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Abstract: Acetaldehyde (CH3CHO) in the atmosphere is associated with adverse health effects.
Among the various options for use in removing CH3CHO, adsorption is often employed because of
its convenient application and economical processes, particularly when using activated carbon. In
previous studies, the surface of activated carbon has been modified with amines to remove CH3CHO
from the atmosphere via adsorption. However, these materials are toxic and can have harmful
effects on humans when the modified activated carbon is used in air-purifier filters. Therefore,
in this study, a customized bead-type activated carbon (BAC) with surface modification options
via amination was evaluated for removing CH3CHO. Various amounts of non-toxic piperazine
or piperazine/nitric acid were used in amination. Chemical and physical analyses of the surface-
modified BAC samples were performed using Brunauer–Emmett–Teller measurements, elemental
analyses, and Fourier transform infrared and X-ray photoelectron spectroscopy. The chemical
structures on the surfaces of the modified BACs were analyzed in detail using X-ray absorption
spectroscopy. The amine and carboxylic acid groups on the surfaces of the modified BACs are critical
in CH3CHO adsorption. Notably, piperazine amination decreased the pore size and volume of the
modified BAC, but piperazine/nitric acid impregnation maintained the pore size and volume of
the modified BAC. In terms of CH3CHO adsorption, piperazine/nitric acid impregnation resulted
in a superior performance, with greater chemical adsorption. The linkages between the amine
and carboxylic acid groups may function differently in piperazine amination and piperazine/nitric
acid treatment.

Keywords: bead-type activated carbon; piperazine; nitric acid; surface modification; acetaldehyde
removal

1. Introduction

Acetaldehyde (CH3CHO) is a volatile organic compound (VOC) in the atmosphere
that is associated with adverse health effects. It is a factor in sick building syndrome,
as it is found in wallpaper, furniture, cigarettes, and building materials [1–8]. Moreover,
CH3CHO is odorous at a low concentration (0.09 mg/m3) and causes chest tightness, eye
irritation, and respiratory tract irritation [9,10]. Therefore, indoor CH3CHO content should
be regulated at <0.03 ppm, and an effective removal method for CH3CHO is required [11].

Several methods, such as absorption [12], condensation [13], biofiltration [14], and
thermal oxidation [15], are commonly applied in removing VOCs such as CH3CHO,
from gas streams. These methods are effective at relatively high VOC concentrations
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(>5000 ppmv) [16], but adsorption yields the optimal results in terms of energy cost, effi-
ciency, and versatility with respect to the adsorbate [17]. Adsorption is one of the most
efficient methods of removing VOCs, and various adsorbents are used, including carbon
materials [18], silica [19], zeolites [20], and polymers [21]. Owing to their low costs and high
stabilities, carbon materials are the most commonly used adsorbents in VOC removal [22].
Activated carbon, in particular, provides key advantages in adsorption because of its high
porosity, large surface area, and rapid adsorption [23,24]. It is well-known that the intrin-
sic surface of activated carbon is hydrophobic. However, in many cases, the operation
of activated carbon requires a hydrophilic environment such as water purification and
wastewater treatment. Even VOC removal occurs in humid environments. Among the
options of surface modification, acidic treatments are popular. Strong acids such as nitric
acid are often used in surface modification. With the help of acidic treatment, the gen-
eration of carboxylic acid is noticeable along with hydroxyl groups. With the increasing
need to remove specific chemicals such as aldehydes, the refined surface modification was
necessitated with or without acidic treatment. Amination showed promising results in
formaldehyde removal [18]. Previous studies have reported on the surface modification of
activated carbon with amines that can be used to remove CH3CHO from the atmosphere.
The amine-containing materials used in previous studies include aminobenzenesulfonic
acids, ethylenediamine, diethylenetriamine, and amino acids [25–27]. However, these mate-
rials are toxic and can have harmful effects on humans when the modified activated carbon
is used in air-purifier filters. Therefore, developing non-toxic amine-modified activated
carbon is essential, but no related research regarding the adsorption of CH3CHO with
non-toxic amines has been reported. In addition, the related references on acetaldehyde
removal over activated carbon materials are summarized in Table 1.

