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Abstract: This paper concerns the development and analysis of multigeneration systems based on
hybrid sources such as biomass and wind. Industry requires different types of sources to provide
several outputs, so the goal of this research was to fulfill the industrial requirement with optimization.
The multigeneration cycle supplies enough power to satiate energy demands, i.e., power, cooling,
hydrogen, air conditioning, freshwater, hot water, and heating. For this, the multigeneration cycle was
modeled in the Engineering Equation Solver (EES) and Simulink to obtain optimized results for the
industry. Energy and exergy for the multigeneration cycle were determined to assess the performance
of the cycle and to investigate the optimized results for the overall system. This study shows that for
configuration selection and design, different thermodynamic, economic, and environmental aspects
should be considered. Based on the results, the selection of the best location for this multigeneration
system was made. Power output from the wind turbine was around 7 MW and from biogas 0.6 MW.
The overall exergy efficiency of the multigeneration system was found to be 0.1401.

Keywords: multigeneration; renewable energy; hydrogen; Simulink; root locus; stability analysis

1. Introduction

Energy is an important part of national development and with the advancement of
time, it is becoming a more important requirement. People are now looking for many new
ways to increase energy production, and with fossil fuels decreasing day by day, renewable
energy is becoming a better option going forward. Being the only means of clean, green,
and infinite energy, renewable energy mainly has solar, wind, biomass, geothermal, and
hydro as the main sources [1]. A multigeneration energy system is used to utilize more
than three sources. A multigeneration energy system provides higher efficiency than
the combined equal and separate units. When a multigeneration system uses renewable
energy, it combines clean and green energy with higher efficiency. In addition, it also
supplies different needs of the public unit such as the neighborhood. Using an energy-
based multigeneration system, it has been analyzed that exergy efficiency varies from 55%
to 65% depending on the amount of cogeneration used. Murat Ozturk et al. [2] showed that,
through the integration of various systems, multigeneration increases energy and exergy
efficiencies. Furthermore, it has been determined that, due to renewable energy-based
multigeneration, the fuel price decreases, as well as harmful pollutant emissions, compared
to conventional systems [3].

The objectives of this paper include first proposing and assessing a new integrated
multigeneration system using biomass and wind energy with energy and exergy analyses,
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including the determination of overall energy and exergy efficiencies of the multigeneration
system and its subsystems; and second carrying out a parametric study to determine
the effects of various parameters on the overall energy and exergy efficiencies of the
multigeneration system and its subsystems. Challenges faced in this research and study
include the difficulty of scheduling and modeling the sources; wind, and biomass in this
case. Wind energy is not constant throughout the year. It changes with the temperature
and season. However, we can use the average wind speed for analysis. In addition, for
biomass, the waste disposal can vary from day to day, but through observation, average
waste disposal can be found to be used as a reference for calculation.

Renewable energy can be obtained from the biological remains of the living. It is
known as biomass, and it can be a great way to get the most out of waste. All living
things present on Earth are comprised of biomass. It can either be converted into other
forms such as biofuels or it can be used directly [4]. Biomass is used currently for heating,
electricity, and cooling [5]. To obtain large-scale utilization, biomass is directly burned
using the combustion process of coal, which is considered the most common method of
conversion [6]. There are other methods more efficiently feasible than the combustion
process for power generation, which include thermochemical conversion technologies such
as gasification and pyrolysis. Economically these technologies are not viable for large-scale
utilization, or they lack maturity and reliability [7].

A 2-kW biomass-fired micro-scale CHP system was studied by Liu et al. [8] where
they used the organic Rankine cycle with three organic working fluids. Efficiency variation
was also assessed by them through a parametric study of the CHP system with selected
design parameters. Using biomass as a supplementary fuel, Gnanapragasam et al. [9]
studied the optimum conditions for a natural gas combined cycle power generation sys-
tem. In addition, biomass was also used to increase the temperature of flue gases in a
supplementary firing unit. Al-Sulaiman et al. [10] reported energy and exergy analyses
of a biomass trigeneration system using an organic Rankine cycle. They also performed a
comprehensive parametric study of the system and concluded that there is a significant
improvement when trigeneration is used in place of only electrical generation.

