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Abstract: The absorption of CO2 from CO2-N2 gas mixtures using water and monoethanolamine
(MEA) solution in polypropylene (PP) hollow-fiber membrane contactors was experimentally and
theoretically examined. Gas was flowed through the lumen of the module, whereas the absorbent
liquid was passed counter-currently across the shell. Experiments were carried out under various
gas- and liquid-phase velocities as well as MEA concentrations. The effect of pressure difference
between the gas and liquid phases on the flux of CO2 absorption in the range of 15–85 kPa was also
investigated. A simplified mass balance model that considers non-wetting mode as well as adopts the
overall mass-transfer coefficient evaluated from absorption experiments was proposed to follow the
present physical and chemical absorption processes. This simplified model allowed us to predict the
effective length of the fiber for CO2 absorption, which is crucial in selecting and designing membrane
contactors for this purpose. Finally, the significance of membrane wetting could be highlighted by
this model while using high concentrations of MEA in the chemical absorption process.

Keywords: kinetic modeling; CO2 absorption; monoethanolamine; hollow-fiber membrane
contactors

1. Introduction

Carbon dioxide has been proven to be the largest contribution of greenhouse gases,
which results in the increase in the earth’s surface temperature. It is also reported that half
of CO2 emissions are produced by power plants using fossil fuels [1–3]. Hence, the devel-
opment of an efficient separation process is highly desired to remove CO2 from the places
where CO2 is generated. In general, the bubble column, packed tower, venturi scrubber,
and sieve tray column can be used for this purpose. The commercial process that is widely
used for CO2 separation is the packed column, but new technology is still required because
the packed towers, for example, have many advantages such as channeling, flooding, and
large-scale equipment. The gas absorption process using membrane units is considered
as an alternative to recover CO2 from waste gas streams. The hollow-fiber membrane
contactor (HFMC) offers a much larger contact area per unit volume in comparison with
packed and tray columns and has the advantages of no entrainment, no foaming, and no
restrictions on operating flow rates [2–9].

Alkanolamines including monoethanolamine (MEA), dithenaolamine (DEA),
N-methyl-diethanolamine (MDEA), di-2-propanolamine, and 2-amino-2-methyl-l-propanol
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(AMP) are dominantly used as absorbent liquids for CO2 removal due to their high reaction
rates [10–14]. Using HFMCs, Yeon et al. [15] have examined the absorption of CO2 in PVDF
and PTFE modules using single MEA absorbent. Wang et al. [16] have theoretically studied
the capture of CO2 by three solutions of MDEA, AMP, and DEA in HFMCs with a non-
wetting mode. In addition, Yeon et al. [17] have examined the rate of CO2 absorption in PP
module using the mixed absorbent liquids of piperazine (PZ) and triethanolamine (TEA).

Various kinetic models have been developed in the literature to follow the absorption
of CO2 in HFMCs by absorbent liquids [8,9,15,16,18–27]. Most of them have used the com-
plicated numerical methods to solve a set of differential mass balance equations to predict
the change of CO2 concentration along the hollow fibers. For example, Kim and Yang [18]
have adopted a set of governing equations with common assumptions that the velocity in
the lumen side can be described as fully developed parabolic profile and that the veloc-
ity through the shell side can be characterized by the free surface model of Happel [26].
Yeon et al. [15] have also employed differential mass balance equations to describe diffu-
sion and forced convection in a medium that flows laminarly in the lumen side. They
have assumed an irreversible reaction of CO2 taking place with MEA and determined
the mass transfer rates of CO2 in PVDF and PTFE hollow fibers. Generally speaking, the
mathematical complexity of numerical methods used for solving a set of differential mass
balance equations makes the kinetic model somewhat practically inconvenient.

The absorption of CO2 from a synthetic 15 vol% CO2-N2 gas mixture by using water
and MEA solutions was investigated in HFMCs. The effects of liquid- and gas-phase
velocities as well as the pressure difference between liquid and gas phases on the flux of
CO2 absorption were explored. A simplified model involving mass balance equations-only
was proposed to follow the absorption process of CO2 and to estimate the effective length
of the fiber, in which the non-wetting mode was assumed and the overall mass-transfer
coefficient based on physical and chemical absorption was considered.