In this study, we used a spherical bead-type activated carbon (BAC), which provides
a pleasant working environment with no dust and high strength and fluidity. This type
of BAC can be easily operated for adsorption and desorption, thereby making it feasible
for recycling and helping for a circular economy. Specifically, compared to commercial
granular activated carbon, BAC has a narrow-sized distribution. If BAC is applied to a BAC-
incorporated membrane filter, a new design of the cartridge-type filter can be proposed. For
a better understanding, the overall concept of BAC application is presented in Figure 1. Due
to these properties, BAC is particularly useful as an air-purifier filter, and further research
is necessary to explore its applicability [28]. The main aim of this study is to characterize
the detailed adsorption behavior of CH3CHO over BAC modified with piperazine, which
is a non-toxic amine. Moreover, the reaction mechanism of CH3CHO removal using the
non-toxic amine-BAC is investigated in detail.

[Beads Activated Carbons (BACs)]

: Homogeneous Size Distribution

[Adhesion to

Filter Media ]

[Various Membrane

Filter ]

[Application to Air Purifier] 

Figure 1. Conceptual illustration of BACs applied to air purification through systemizing
membrane filtration.
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Table 1. The related research on acetaldehyde removal using activated carbon.

References Activated
Carbon Type

Impregnated
Material Mechanism

[29]
AC

(Calgon, Norit,
and Westvaco)

nitric acid

(1) When very small pores as close as the size of the acetaldehyde molecule and oxygen-containing groups are present (to a certain extent) within AC, the heat of
adsorption reaches its maximum value.
(2) A low density of surface groups can enhance the heat of adsorption, whereas extensive oxidation leads to a decrease in the strength of adsorption forces. This
happens due to the blockage of the pore entrances containing functional groups and the decrease in the accessibility of hydrophobic surface where the dispersive
interactions of hydrocarbon moiety can be enhanced.

[30]
AC

(Calgon and
Westvaco)

urea
(450/950 ◦C)

(1) The adsorption forces are strong in small pores, and their volume governs the adsorbed amount.
(2) The absorbed amount can be enhanced when functional groups bearing nitrogen are present.
(3) These groups can provide additional adsorption centers when the small pores are filled with acetaldehyde molecules.

[26]
AC

(coconut-shell and
coal-base)

amine
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[31] AC
(corn grain) KOH

(1) The effects of acetaldehyde adsorption on ACs were investigated in terms of textural properties, energetic heterogeneity, and surface chemistries.
(2) The adsorption properties of water vapor were explained by the effect of the oxygen-containing groups on the surface of ACs over acetaldehyde adsorption.
(3) The influences of pore size distribution (below 8 A◦) and energetic heterogeneity of ACs on acetaldehyde adsorption were highly predominant compared to
that of specific surface area and surface chemistry.

[32] AC
(coconut base) - The study established a semi-quantitative relationship between pore size distribution and energy in relation to adsorption kinetics; the wider and more

heterogeneous porosities resulted in higher rate constants for the resin-based carbon when compared to the ultramicroporous nutshell material.

[33] ACF metal oxide ACF-K-20/5%MgO revealed three types of surface adsorption sites: one was assigned to physisorption on the surface O-containing carbon groups and two other
sites are placed on a MgO surface and provide acetaldehyde chemisorption in two different modes.

[34] ACF
(cellulose base)

aniline-
ethanol

(1) CH3CHO(g) → CH3CHO(AD) [Adsorption]
(2) CH3CHO(AD) + 1

2 O2 → CH3COOH [Oxidation]
(3) 2CH3COOH→ (CH3CO)2O + H2O [Dehydration]
(4) (CH3CO)2O + C6H5NH2 → C6H5NCH3CO − CH3COOH

[35] ACF
(HDPE fiber) Ag

(1) Ag particles were precipitated on the surface of ACF through interactive affinity, and the carbonyl group of AA is in creased to show that AA is adsorbed on the
AC surface.
(2) The AA adsorption of ACF and Ag/ACF composites performed in this study was suitable for the dose–response model, and the experimental data showing the
asymmetric shape of the AA adsorption breakthrough curve for ACF and Ag/ACF composites were satisfactorily fitted.

[36] AC and ACF amine (1) The high BET surface area provides more sites for acetaldehyde adsorption.
(2) ACF has a systematic open macrostructure, which drives a low-pressure drop and allows fast adsorption without diffu sion hindrance.