A biomass-based integrated comprehensive system with hydrogen production was
proposed by Safari and Dincer [11] and production rates for power hydrogen (0.347 kg/h),
freshwater (0.94 kg/s), and hot water (1.82 kg/s) were 1102 K W/h. Ahmadi et al. [1], devel-
oped an integrated bio-mass multi-generation system and concluded that when the system
is multi-generating, the potential for CO2 emission reduction is extensive. Khalid et al. [12],
integrated solar and biomass in the multi-generation system, Moradi et al. [13], considered
bio-mass gasification only, and Paakkonen and Joronen [14], restudied the feasibility of
a biomass-integrated combined heat and power system. Studies in [12–14], revealed that
biomass and biogas are highly feasible for comprehensive and multi-generation systems
with maximum energy and exergy efficiency of 72.5% and 30.44% and can be derived from
environmental wastes such as chicken manure [15,16], maize silage [17], rice husk [18],
etc. Sevinchan et al. [19], developed a multi-generation system powered by maize silage
and chicken manure. Rice husk was hybridized with solar energy to power another
multi-generation system developed in the literature [20]. The ammonia and hydrogen pro-
ductions by their system [20] were 79 g/s and 20 g/s. Solar and wind are also considered
the most commonly used RE sources of power, co-generation, and multi-generation. Ozlu
and Dincer [21], analyzed a multi-generation system based on solar and wind energy and
reported the overall energy and exergy efficiencies of the systems to be 43% and 65%.

The wind is one of the most abundant renewable energy sources used nowadays.
The wind energy can be extracted by a wind energy conversion system (WECS), which
is composed of a wind turbine, electric generator, power electronic converter, and the
corresponding control system. Wind energy at different wind velocities has to be converted
to electric power at the given grid frequency. To choose other components of the wind
energy conversion system (WECS), the speed control strategy should be known. Wind
turbine configurations are based on different categories, i.e., horizontal and vertical axes,
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number of blades, and power rating. This paper used a wind turbine of a horizontal-axis
type, having three blades and a power output of 0.56 MW [21]. Extended energy, exergy, and
economic analyses of a wind turbine were presented in another study and the maximum
exergy efficiency was 10.8%. The exergy analysis of a CHP system integrated with wind
turbines was presented by Mohammadi et al. [22], and the operating parameters of a hybrid
wind–hydrogen system were analyzed energetically and exegetically by Fakehi et al. [23].

Integration of a wind generation system and electrical system development are associ-
ated with both benefits and costs. Compromise has been made either in cost or benefit. For
example, wind generation required more investment than that of conventional gas or coal
plants. Whereas the energy generation from wind saves fuel consumption hence reducing
the cost of system operation.

There are some issues related to the integration of wind power into a system. Although
the energy produced by a large conventional plant may be displaced by that of wind gener-
ation, concerns over system operation costs are focused on whether wind generation will
be able to replace the capacity and flexibility of conventional generation plants. Moreover,
another important factor is the location of these new sources in assessing the impacts on
the transmission and distribution network infrastructure. Wind turbines generally cannot
provide a range of system support services (e.g., voltage and frequency regulation) that are
provided by thermal and hydro plants.

Wind cannot be considered the sole power generator. It is necessary to retain a portion
of conventional plants for backup or to ensure security, especially under conditions of high
demand and low wind. This concludes that wind power is variable and not easy to predict,
various forms of additional reserves will need to be introduced to maintain a constant
balance between supply and demand. So, a conventional generation system cannot be
displaced by a wind generation system.