2. Kinetic Modeling
2.1. Determination of Overall Mass-Transfer Coefficient

The mass transfer between gas and liquid phases through HFMC occurs in three parts:
stagnant gas film, the membrane itself, and stagnant liquid film [15]. The overall rate of
CO2 absorption, RA (mol s−1), is expressed by Equation (1):

RA = KL AT∆Clm = Qg
(
Cg,out − Cg,in

)
(1)

where KL is the overall mass-transfer coefficient based on liquid phase (m s−1); AT is
the effective contact area (m2); QL is the volumetric flow rate of liquid phase (m3 s−1);
and Cg,out and Cg,in are the gas-phase concentrations of CO2 in the outlet and inlet of the
module, respectively (mol m−3). Additionally, ∆Clm is the logarithmic mean concentration
difference, which is expressed by the following equation:

∆Clm =

(
HCg,in − CL,out

)
−
(

HCg,out − CL,in
)

ln
[(

HCg,in − CL,out
)
/
(

HCg,out − CL,in
)] (2)

Here, the value of H for CO2 in water is adopted to be 2.916 kPa m3 mol−1 [28],
whereas it is taken to be 3.564 kPa m3 mol−1 in 0.005–0.01 M of MEA solution and becomes
3.518 kPa m3 mol−1 in 1.0 M of MEA solution [29].

2.2. Model Development

A simplified mathematical model was developed based on the mass balance concept,
combining process conditions, membrane properties, and module geometric characteristics.
The following assumptions are made: (a) absorption of single component (CO2) from
a CO2-N2 gas mixture flowing through the lumen side of the module into an aqueous
solution flowing in the shell side; (b) steady state and isothermal operation; (c) Newtonian



Membranes 2023, 13, 494 3 of 15

fluids with constant physical properties; (d) hydrophobic membrane with non-wetting;
and (e) the applicability of Henry’s law [8,9,18,19,21,22,25–27].

As shown in Figure 1, the mass balance of CO2 within the membrane contactor using
water as absorbent liquid is described as follows:

QLCL,in −QLCL,out + JA AT = 0 (3)

where JA is the flux of CO2 absorption through the hollow fibers (mol m−2 s−1), which is
calculated by the following equation:

JA = KL(CL,in − CL,out) (4)

where CL is the concentration of CO2 in liquid phase (mol m−3).
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Figure 1. The control volume of gas absorption in hollow fibers.

Since JA depends on the concentration of CO2, it must be calculated every time
according to Equations (3) and (4) using the MATLAB program (MathWorks, Natick, MA,
USA). The number of grids (Nz) in the computational domain of 500 (in the axial direction)
was used. Therefore, the value of CL,out can be calculated by Equation (5):

CL,out =
QLCL,in + KL(AT/Nz)Cg,in

QL + KL(AT/Nz)
(5)

On the other hand, the mass balance within the membrane contactor using MEA
solution as absorbent liquid is described as follows:

QLCL,in −QLCL,out + JA AT − rAVshell = 0 (6)

where rA is the reaction rate between MEA and CO2 (mol m−3 s−1).
In general, carbamate is formed when CO2 gas reacts with primary and secondary

alkanolamines [13,30,31]:

CO2 + 2R1R2NH 
 R1R2NCO−2 + R1R2NH+
2 (7)

where R1 is an alkyl group, and R2 is H for primary amines and an alkyl group for secondary
amines. The zwitterion mechanism has been commonly used in aqueous alkanolamine
solutions [32,33]. The reaction steps successively involve the formation of a zwitterion,

R1R2NH + CO2 
 R1R2NH+CO−2 , k2,amine/k−1 (8)

and the subsequent removal of the proton by a base B (base catalysis),

R1R2NH+CO−2 + B
kB→ R1R2NCO−2 + BH+ (9)

where B could be an amine, OH−, or H2O, although the contribution of OH− can be
neglected because its concentration is very low, compared to that of the amine and H2O [14].
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According to this zwitterion mechanism, the forward reaction rate equation for CO2
at quasi-steady state, rA, has been derived by Danckwerts [34] as follows:

rA = ∑
k2,amineCLCamine

1 + {[(kw/k−1)Cw] + ∑[(kamine/k−1)Camine]}−1 (10)