Membranes 2023, 13, 595 4 of 14

2. Experimental Section
2.1. Materials and Sample Preparation

BAC (particle diameter of <0.1 mm) was obtained from ZEOBuilder (Seoul, Republic
of Korea) and heated at 900 ◦C for 3 h under N2 flowing at 175 mL/min.

Piperazine, nitric acid, and ethyl alcohol were purchased from Samchun Pure Chemical
(Pyeongtaek, Republic of Korea). Piperazine was prepared with ethyl alcohol, and nitric
acid was prepared with distilled water. Aqueous stock solutions containing 1–10% (w/v)
piperazine with or without 1% (w/v) nitric acid were prepared. The sample names differ
according to the contents of the mixtures used (Table 2). The heated BAC was impregnated
with the solution of piperazine with/without nitric acid, and the sample was then placed in
a shaking water bath at 25 ◦C and shaken at 130 rpm for 24 h. After impregnation, the BAC
was filtered and dried at 70 ◦C for 24 h. For comparison, piperazine was impregnated on
coconut shell and coal-based activated carbons using the same procedure (Supplementary
Information Figure S8).

Table 2. Description of each sample.

Sample Piperazine %
[w/v%]

Nitric Acid %
[w/v%]

Heat Treatment Temp.
[◦C]

P1 1 - -
P7 7 - -

P7N1 7 1 -
P1N1-900 1 1 900
P3N1-900 3 1 900
P5N1-900 5 1 900
P7N1-900 7 1 900

P10N1-900 10 1 900

2.2. Methods
2.2.1. Preliminary Characterization of BACs

In order to investigate the characteristics of acetaldehyde removal for the BACs im-
pregnated with piperazine/nitric acid, BARE-BAC was first examined by XRD, SEM, TEM,
EDX, particle size distribution, as well as physical/chemical stability. All data is pre-
sented in the Supplementary Information (Figures S1–S7). In brief, BARE-BAC showed
the amorphous phase (refer to XRD data in the Supplementary Information) without
any crystallinity, therefore Raman characteristics were not necessary to verify its further
crystallinity. BAC from a resin precursor contains a slight impurity of Si, characterized
by SEM-EDX. Basically, approx. 1 wt% of impurity in activated carbon cannot affect its
adsorption capacity. SEM morphology implies that the BACs were successfully synthesized
from the resin precursor. The narrow window of particle size distribution in BARE-BAC
ranged from 440 to 600 µm with a mean value of 512 µm, indicating homogeneous particle
size compared with commercial granular activated carbon. It can be easily applied to the
various type of membrane filter system. Moreover, the physical stability has been tested by
attrition and abrasion (ASTM D4058-96 & SPENCE Method). Two tests were performed
which showed the value of 99.77 with a deviation of 0.11. The acetaldehyde cycle test was
carried out to confirm the chemical stability. The regeneration efficiency showed about
90% during 3 cycles of the adsorption–desorption process under the given operational
conditions (200 ppm, GHSV: 37,500 h−1, 25 ◦C).

2.2.2. N2 Sorption

N2 adsorption–desorption isotherms were obtained at 77 K using a surface area and
pore size analyzer (BELSORP MAX G, Microtrac MRB, Osaka, Japan). Before the adsorption
studies, the BAC was outgassed at 120 ◦C under vacuum for 8 h. The surface area was
determined using the Brunauer–Emmett–Teller (BET) equation, the total pore volume was
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calculated at a relative pressure (P/P0) of 0.99, and the micropore volume was calculated
using the Horvath–Kawazoe (HK) and t-plot methods.

2.2.3. CHNS Elemental Analysis

A CHNS elemental analyzer (Flash 2000, Thermo Fisher Scientific, Waltham, MA,
USA) with a thermal conductivity detector was used to examine the compositions of the
BAC samples to determine the relative contents of C, H, N, and S as percentages.

2.2.4. Fourier Transform Infrared (FTIR) Spectroscopy

FTIR spectroscopy was used to qualitatively evaluate the chemical structures of the
BAC samples. The FTIR spectra were measured using an FTIR spectrometer (US/iS50,
Thermo Fisher Scientific) in the frequency range of 400–4000 cm–1.