All these studies conclude that a wind energy integrated system is feasible and en-
hances the performance of the system. The main challenge in this comprehensive system is
that most research has been presented on the steady-state condition which gives no insight
into the performance of the system while the thermodynamic analysis of wind and biomass
for a comprehensive energy system has also been limited. So, the gap can be bridged by
developing a novelty for this system. The system will be analyzed in steady-state and
time-based conditions and assessing the system by using the Engineering Equation Solver
(EES) computer program and Simulink.

2. Materials and Methods
2.1. Developing a Schematic Diagram

For this study, a multigeneration cycle had to be designed to provide power, cool-
ing, heating, freshwater, hydrogen gas, desalinated water, and conditioned air as an
output. Multigeneration had to be powered using biogas generated from cow manure
as well as wind turbine power. The main aim of this study was to develop a model of
the multigeneration cycle using the EES and Simulink for thermodynamic analysis. Fi-
nally, the model developed had to be tuned to obtain a steady state for the cycles of the
multigeneration system.

Figure 1 shows the system which utilizes wind as a primary source and biomass as
a secondary source. The system produces power, cooling, heating, fresh water, hydro-
gen, hot water, and conditioned air as its output. The components used in this system
include generator, compressor, condenser, pump, turbine, expansion valve, electrolyser,
evaporator, boiler, heat exchanger, desalination plant, water treatment plant, heat pump,
air-conditioning, and refrigeration cycles. Schematic is labelled with total of 31 different
states points for which the working fluid or substance for which pressure, temperature,
internal energy, enthalpy and entropy had to be determined. All these components work in
a flow system to produce the desired output. The schematic of this system is illustrated in
Figure 1.
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Figure 1. Schematic diagram.

The atmospheric conditions are 28 ◦C and 101 KPa. Wind velocity is 8 m/s having a
power of 1.293 × 106 used to drive the wind turbine that ultimately drives the generator.
The wind turbine gives a power output of 1.033 × 107 and this power output is used to
produce electricity only. The electrolysis process is performed by using heat from the
generator to produce H2 and O2. The remaining heat of the generator is used to drive the
vapor compression cycle. The working fluid used in the vapor compression cycle is R410,
the compressor operates at 80.83 ◦C, the condenser operates at 27 ◦C, expansion valve, and
the evaporator operates at −44.84 ◦C. The vapor compression cycle gives cooling as an
output. The heat released by the condenser is absorbed by the heat exchanger. The heat
exchanger provides water with the heat to initially increase its temperature to 30 ◦C. The
heat exchangers used for this multigeneration system are parallel flow heat exchangers.
This heat is utilized by the boiler. The boiler obtains two sources of heat, one from the heat
exchanger and the other from biomass. The desalination plant utilizes the steam of the
boiler to give fresh water and brine. Thermal desalination is performed using the boiler.
Both the boiler and condenser operate at an atmospheric pressure of 101.325 KPa. Water
enters the boiler at around 30 ◦C and leaves as steam. It is then condensed to around room
temperature. The temperatures of fresh water and brine are 27 ◦C and 25 ◦C.

The heat released by the condenser of the air conditioning cycle is absorbed by the
evaporator. The operating temperature of the evaporator is 21.5 ◦C. The evaporator is
also connected to the compressor. Then, the expansion valve opens and the heat pump
produces heat. The heat pump then provides the output heat that is used for heating. The
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compressor of the air-conditioning cycle obtains heat from the wind turbine generator. The
air conditioning cycle provides the conditioned air that is used for space heating.

Biomass is used as a fuel for the generator to produce power. The operating condition
of the generator is 30 ◦C. This power is used by the boiler to produce steam. The system
heat exchanger absorbs heat from the boiler and gives that heat to the condenser. The
condenser obtains cold water from one of its inlets and water leaves as hot water from one
of the outlets. After the condensation of steam, treated water is obtained from the system.
Treated and hot water are obtained at temperatures of 30 ◦C and 25 ◦C respectively. Above
all the processes work in rhythm to produce the desired output.

For this multigeneration cycle, several parameters were required. Most of the parame-
ters required were operating intensive properties for the cycle or constraints for the power
generation such as wind and biogas. Table 1 shows the parameters required to analyze the
whole multigeneration cycle.