So, in the MEA-CO2 system we have

rA = ∑
k2,MEACLCMEA

1 + {[(kw/k−1)Cw] + [(kMEA/k−1)CMEA]}−1 (11)

where Cw is equal to 55.5 M. The kinetic parameters of k2,MEA, (kw/k−1), and (kMEA/k−1)
adopted here at 25 ◦C are 6.358 m3 mol−1 s−1, 1.507 × 10−6 m3 mol−1, and
2.485 × 10−4 m3 mol−1, respectively [13,25]. In this case, the value of CL,out can be calcu-
lated by Equation (12):

CL,out =
QLCL,in + KL(AT/Nz)Cg,in − rA(Vshell/Nz)

QL + KL(AT/Nz)
(12)

3. Materials and Methods
3.1. Materials

MEA was purchased from Aldrich Chemicals Co. A Liqui-Cel microporous hollow-
fiber extra-flow 2.5× 8 module, which was supplied from3MTM Separation and Purification
Division. (Charlotte, NC, USA), was used as membrane contactor for CO2 absorption in
this work. The hollow fibers in this module were X-50 type and made of polypropylene
(PP). The characteristics of the membrane contactor are listed in Table 1. Deionized water
(Millipore, Milli-Q, Burlington, MA, USA) was used. All chemicals were used without any
further purification.

Table 1. Characteristics of HFMCs used in this work (Hoechst Celanese Liqui-Cel extra-flow model
with central baffle).

Description Extra-Flow 2.5 × 8 Module Extra-Flow 4 × 28 Module

Shell material Polypropylene Polypropylene
Shell length (mm) 203 704
Shell outer diameter (mm) 77 127
Shell inner diameter (mm) 63 111
Shell hydraulic diameter (mm) 4.7 -
Fiber material Celgard X-50 polypropylene Celgard X-50 polypropylene
Number of fibers ~10,200 -
Fiber length, L (mm) 190 620
Fiber inner diameter (µm) 220 220
Fiber outer diameter (µm) 300 300
Fiber membrane surface area,
AT (m2) 1.4 20

Fiber membrane pore size (µm) 0.04 0.04
Fiber membrane porosity 0.4 0.4
Effective area/volume
(cm2 cm−3) 25.5 36.4

3.2. Absorption Experiments

The experimental setup for CO2 removal is schematically illustrated in Figure 2. The
gas containing 15 vol% of CO2 (balance N2) was passed upstream in the lumen side of
the module, and the absorbent liquid was supplied downstream in the shell side. The
absorbent liquids used in this study were deionized water and the aqueous solution
containing 0.005–1.0 M MEA, which had a volume of 1 L otherwise stated elsewhere. The
gas-phase velocity ug was varied in the range of 0.041–0.124 m s−1, and the liquid-phase
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velocity uL changed in the range of 0.008–0.02 m s−1. The pressure difference of the liquid
and gas phases was changed in the range of 15–85 kPa by a needle valve to form the
stable gas-liquid interface within the module. The gases coming from the absorption were
sampled and analyzed by TCD-GC (Shimadzu, GC-14B, Kyoto, Japan) at pre-set time
intervals. After each run, the deionized water (2 dm3) was poured into both sides of the
membrane contactor to remove the absorbent liquids. Then, ethanol (0.5 dm3) was flowed
through both sides of the module to remove water in the pores of the membrane. Finally,
N2 gas went through both sides of the module for 30 min.
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4. Results and Discussion
4.1. Effect of Fluid Velocity on KL without Absorbent Recycling

The measured changes of CO2 concentrations in both phases between the inlet and
outlet of the module were used for the calculation of the rates of CO2 absorption RA and the
overall mass-transfer coefficients KL by Equation (1). Figures 3 and 4 show the influences
of fluid velocities on the KL values in PP hollow fibers using water and 0.005 M of MEA
solution as absorbent liquids. As expected, KL increases initially with increasing gas-phase
velocity ug but then decreases (Figure 3). The decreased KL is likely because the retention
time of gas reduces when ug is increased. It is noted that the flux of CO2 absorption, JA,
at higher ug is still larger than that at low ug. On the other hand, the KL value always
increases with increasing liquid-phase velocity uL using both water and MEA solutions
as absorbent liquids as shown in Figure 4. Furthermore, the influence of gas-phase flow
rate in chemical absorption (i.e., MEA) is more significant than that in physical absorption
(i.e., water).