2.2.5. X-ray Photoelectron Spectroscopy (XPS)

XPS was performed using an XP spectrometer (K-Alpha+, Thermo Fisher Scientific)
with a monochromatic Al Kα (1486.6 eV) radiation source operated at 15 kW and 50 W.
Prior to the analysis, the samples were outgassed at room temperature until the system
pressure reached 5.2 × 10–9 torr. High-resolution spectra were collected at a constant pass
energy of 29.35 eV over an area with a diameter of 4000 µm. The amount of each element (C,
O, N, and S) was calculated using individual spectrum, and the energy scale was calibrated
using the C 1s photoelectron line at 285.0 eV.

2.2.6. CH3CHO Adsorption

Figure 2 schematically illustrates the continuous flow system employed in evaluat-
ing CH3CHO removal using the BAC samples. Tests were conducted at 10 ◦C using a
thermo-hygrostat (climatic chamber, Weiss Technik, Rieskirchen-Lindenstruth, Germany),
and the BAC sample (2 mL) was placed in a stainless steel column. The CH3CHO gas was
1000 ppm CH3CHO in N2, which was then mixed with air to yield a CH3CHO concentra-
tion of 200 ppm. Gas analysis was performed using a sampling pump (GV-100S, Gastec,
Ayase, Japan) and tube (92/92M/92L, Gastec). The breakthrough adsorption capacity of
CH3CHO (Wad [mg/g]) was calculated by integrating the area under the breakthrough
curve using the flow rate, CH3CHO concentration, time, and adsorbent mass. All adsorp-
tion tests were stopped at Cout/Cin = 1 (Cout [ppm]: outlet concentration of CH3CHO;
Cin [ppm]: inlet concentration of CH3CHO).
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2.2.7. Thermal Regeneration

The modified BACs were thermally regenerated in a muffle furnace (Daihan Scientific,
Wonju, Republic of Korea). After the CH3CHO adsorption studies, the spent BAC samples
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(approximately 2 mL) were heated from room temperature to 453 K (heating rate: 5 K/min)
and maintained at this temperature for 2 h in air.

3. Results
3.1. Characterizations of BAC
3.1.1. Textural Structure

The textural properties of the BAC samples, which were determined using the N2
adsorption–desorption isotherms, are summarized in Table 3. The BET surface areas (SBET)
decrease in the following order: BARE-BAC > piperazine/nitric acid-co-impregnated BACs
> piperazine-modified BACs. Piperazine treatment decreases the SBET of BARE-BAC, but
the co-impregnation with piperazine and nitric acid minimizes the decrease, likely because
the nitric acid molecules adsorbed on the pore surfaces continue to penetrate the pore
walls during impregnation. However, as the piperazine content increases, the pores of the
BAC are blocked, and SBET decreases. BARE-BAC displays the highest SBET (1442.1 m2/g)
and the highest micropore and total pore volumes (0.6189 and 0.6284 cm3/g, respectively),
which are almost 6–77% higher than those of the modified BACs. Therefore, chemical
factors have a greater effect on CH3CHO adsorption than physical factors.

Table 3. Textural properties of BAC samples.

Sample SBET
[m2/g]

SMicro
[m2/g]

VTotal
[cm3/g]

VMicro
[cm3/g]

Average Pore Diameter
[nm]

BARE-BAC 1442.1 1437.3 0.6284 0.6189 1.7429
P1 921.5 916.9 0.4123 0.4033 1.7898
P7 794.5 791.0 0.3533 0.3462 1.7788

P7N1 1141.3 1137.1 0.5001 0.4916 1.7528
P1N1-900 1347.2 1341.2 0.5905 0.5788 1.7533
P3N1-900 1275.3 1270.2 0.5612 0.5508 1.7602
P5N1-900 1191.6 1185.8 0.5259 0.5142 1.7652
P7N1-900 1115.3 1110.0 0.4818 0.4711 1.7281
P10N1-900 983.8 979.3 0.4390 0.4298 1.7850

The piperazine/nitric acid-co-impregnated BACs exhibit larger micropore volumes
than the piperazine-modified BACs. Overall, co-impregnation with piperazine and nitric
acid should result in different modifications of the BAC surface compared to those caused
by piperazine modification of the BAC.