Table 1. Parametric table of multigeneration system.

Parameter Value of Multigeneration System

Wind turbine

Velocity of the air (V) 8 m/s [24]
Density of the air (p) 1.20 kg/m3 [24]

Electrical losses 1%
Electricity transmission losses 1.25%

Mechanical losses 3%
Wake losses 5%

Biogas production

Waste disposal of cow manure per day 20 kg [25]
Volatile solid cow manure per day 1.42 kg [25]

Yield factor 5.5 [25]

Electrolysis

Voltage for electrolysis (V) 2 V
Energy of hydrogen gas at r.t.p 116648 kJ/k [26]

Energy of oxygen gas at r.t.p 24.68 kJ /kg [26]
Faraday’s constant 96485

Vapor compression cycle

Ambient temperature (To) 25 ◦C
Compressor isentropic efficiency (n) 0.85

Refrigeration cycle low pressure side (Prc) 140 kPa [27]
Heat pump low pressure side (Php) 140 kPa [27]

Air conditioner low pressure side (Pac) 400 kPa
Refrigerant used for vapor compression R410a

Mass flow rate of refrigeration cycle (mrc) 14 kg/s
Mass flow rate of the heat pump (mhp) 15 kg/s

Mass flow rate of the air conditioner (mac) 19 kg/s

2.2. Developing Input Source/Components/Process for the Multigeneration Cycle

In the air condition cycle, as shown in Figure 2, analysis was carried out based on
the application of the first-order transfer function on different mass values with pressure
ranging from 0.2 MPa to 1 MPa. Using the thermostat, the mass flow was controlled by
integrating the thermostat between the condenser outlet and the evaporator inlet. The mass
flow rate was calculated by using Qin and thus it could be determined how much mass
flow rate could be allowed for the conditioning of air.
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Figure 2. Airconditioning cycle Simulink model.

In the refrigeration process, as shown in Figure 3, the same was conducted based on
the application of the first-order transfer function on different mass values with pressure
ranging from 0.14 MPa to 0.8 MPa. Using the thermostat, the mass flow was controlled
by integrating the thermostat between the condenser outlet and the evaporator inlet. The
same method was applied to find the mass flow rate which is by calculation of the Qin
of the evaporator and then controlling the mass flow of the refrigerant to obtain the
desired cooling.
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Almost the same method was applied to the heat pump as shown in Figure 4. Coolprop
library was used, and the first order transfer function performed on different mass values:
pressure ranges from 0.14 MPa and 0.8 Mpa in the heat pumping also. A thermostat was
integrated between the condenser and evaporator, but the only difference observed here is
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that the useful heat is at the condenser. This heat is used to determine the mass and then it
can be varied by changing the mass flow.
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Electrolysis requires the second-order transfer function because it depends on two
variables which are the battery response and the hydrogen production rate as shown in
Figure 5. When the power is supplied, electrolysis provides the current based on the given
power. This current then determines the amount of oxygen and hydrogen produced. So,
the production can be varied depending on the two variables that are changed to obtain
the best output.
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Figure 5. Electrolysis Simulink model.

As in Figure 6 the desalination system is based on the third-order transfer function
because it has three different processes which are boiling, condensation, and storage.
Output is the treated water against the given power; the water is first boiled which releases
brine and steam and then the water vapor is condensed and stored in the collector.
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As in Figure 7 for the multigeneration system, two renewable energy systems were
used, namely wind and biogas. The Betz law and kinetic energy conversion to electrical
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energy were used to determine total power generation for wind. Biogas energy production
was modeled using the estimated power which could be generated from cow manure in a
single day. Since the system does not contain major variables which vary with respect to
time, for multigeneration sources modeling a zero-order system was assumed.
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Figure 7. Power generation Simulink model.