Yeon et al. [15] have ever investigated the absorption of CO2 in PVDF and PTFE hollow
fiber modules using single MEA solution. They also found that the flux of CO2 increases
with an increase in liquid-phase velocity, and that initially increases with an increase in
gas-phase velocity. However, it has been reported according to theoretical analysis that
the flux of CO2 absorption by MDEA solution is virtually unaffected by liquid-phase
velocity [16]. This is likely due to the variations of membrane configuration and the range
of gas-phase velocity. Under the present conditions studied, the difference of KL scales by
8 times between the systems using water and MEA solution is due to the characteristics of
physical and chemical absorption.
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It is expected that the experimental KL values evaluated by Equation (1) should
vary with MEA concentration in chemical absorption processes. This fact makes the
proposed kinetic model, Equation (12), rather complicated and practically unpromising.
For simplicity, accordingly, the value of KL evaluated from the physical absorption process
is applied throughout this work for model predictions, regardless of physical or chemical
absorption processes.

4.2. Effect of Operation Parameters on CO2 Removal with Absorbent Recycling

The time changes of the concentrations of CO2 in the outlet of the module under
various gas- and liquid-phase velocities using different absorbent liquids are shown in
Figures 5 and 6. At a specific time (that is, a specific position along the axial direction in
HFMCs), the steady state is assumed to be calculated JA from Equations (3) and (4) in the
case of using water as well as Equations (6) and (11) in the case of using MEA solution using
the MATLAB program. Then, we can calculate the exit concentrations of CO2 in the water
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and MEA solution, CL,out by Equations (5) and (12), respectively. The exit concentration of
CO2 in the gas can obtained using Henry’s law, Pg,out = CL,out × H, and ideal gas law. At
the next time, similar procedures are repeated. Consequently, we can obtain the modeled
results of Cg,out at different times.

Membranes 2023, 13, x FOR PEER REVIEW 8 of 16 
 

 

0 5 10 15 20 25 30 35 40

C
g,

ou
t/C

0 (
-)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Gas: 15 vol% CO2

uL = 2.0 x 10-2 m s-1

(a) Absorbent: water

0 5 10 15 20 25 30 35 40

C
g,

ou
t/C

0 (
-)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Absorbent: 0.005 M MEA

Time (min)

0 30 60 90 120 150 180 210 240

C
g,

ou
t/C

0 (
-)

0.0

0.2

0.4

0.6

0.8

1.0

(c) Absorbent: 1.0 M MEA

ug = 0.041 m s-1

ug = 0.062 m s-1

ug = 0.124 m s-1

ug = 0.041 m s-1

ug = 0.062 m s-1

ug = 0.124 m s-1

 
Figure 5. Effect of gas-phase velocity on the time changes of Cg,out/C0 at uL = 2.0 × 10−2 m s−1 using (a) 
water, (b) 0.005 M of MEA, and (c) 1.0 M of MEA as absorbent liquids in extra-flow 2.5 × 8 module 
(the solid and dashed curves are calculated by the proposed kinetic model). 

Figure 5. Effect of gas-phase velocity on the time changes of Cg,out/C0 at uL = 2.0 × 10−2 m s−1 using
(a) water, (b) 0.005 M of MEA, and (c) 1.0 M of MEA as absorbent liquids in extra-flow 2.5× 8 module
(the solid and dashed curves are calculated by the proposed kinetic model).



Membranes 2023, 13, 494 8 of 15Membranes 2023, 13, x FOR PEER REVIEW 9 of 16 
 

 

0 5 10 15 20 25 30 35 40

C
g,

ou
t/C

0 (
-)

0.5

0.6

0.7

0.8

0.9

1.0

Gas: 15 vol% CO2

ug = 0.041 m s-1

(a) Absorbent: water

0 5 10 15 20 25 30 35 40

C
g,

ou
t/C

0 (
-)

0.5

0.6

0.7

0.8

0.9

1.0

(b) Absorbent: 0.005 M MEA

Time (min)

0 30 60 90 120 150 180 210 240

C
g,

ou
t/C

0 (
-)

0.0

0.2

0.4

0.6

0.8

1.0

(c) Absorbent: 1.0 M MEA

uL = 8.0 x 10-3 m s-1

uL = 1.2 x 10-2 m s-1

uL = 1.6 x 10-2 m s-1

uL = 2.0 x 10-2 m s-1

uL = 8.0 x 10-3 m s-1

uL = 1.2 x 10-2 m s-1

uL = 1.6 x 10-2 m s-1

uL = 2.0 x 10-2 m s-1

 
Figure 6. Effect of liquid-phase velocity on the time changes of Cg,out/C0 at ug = 4.1 × 10−2 m s−1 using 
(a) water, (b) 0.005 M of MEA, and (c) 1.0 M of MEA as absorbent liquids in extra-flow 2.5 × 8 module 
(the solid and dashed curves are calculated by the proposed kinetic model). 