3.1.2. CHNS Elemental Analysis

The contents of C, H, N, and S in the samples were measured using a CHNS elemental
analyzer, and the results are shown in Table 4. The N and H contents increase after treatment
with piperazine and nitric acid, respectively, and the introduced amine (–NH) groups are
critical in CH3CHO removal via chemisorption [26,27,34].

Table 4. Contents of C, H, N, and S in BAC samples.

Sample C
[%]

H
[%]

N
[%]

S
[%]

BARE-BAC 93.84 0.45 * ND 1.31
P1 80.18 2.16 0.63 1.01
P7 87.00 1.64 3.52 1.13

P7N1 85.90 1.74 1.89 1.21
P1N1-900 83.02 2.30 0.39 0.97
P3N1-900 93.39 0.79 1.23 1.25
P5N1-900 81.99 2.67 1.52 0.94
P7N1-900 83.21 2.21 2.13 0.98

P10N1-900 80.89 2.77 2.67 0.89
* ND: No data.
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3.1.3. Chemical Characterization

Figure 3 shows the FTIR spectra of BARE-BAC and P7N1-900, which adsorbs the
highest amount of CH3CHO. The characteristic peaks attributed to the functional groups
are almost identical in the two spectra. The O–H and N–H bonds result in noticeable
peaks, and Table 5 summarizes the intensity data of the functional groups. The spectrum of
P7N1-900 displays peaks with stronger intensities the O–H and amine functional groups
representing treatment with piperazine and nitric acid. Penchah et al. [37] reported that
nitric acid increases the carboxylic acid (COOH) content on the surface of activated carbon,
and piperazine is linked to COOH. Therefore, the number of OH groups of P7N1-900 is
increased approximately 2-fold on account of using nitric acid, and the number of amine
groups is increased approximately 4.2-fold on account of using piperazine. In addition, no
change in the structure of BAC is observed, as there is almost no change in the –CH2 groups.
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Table 5. Intensity of BARE-BAC and P7N1-900′s functional groups.

Band Position
[cm−1]

Component
Intensity

BARE-BAC P7N1-900

3435 O-H 3.40 6.95
2916 Saturated aliphatic CH2 0.42 0.46
2853 Saturated aliphatic CH2 0.16 0.21
1639 Amie, primary/secondary NH 0.29 1.23

Sources: Adapted from [38].

Ryu et al. [34] reported that the amine functional groups on activated carbon lead
to a higher CH3CHO adsorption efficiency, and thus, the amine groups should increase
CH3CHO adsorption.

3.1.4. XPS

XPS was used to investigate the chemical states of the elements in the BAC samples.
The deconvoluted spectra are shown in Figure 4, and the relative abundances of C, O, N,
and S are presented in Table 6.
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After modification with piperazine, the number of N bonds increases, whereas the
number of bonds involving S decreases. After heating and modification with piperazine
and nitric acid, the number of N bonds increases, and the number of bonds involving O
and S decreases.

The various N components in BAC were further determined by fitting the N 1s
spectra. As shown in Figure 4 and Table 5, deconvolution of the N 1s spectrum reveals the
presence of N–(C)3 (tertiary nitrogen, secondary amine) and C–N+O–C (oxidized nitrogen
functionalities). After piperazine treatment, the number of assigned N bonds increases,
particularly the N–(C)3 content, and thus, when only piperazine is used, it coats the BAC
surface. By contrast, in the BAC treated with piperazine and nitric acid, the content of
C–N+O–C increases by >50% and then decreases as the piperazine content increases. Thus,
COOH groups are formed on the surface of the BAC via the addition of nitric acid, and
piperazine is linked to these groups. The piperazine content of P1N1-900 is excessively
low to link to the COOH groups, and thus, the content of N–(C)3 is 100%. Conversely, in
P3N1-900, piperazine and the COOH groups are linked, increasing the content of C–N+O–C.
In P5N1-900, the COOH groups and piperazine are linked, the remaining piperazine is
coated on the surface of the BAC, and the content of N–(C)3 is increased. N atoms doped
onto the BAC surface may react with CH3CHO to enhance its adsorption [30].