As in Figure 8 the hot water system is modeled with respect to time. The mass flow
rate cannot be assumed to be zero if the mass flow rate is assumed to approximate zero
or the slightest change of heat will result in temperature gain which is greater than zero
which results in negative exergy destruction. Exergy destruction can never be negative so
modeling steady-state response will result in unreasonable results.
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2.3. Approach to Analysis

Exergy can be found by determining the entropy generated between each component
of the gas turbine. Exergy destroyed Xdes is found by multiplying the entropy generated
with the outside temperature and exergy destruction can be determined. Where QH is heat
gained, QL is heat released, TH and TL are the temperatures at the hot and cold source
respectively from initial i to final state f as in Equations (1)–(3)

.
Xdest, i− f = T0

.
Sgen, i− f = T0[

.
m
(

s f − si

)
+

.
QH
TH

] (1)

.
Xdest, i− f = T0

.
Sgen, i− f = T0[

.
m
(

s f − si

)
+

.
QL
TL

] (2)

.
Xdest, i− f = T0

.
Sgen, i− f =

.
mT0

(
s f − si

)
(3)

Exergetic efficiency can be found using Equation (4)

ηII,des =

.
X .

QL
.

Win
=

.
Wmin, in

.
Win

= 1 −
.

Xdest,total
.

Win
(4)
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Pelec showed the power transferred to carry out electrolysis as shown in Equation (5)
where the current is produced. For the electrolysis, hydrogen and oxygen were produced
by consuming the power generated by the generator. Where the amount of the current
produced, fo is faraday’s constant. The equations used for the mass flow rate production of
the hydrogen mh2 and oxygen mo2 gas are as follows:

Pelec = Icur· Vi (5)

mh2 =
JAi
2F

·0.002 (6)

mo2 =
JAi
4F

· 0.032 (7)

Pwind is the maximum expected power generated from the wind turbine in Equation (8)
while u is the collective efficiency of the wind turbine. Multiplying Pwind with the collective
efficiency and Bentz’s efficiency Poutput is determined in Equation (10) which is the actual
power consumed.

Pwind = 0.5ρv3 A (8)

u = (1 − km)(1 − ke)(1 − kt)(1 − kt)Cp (9)

Poutput = nturb·u·Pwind (10)

Applying the approach for energy calculation for small-scale biogas production
Equations (11)–(16) are used to determine the estimated amount of energy that could
be extracted from the cow’s manure [25].

Twaste disposal = totalcows· Wastedisposal (11)

Totalvolatile solid = Volatilesolid cow· totalcows (12)

Concvol solid =
Totalvolatile solid

Digestorvol
(13)

S =
Totalvolatile solid

Volume
(14)

G = Yield f actor·S·Digestorvol
1000

(15)

Energyprod,days = 22.08·G (16)

According to the first law of thermodynamics energy balance, the equation has to
be applied as in Equation (17). Ein represents the energy input while Eout represents the
energy output:

Ein = Eout (17)

Equations (18) and (19) represent the coefficient of performance for the refrigeration
cycle and heat pump cycle:

COPre f =
QL

QH − QL
(18)

COPhp =
QH

QL − QH
(19)

3. Results

After conducting a literature review, and assuming parameters for the energy sources
to power the multigeneration cycle; the multigeneration cycle was designed. It was pow-
ered by two sources wind and biogas. This cycle can produce hydrogen, provides de-
salinated water, treated water, and hot water for residential areas, while operating the



Membranes 2023, 13, 358 10 of 18

refrigerators, air conditioner, and heat pump. The vapor compression cycle is used to
operate the refrigeration cycle, air conditioning, and heat pump cycle. Single stage desali-
nation is performed using a boiler operated by biogas energy, another boiler that receives
heat input from the biogas is used to treat water and supply hot water to residential areas.
Electrolysis produces hydrogen and oxygen gas which can be used for treating metals,
processing food, refinement of petroleum, and as fuel.