It is found that CO2 can be removed by pure water only within 4 min, and the time 
elapsed when Cg,out/C0 reaches unity becomes shorter with increasing ug. It is expected that 
the absorption of CO2 by recycling absorbent liquids is faster at a higher ug. This phenome-
non is more obvious in the case of aqueous MEA solution (Figure 5b,c). The time required 
when Cg,out = C0 for MEA solution is much longer than that for water. This is because the CO2 
loading of the MEA solution, particularly at 1 M of MEA, is larger than that of water. 
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using (a) water, (b) 0.005 M of MEA, and (c) 1.0 M of MEA as absorbent liquids in extra-flow
2.5 × 8 module (the solid and dashed curves are calculated by the proposed kinetic model).

It is found that CO2 can be removed by pure water only within 4 min, and the time
elapsed when Cg,out/C0 reaches unity becomes shorter with increasing ug. It is expected
that the absorption of CO2 by recycling absorbent liquids is faster at a higher ug. This
phenomenon is more obvious in the case of aqueous MEA solution (Figure 5b,c). The time
required when Cg,out = C0 for MEA solution is much longer than that for water. This is
because the CO2 loading of the MEA solution, particularly at 1 M of MEA, is larger than
that of water.
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However, the effect of liquid-phase velocity uL on CO2 removal is not so apparent,
as shown in Figure 6a,b. Figure 6c shows that the time required for Cg,out to reach C0
decreases with increasing uL at high MEA concentrations, which is mainly a result of a
larger mass-transfer coefficient at higher uL. The loading of CO2 of absorbent liquids is
depleted more quickly when the rate of absorption increases. Furthermore, it is inferred
that the resistance of liquid phase mass transfer is always important in chemical absorption,
particularly at high MEA concentrations.

4.3. Validity of the Proposed Kinetic Model

Figures 5 and 6 also show the calculated results (solid and dashed curves) in the
present PP hollow-fiber module. It is found that the measured results agree reasonably
well with the calculated ones using water and low MEA concentrations as shown in
Figures 5a,b and 6a,b. The standard deviation (SD) is less than 11% (mostly 7%), which is
defined by

SD(%) = 100×
{

∑
N

[
1−

(
Ccalc/Cexpt

)]2/(N − 1)

}1/2

(13)

where the subscripts ‘calc’ and ‘expt’ are the calculated and measured values, respectively,
and N is the number of data points. The agreement is also acceptable using 0.05 M of MEA
solution, where SD is less than 15%. At higher MEA concentrations (e.g., 1.0 M of MEA
in Figures 5c and 6c), the large SD (more than 100%) is likely attributed to the ignorance
of membrane wetting effect in this model. However, the fact that the predicted lines still
approximately pass through the “center of symmetry” of the measured curves, as shown in
Figures 5c and 6c, can be understood by a uniform distribution of pore wetting within the
membrane. Although the large SD values found in Figures 5c and 6c, this simple model
would still reveal the time required for Cg,out to reach C0.

It is recognized that the wetting ratio of the membrane is a crucial factor on the mass
transfer resistance during the absorption of gases in HFMCs. In general, the wetting ratio
is dominantly affected by the pressure difference between the gas- and liquid-phases and
hydrophobicity of absorbent. Experiments with various liquid-phase pressures PL at a
fixed gas-phase pressure (20 kPa) were also conducted in this work to understand such
a factor on the rate of CO2 absorption. It is found from Figure 7 that the effect of such
pressure differences on CO2 removal can be neglected using 0.005 M of MEA solution as
absorbent liquid under the conditions investigated.
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It has been reported that neglecting axial diffusion will result in a much smaller CO2
concentration along the length of the fiber and, thus, a higher rate of absorption. This is
the case at low Peclet numbers (=ugL/DA,g), where DA,g is the diffusivity of CO2 in gas
phase (= 1.51 × 10−5 m2 s−1) [25]; However, such an effect becomes less when the Peclet
number increases (for example, >50) [26]. In the present system, the axial diffusion plays a
negligible role in kinetic modeling because the Peclet number is larger than 500.