As shown in Figure 4 and Table 5, deconvolution of the O 1s and S 2p spectra reveal
the presence of O–C/O–S (in phenol/epoxy or thioether/sulfonic acid), O=C/O=S (in
carboxy/carbonyl or sulfoxides/sulfones), C–S–C (in sulfides), R–S–S–OR (in thioethers),
R2–S=O (in sulfoxides), and R–SO2–R (in sulfones). During heating, the high temperature
may convert O=C/O=S to O–C/O–S, and R2–S=O and R–SO2–R in P1N1-900–P10N1-900
are converted to C–S–C via heating. S doped on the BAC surface may also react with
aldehydes to increase the HCHO adsorption performance [39].

Table 6. Results of the deconvolution of the XPS spectra of C 1s, O 1s, N 1s, and S 2p (in bold—atomic
% of specific elements).

Bond Assignment Energy
[eV]

BARE-BAC
[%]

P1
[%]

P7
[%]

P7N1
[%]

P1N1-900
[%]

P3N1-900
[%]

P5N1-900
[%]

P7N1-900
[%]

P10N1-900
[%]

C 1s
C-C sp2 284.8 51.15 41.23 46.46 47.57 62.49 55.21 60.32 69.02 66.84

C-O (phenol, alcohol,
ether), C=N (amine, amide) 286.0–286.3 48.85 58.77 53.54 52.43 37.51 44.79 39.68 30.98 33.16

O 1s
O-C/O-S (in phenol/

epoxy or
thioethers/sulfonic)

533.3–533.6 77.78 55.29 54.16 59.19 100 100 100 100 100

O=C/O=S (in
carboxy/carbonyl or
sulfoxides/sulfones)

532.0–532.5 22.22 44.71 45.84 40.81 - - - - -

N 1s
N-(C)3 (tertiary nitrogen,

secondary amine) 399.1–400.0 - 83.51 76.46 68.18 100 100 63.78 67.99 70.61

C-N+O-C (oxidized
nitrogen functionalities) 402.3 - 16.49 23.54 31.82 - - 36.22 32.01 29.39

S 2p
C-S-C (in sulfides);

R-S-S-OR (in thioethers) 164.5–166.0 81.74 96.35 93.56 93.56 100 100 100 100 100

R2-S=O (in sulfoxides) 167.0–167.3 2.28 - - - - - - - -
R-SO2-R (in sulfones) 168.4–168.6 15.98 3.65 6.44 6.44 - - - - -

Sources: Adapted from [40].

3.2. CH3CHO Adsorption

Figure 5 shows the CH3CHO breakthrough curves measured at 10 ◦C in dry conditions,
and the calculated adsorption parameters are listed in Table 6. The modified BAC samples
display higher Wad values, as shown in Table 7, than that of the unmodified BAC: 17.17,
18.73, 50.05, 57.44, 18.84, 54.48, 62.95, 72.34, and 61.38 mg/g for BARE-BAC, P1, P7, P7N1,
P1N1-900, P3N1-900, P5N1-900, P7N1-900, and P10N1-900, respectively. The samples co-
impregnated with piperazine and nitric acid generally exhibit higher Wad values than those
of the samples treated only with piperazine (P1 and P7). P7N1-900, in particular, adsorbs
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the largest amount of CH3CHO, which is 4.2-fold higher than that adsorbed by BARE-BAC.
Physical factors, such as the high SBET values of the modified BAC samples and abundant
micropores, likely contribute to the adsorption performances of the co-impregnated BAC
samples. Moreover, heating destroys the functional groups on the surface of the BAC and
ensures that the active sites comprising piperazine and nitric acid are evenly distributed.
As the piperazine content increases, the amount of adsorbed CH3CHO increases, but when
the piperazine content is excessive, as in P10N1-900, the pores of the BAC are blocked and
the adsorption performance is reduced. Chemical factors, such as the addition of nitric
acid, result in higher CH3CHO adsorption. The chemical reactions between CH3CHO and
linked piperazine explain the increased CH3CHO adsorption levels of the BAC samples
co-impregnated with piperazine and nitric acid compared to those of the other samples.
This is corroborated by the XPS spectra, which show that CH3CHO reacts strongly with
C–N+O–C (oxidized nitrogen functionalities) and N–(C)3 (tertiary nitrogen, secondary
amine). The reaction with CH3CHO is stronger when both types of bonds are present
compared to that when one type is present. Figure 6 shows the comprehensive mechanisms
of amine modification of the BAC and CH3CHO adsorption on the modified BAC surface.
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Table 7. CH3CHO adsorption parameters on all BAC samples.

