect of GDL thickness on
electrical resistance was not considered, and only its impact on water transfer across the
more often-used membrane and its resistance was modeled.

The model predicted the effect of bag volume on humidity at the anode, as shown
in Figure 8a, and on membrane resistance, as shown in Figure 8b. The model assumed a
maximal humidity of 95% (as measured in the experiments) and hydrogen consumption
according to the initial volume.

Figure 8a shows that the relative humidity inside the bag rose faster in a smaller bag
volume. The water concentration rose faster in a smaller bag, reducing the water transfer
due to back-diffusion. A higher bag volume can accumulate more water flux coming to
the anode.
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A similar effect of reduced membrane resistance with a decrease in bag volume is
shown in Figure 8b. However, a very small bag volume will carry very little hydrogen
in the bag and should be selected as per the required duration of operation. Thus, it is
proposed to store high humidity in a tiny pouch around the anode only, such that very fast
humidification of the anode could be attained, while a large amount of hydrogen could be
carried in an isolated hydrogen bag for a longer duration of operation.

4. Discussion

Previous studies have focused on FC self-humidification using various methods such
as external humidifiers and electrode material mixing [65,66]. Here, we propose a new
approach, i.e., a dead-end inflatable hydrogen bag, and identify the crucial variable of
such a system. We used a water balance numerical model to explain the transport of
the cathode-generated water at an air-breathing open cathode MEA to study the water
transport and storage for the design of a self-humidification mechanism. The effect of the
Air PEM FC’s component dimensions, such as membrane thickness, GDL thickness, and
anode chamber volume for water storage and self-humidification control was investigated.

The model results were validated with experimental system measurements. The model
agrees well with the general experimental trend that the water transfer rate increases with
increased current density and cathode humidity. The current density and cathode humidity
influence the water concentration across the membrane as they cause two competing effects:
the produced water can be (1) lost to ambient air (cathode evaporation) or (2) travel to
the anode chamber through the membrane. A steady state flux is established when water
production at the cathode in an oxygen reduction reaction is balanced by water removal by
convection from the anode and cathode. Water vapor transport from the membrane to the
gas phases at the anode and cathode is increasing the function of the water concentration
in the membrane and the humidity on each side of the MEA. The absorption of cathode-
generated water at the membrane can be improved by a suitable selection of the GDL and
membrane thicknesses to ensure minimal evaporation at the cathode, e.g., evaporation that
can occur by natural air convection, and a net water transfer rate towards the anode is
maintained to support self-humidification of its catalytic layer. The model results attained
under low humidity conditions show that a thin membrane with a thicker GDL increases
the water diffusion flux across the membrane, thus reducing the membrane resistance and
improving FC performance. A thinner membrane is preferable for low resistance, but the
diffusive gas leakage is also higher through a thinner membrane. A stable voltage and
current recorded during the experiments run for 2 h show that the issue of the anode drying
out in a closed dead-end anode FC can be resolved by trapping the cathode-produced
water at the anode (using a storage bag) during the fuel cell operation.
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The water content of the membrane should be maintained at a higher hydration level
than the value of λw = 14 water molecules per membrane sulphonic acid charge site
group to maintain high membrane conductivity. An experimental prototype for anode
self-humidification was built to demonstrate the feasibility of a low FC power application.
However, a high FC power (high current density) could result in additional issues, such
as a higher electrode temperature due to increased electrochemical reactions. However,
a moderate FC temperature is also reported to increase power output [67–71] due to an
increase in reaction activation rate at electrodes (hydrogen oxidation and oxygen reduc-
tion) [72], mass transfer rate [67,71], gas diffusivity [73], and membrane conductivity [72].
Moreover, at temperatures above 50 ◦C, it was also reported to lead to anode dehydra-
tion [54] and high activation losses [74]. Thus, a high current density can dehydrate the
anode side of the membrane in a continuous flow FC as the electro-osmotic drag is larger
at a higher current density and the water dehydration rate of the anode is increased due to
the higher temperature. A higher current density can disturb the water transfer balance in
the membrane, thus increasing the membrane’s resistance.

A humid hydrogen supply to the anode has been reported to double the power even
when operating with a low-humidity cathode air supply [68,70,75]. Thus, the proposed
method can trap the produced water to humidify the hydrogen feed stream and maintain
high hydration at the anode at all times to prevent membrane dehydration at low ambient
humidity and high current density. However, a current density greater than 0.25 A/cm2

combined with a higher anode gas humidity can be detrimental to the FC performance and
result in flooding at the anode [67,76,77].

Thus, water and heat management are essential to prevent flooding and dehydration,
as well as maintaining the operating temperature [78–80]. In future work, the presented
analytical model may assist in improving the experimental system.

The current study may have implications for various small FC-derived applications.
For example, recently, there has been increasing interest in developing lightweight fuel
cell-derived blimp drones for surveillance, climate sensors, etc. [81–83]. Their power
density can be significantly improved by integrating it into lightweight hydrogen storage
and on-demand hydrogen production methods at the anode required for electrochemical
reactions [84–89]. The balloon may serve as a dead-end water and hydrogen storage for the
FC’s MEA, thus dramatically improving the device’s endurance and payload.

Limitations

It is noted that the numerical model oversimplifies the boundary conditions and
coupling between mass transfer, thermal transfer, and electrochemical kinetics, which is
more significant in an FC stack or at a higher current density and temperatures of the
system. A higher current could not be obtained due to a large contact resistance, which
requires us to develop a better compression system in the future. Thus, an experimental
result at a high current and temperature, along with quantitative results using a more
detailed model, remains an issue to be discussed in our future work.

5. Conclusions

• A lightweight, inflatable hydrogen-filled bag around the anode is proposed to trap
and store the produced water for self-humidification of the anode.

• As demonstrated with an experimentally validated numerical model, the water trans-
port of FC-produced water from the cathode to the anode increases with current
density and cathode humidity.

• The power output almost doubles, and membrane resistance is reduced by 2–3 times
when a fully hydrated membrane is used compared to a dry membrane.

• The model under equilibrium predicts an increase in membrane resistance by about
three-fold with an increase in membrane thickness (50–150 µm) and a decrease of
approximately three times with an increase in GDL thickness (100–300 µm).
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