Once the validity of the proposed simplified model was confirmed, an attempt was
made to understand the role of the size of hollow fibers. Figure 8 shows the calculated
results in a large HFMC, extra-flow 4× 28 module (fiber length 620 mm, contact area 20 m2,
fiber inner diameter 0.22 mm), whose characteristics are listed in Table 1. In contrast to
the case of extra-flow 2.5 × 8 module (fiber length 190 mm, contact area 1.4 m2, fiber inner
diameter 0.22 mm), the effect of uL on the time required for Cg,out reaching C0 in a larger
module is more significant (Figure 8a,b). It is noted that the volume of absorbent liquid was
kept the same (14.3 L) in both modules. Moreover, the use of larger amount of absorbent
liquid leads to a higher efficiency of CO2 absorption, as compared in Figure 6b vs. Figures
8b and 6c vs. Figure 8c.
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4 × 28 modules.

Given the absence of experimental data using a larger extra-flow 4 × 28 module, this
note is necessarily highly prospective. Additionally, smaller modules were used in the
literature and in this work; they could deliver good agreement between the measured and
predicted results.

4.4. Determination of Effective Fiber Length

On the other hand, the present model enables us to predict the concentration change
of CO2 along the fiber from the gas inlet to the outlet. It is found from Figure 9a,b that
the CO2 concentration in the outlet of the module, Cg,out, is higher when liquid-phase
velocity uL is smaller. In addition, Cg,out becomes zero for all uL values tested when
ug = 0.124 m s−1 using 0.05 M MEA solution as an absorbent liquid (Figure 9c). For example,
the dimensionless length of the fiber (z/L) needed for nearly complete removal of 15%
CO2 is 0.2 (whereas z/L = 0.06 when Cg/C0 = 0.01) using 0.05 M of MEA solution as
ug = 0.124 m s−1 and uL = 2.0 × 10−2 m s−1, as shown in Figure 9c. We call this the
“effective” fiber length, Leff. It is also found that Leff remarkably reduces when more
concentrated MEA solution is used as an absorbent liquid. Zhang et al. [27] have actually
reported that CO2 absorption by aqueous DEA solution in HFMC (Celgard MiniModule®

0.75 × 5 module, X-50 type fibers; fiber length 113 mm, contact area 0.09 m2) is mainly
conducted in the front segments near the inlet. For example, 20 vol% CO2 in CO2-N2
mixture (ug = 0.032 m s−1) is mainly absorbed by 2 M of DEA (uL = 0.15 m s−1) in the
segments up till z/L = 0.6 while CO2 absorption is negligible in the rest of the segments.
Although increasing ug in the range 0.032–0.090 m s−1 can increase Leff, approximately 20%
of the total length has little absorption capacity. They thus concluded that increasing the
length of the module is not an effective way to enhance CO2 absorption when the module
is longer than Leff.
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Figure 9. Effect of liquid-phase velocity on the variation of CO2 removal along the length of the fiber
at ug = 0.124 m s−1 using (a) water, (b) 0.005 M of MEA, and (c) 0.05 M of MEA as absorbent liquids
in extra-flow 2.5 × 8 module.

The calculated results of Leff in extra-flow 2.5 × 8 module under different conditions
are listed in Table 2. It is evident that Leff decreases with increasing liquid-phase velocity uL
and absorbent concentration but increases with increasing gas-phase velocity ug. Similarly,
Table 3 shows the results of Leff in extra-flow 4 × 28 module.
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Table 2. Effective fiber length (in mm) for CO2 absorption by aqueous MEA solutions in extra-flow
2.5 × 8 module (L = 190 mm).

uL (m s−1)
ug = 0.041 m s−1 ug = 0.062 m s−1 ug = 0.124 m s−1

0.005 M 0.01 M 0.1 M 0.005 M 0.01 M 0.1 M 0.005 M 0.01 M 0.1 M

7.96 × 10−3 192.3 189.3 5.0 232.0 228.2 8.3 257.4 252.0 29.4
1.10 × 10−2 153.9 146.9 2.6 196.3 193.4 4.0 241.8 238.2 12.0
1.59 × 10−2 146.1 135.8 2.1 184.0 180.5 3.0 229.4 225.6 8.2
2.00 × 10−2 141.9 126.6 1.8 177.8 174.9 2.4 225.0 221.9 6.1