Sample Cin
[ppm]

Wad
[mg/g]

BARE-BAC 200 17.17
P1 200 18.73
P7 200 50.05

P7N1 200 57.44
P1N1-900 200 18.84
P3N1-900 200 54.48
P5N1-900 200 62.95
P7N1-900 200 72.34

P10N1-900 200 61.38

3.3. Effect of Thermal Regeneration on CH3CHO Adsorption

Finally, we evaluated the thermal regeneration efficiencies of BARE-BAC and P7N1-900
after CH3CHO adsorption. The BAC samples were subjected to three cycles of CH3CHO
adsorption and regeneration. Thermal regeneration was performed by heating the samples
at 5 K/min to 453 K in a muffle furnace and maintaining this temperature for 2 h in
air. Figure 7 shows the breakthrough curves obtained under dry conditions, and Table 8
presents the data. The results of Cycles 2 and 3 exhibit similar trends to those shown in
Figure 5. As shown in Table 8, the respective regeneration efficiencies of BARE-BAC and
P7N1-900 are 86.78% and 8.77%. Amine modification significantly reduces the regeneration
efficiency of BARE-BAC by a factor of 10. BARE-BAC exhibits a high ratio of physical
adsorption, whereas P7N1-900 displays a high ratio of chemical adsorption. BARE-BAC
physisorbs CH3CHO and desorbs it well in all cycles. By contrast, P7N1-900 chemisorbs
CH3CHO in Cycle 1 but does not desorb well, and thus, the CH3CHO adsorption declines
significantly in Cycle 2. Meanwhile, the amounts of CH3CHO adsorbed in Cycles 2 and 3
are similar.

Membranes 2023, 13, x FOR PEER REVIEW 12 of 15 
 

 

3.3. Effect of Thermal Regeneration on CH3CHO Adsorption 
Finally, we evaluated the thermal regeneration efficiencies of BARE-BAC and P7N1-

900 after CH3CHO adsorption. The BAC samples were subjected to three cycles of 
CH3CHO adsorption and regeneration. Thermal regeneration was performed by heating 
the samples at 5 K/min to 453 K in a muffle furnace and maintaining this temperature for 
2 h in air. Figure 7 shows the breakthrough curves obtained under dry conditions, and 
Table 8 presents the data. The results of Cycles 2 and 3 exhibit similar trends to those 
shown in Figure 5. As shown in Table 8, the respective regeneration efficiencies of BARE-
BAC and P7N1-900 are 86.78% and 8.77%. Amine modification significantly reduces the 
regeneration efficiency of BARE-BAC by a factor of 10. BARE-BAC exhibits a high ratio of 
physical adsorption, whereas P7N1-900 displays a high ratio of chemical adsorption. 
BARE-BAC physisorbs CH3CHO and desorbs it well in all cycles. By contrast, P7N1-900 
chemisorbs CH3CHO in Cycle 1 but does not desorb well, and thus, the CH3CHO adsorp-
tion declines significantly in Cycle 2. Meanwhile, the amounts of CH3CHO adsorbed in 
Cycles 2 and 3 are similar. 

 
Figure 7. CH3CHO regeneration efficiency of 3 cycles: BARE-BAC (A) and P7N1-900 (B). 

Table 8. CH3CHO regeneration efficiency of three cycles. 

Sample 
Number of 

Cycle 
Adsorption Amount 

[mg/g] 
Regeneration Efficiency of 3 Cycles 

[%] 

BARE-BAC 
1 17.17 

86.78 2 15.89 
3 14.90 

P7N1-900 
1 72.34 

8.77 2 6.13 
3 5.97 

4. Conclusions 
Customized BAC was heated at 900 °C and impregnated with piperazine or binary 

piperazine/nitric acid to enhance CH3CHO removal via adsorption. The amount of piper-
azine was varied from 1 to 10% (w/v) and nitric acid was used at 1% (w/v). When only 
piperazine was used, the pore and micropore volumes of the modified BACs decreased 
with increasing piperazine content. The SBET of BARE-BAC was 1442.1 m2/g, and that of 
P7 was reduced to 794.5 m2/g (modified BAC with 7 % w/v impregnation of piperazine). 
Meanwhile, co-impregnation resulted in a minimized decrease in SBET, e.g., 1347.2 m2/g for 

Figure 7. CH3CHO regeneration efficiency of 3 cycles: BARE-BAC (A) and P7N1-900 (B).

Table 8. CH3CHO regeneration efficiency of three cycles.

Sample Number of Cycle Adsorption Amount
[mg/g]

Regeneration Efficiency of 3 Cycles
[%]

BARE-
BAC

1 17.17
86.782 15.89

3 14.90

P7N1-900
1 72.34

8.772 6.13
3 5.97



Membranes 2023, 13, 595 12 of 14

4. Conclusions

Customized BAC was heated at 900 ◦C and impregnated with piperazine or binary
piperazine/nitric acid to enhance CH3CHO removal via adsorption. The amount of piper-
azine was varied from 1 to 10% (w/v) and nitric acid was used at 1% (w/v). When only
piperazine was used, the pore and micropore volumes of the modified BACs decreased
with increasing piperazine content. The SBET of BARE-BAC was 1442.1 m2/g, and that of
P7 was reduced to 794.5 m2/g (modified BAC with 7 % w/v impregnation of piperazine).
Meanwhile, co-impregnation resulted in a minimized decrease in SBET, e.g., 1347.2 m2/g
for P1N1-900 (1% w/v each of piperazine and nitric acid, followed by heating at 900 ◦C).
This suggests that nitric acid penetrates into the BAC microstructure to form pores of
larger size and volume. However, the qualitative chemical structures of BARE-BAC and
P7N1-900 (impregnation with 7% w/v piperazine and 1% w/v nitric acid, followed by heat-
ing at 900 ◦C) were not significantly different according to FTIR spectroscopy. Elemental
analysis revealed that amine treatment increased the N contents of the BAC samples. When
CH3CHO adsorption was performed at 10 ◦C under dry conditions, the adsorption per-
formance of P7N1-900 increased 4.2-fold compared to that of BARE-BAC. This suggests
that the chemical factors of BAC have a greater effect on CH3CHO adsorption than the
physical factors. In regard to the impregnation with piperazine only (P1 and P7), the lower
CH3CHO adsorption capacities could be explained by linkages to hidden amines and
intrinsic COOH groups, resulting in negative effects on adsorption. By contrast, P1N1-900
and P7N1-900 should exhibit linked piperazine-amines but still contain carboxylic acids on
the surfaces of the BAC samples, resulting in increased levels of CH3CHO adsorption. The
CH3CHO adsorption capacity of BARE-BAC was 17.17 mg/g, and those of P7 and P7N1-
900 increased to 50.05 and 72.34 mg/g, respectively. The XP spectra indicated that N–(C)3
(tertiary nitrogen, secondary amine) and C–N+O–C (oxidized nitrogen functionalities) were
present throughout the amine-treated BAC samples. The presence of C–N+O–C indirectly
indicated that the amines were linked to COOH groups, which were mostly generated
via nitric acid treatment. An increased amine content resulted in higher concentrations
of N–(C)3, and thus, amine treatment introduced primary and secondary NH functional
groups into the modified BAC and facilitated CH3CHO adsorption. Although CH3CHO
adsorption was only evaluated under flow conditions, the modified BAC samples should
display high CH3CHO adsorption capacities even under static conditions.
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//www.mdpi.com/article/10.3390/membranes13060595/s1, Figure S1: SEM Morphology of Bare
BAC, Figure S2: TEM Morphology of Bare BAC (After Grinding/Crushing BAC), Figure S3: XRD
Patterns of Bare BAC, Figure S4: SEM-EDX of Bare BAC, Figure S5: Attrition and Abrasion Test of
Bare BAC (Physical Stability), Figure S6: Acetaldehyde Cycle Test over Bare BAC, Figure S7: Particle
Size Distribution of Bare BAC, Figure S8: CH2CHO Adsorption Parameters on Cucunut Shell and
Coal Based Activated Carbon Samples.
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