Table 3. Effective fiber length (in mm) for CO2 absorption by aqueous MEA solutions in extra-flow
4 × 28 module (L = 620 mm).

uL (m s−1)
ug = 0.041 m s−1 ug = 0.062 m s−1 ug = 0.124 m s−1

0.005 M 0.1 M 0.005 M 0.1 M 0.005 M 0.1 M

7.96 × 10−3 54.6 1.3 58.4 6.2 64.7 9.1
1.10 × 10−2 43.7 0.7 48.8 1.2 61.0 3.1
1.59 × 10−2 41.8 0.6 45.2 1.2 57.7 2.1
2.00 × 10−2 41.0 0.5 43.5 1.2 56.6 1.6

Evidently, such a simplified model can predict a suitable membrane length of the fiber
for desired CO2 removal or estimate an appropriate absorbent concentration for fixed length
of the fiber. Generally speaking, the knowledge of effective fiber length is important for
economical applications of HFMC processes. The relationship among effective fiber length,
gas-phase flow rate, and absorbent concentration for fixed emissive CO2 concentration is
crucial for the HFMC process to scale up.

5. Conclusions

The absorption of CO2 from CO2-N2 mixtures using water and monoethanolamine
(MEA) solution as absorbent liquids in hollow-fiber polypropylene membrane contactors
has been experimentally and theoretically investigated. Through the use of the overall mass-
transfer coefficients purely evaluated from physical absorption (i.e., water), a simplified
model that considers mass balance equations and membrane non-wetting acceptably
followed chemical absorption process (i.e., MEA); this is particularly true for a concentration
of MEA lower than 0.05 M, where the standard deviation was less than 15%. The time
changes of the gas-phase CO2 concentration in the outlet of the module, as well as the
gas-phase CO2 concentration along the fiber within the module, could be obtained by
iterative calculation. Model prediction of the effective length of the fiber, defined as the
length from the inlet where the gas-phase CO2 concentration reduced to zero, depended
not only on the contact area of the module but also on the total length of the fiber. Although
membrane wetting was more serious at higher MEA concentrations (e.g., 1.0 M), on average,
model predictions still adequately described the dynamics of CO2 absorption process in
hollow-fiber membrane contactors.
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List of Symbols

AT = effective contact area (m2)
C = concentration of components (mol m−3)
C0 = initial CO2 concentration in gas phase (mol m−3)
H = Henry’s law constant of CO2 (m3 Pa mol−1)
JA = flux of CO2 (mol m−2 s−1)
KL = overall mass-transfer coefficient based on liquid phase (m s−1)
k-1 = first-order rate constant for the reverse reaction defined in Equation (8) (m3 mol−1 s−1)
k2 = second-order rate constant for the forward reaction defined in Equation (8) (m3 mol−1 s−1)
k2,MEA = second-order rate constant defined in Equation (8) (m3 mol−1 s−1)
kB = second-order rate constant for base B defined in Equation (9) (m3 mol−1 s−1)
kw = kB when B is water (m3 mol−1 s−1)
kMEA = kB when B is MEA (m3 mol−1 s−1)
L = fiber length (mm)
Leff = effective fiber length for CO2 absorption (mm)
Nz = the number of grids in the computational domain in the axial direction
QL = volumetric flow rate of liquid phase (m3 s−1)
rA = rate of reaction between CO2 and MEA defined in Equation (10) (mol m−3 s−1)
RA = overall rate of CO2 absorption (mol s−1)
R = gas constant (=8.314 J mol−1 K−1)
SD = standard deviation defined in Equation (13) (%)
ug = linear flow velocity of gas phase (m s−1)
uL = linear flow velocity of liquid phase (m s−1)
Vshell = volume of shell side (m−3)
z = axial direction of the fiber (m)
Subscripts
A = CO2 gas
B = base (amine, H2O, etc.)
g = CO2 in gas phase
in = inlet
L = CO2 in liquid phase
lm = logarithm mean
out = outlet
w = water
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