Figure 9 shows the relationship between the velocity of air and wind power in the
wind cycle using the blue line. With increasing velocity of air, the wind power also increases.
For an increase in velocity of air from 4 m/s to 8 m/s the wind power increases from 0 W
to 11 MW. The relation can be observed as power increases at an increasing rate since the
power output is proportional to the cube of velocity. Most of the power generated from the
wind turbine is consumed in electrolysis at around 70%. The remainder is used to power
the air conditioning cycle, refrigeration cycle, and heat pump cycle.
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Figure 9. Effect of the velocity of air on wind power.

Figure 10 shows the relationship between the number of cows on a farm and biogas
heat generation using the blue line. On increasing the number of cows on the farm, biogas
heat generation also increases. For an increase in the number of cows from 50 to 300 the
biogas heat generation increase from 0.1 MW to 0.7 MW. Biogas is used to provide heat
input to boilers at the single-stage desalination and water treatment plant.
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Figure 10. Effect of number of cows on biogas heat generation.
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Figure 11 shows the relationship between the velocity of the air and the exergetic
efficiency of the air-conditioning cycle, heat pump, refrigeration cycle, and overall exergetic
efficiency. It is seen that on increasing the velocity of the air that the exergetic efficiency
of the air-conditioning cycle, heat pump, and refrigeration cycle decreases, whereas the
overall exergy remains the same. For an increase in the velocity of air from 6 m/s to 8 m/s,
the exergetic efficiency varies between 0 to 1.
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Figure 11. Effect of the velocity of the air on exergetic efficiency of the air-conditioning cycle, heat
pump, refrigeration cycle, and overall exergetic efficiency.

Figure 12 shows the relationship between the number of cows on the farm and the
exergetic efficiency of the desalination plant, water treatment plant, and overall exergetic
efficiency. It can be seen that on increasing the number of cows on the farm from 50 to 120
the overall exergy decreases but later it increases from 120 to 300 and there are two sources
which are being powered; one is the desalination plant and the other is the water treatment
plant. Overall exergy follows the same trend as for desalination and water treatment. In this
case the velocity of the air is kept constant which results in none of the vapor compression
cycle varying.
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Figure 12. Effect of number of cows on exergetic efficiency of the desalination plant, water-treatment
plant, and overall exergetic efficiency.
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Figure 13 shows the relationship between the velocity of air and the COP of the air-
conditioning cycle, heat pump, and refrigeration cycle. It can be seen that on increasing the
velocity of the air the COP of the air-conditioning cycle, heat pump, and refrigeration cycle
decreases. For an increase in the velocity of air from 6 m/s to 8 m/s, the COP decreases
from 8 to 1.
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Figure 13. Effect of the velocity of the air on COP of heat pump, refrigeration cycle, and air-
conditioning cycle.

Figure 14 shows the relationship between the current and mass flow rate of hydrogen.
Most of the power supplied by the wind turbine is consumed for hydrogen production,
hence the maximum current is produced; the voltage is kept constant at 2 V for the
electrolysis process. It can be observed that with increasing the current the mass flow rate
of hydrogen increases. For an increase in current from 0 A to 50 A the mass flow rate of
hydrogen increases from 0 to 1.3 × 10−7 kg/s black line. The mass flow rate of oxygen also
increases from 0 to 2.5 × 10−8 kg/s green line.
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Figure 15 shows the relationship between the number of cows on the farm and the
desalinated water flow rate. It can be seen that with increasing the number of cows on the
farm the desalinated water flow rate also increases. For an increase in the number of cows
on a farm from 50 to 300 the desalinated water flow rate increases from 20 kg/s to 160 kg/s.
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Figure 15. Effect of number of cows on a farm on desalinated water flow rate.

Figure 16 shows the exergy efficiencies of different processes. It can be seen that
air-conditioning cycles have the highest exergy efficiency and electrolysis has the lowest
exergy efficiency. The exergy efficiencies of air-conditioning, desalination plant, electrolysis
process, heat pump, refrigeration cycle, water treatment plant, and overall exergy efficiency
are 0.2447, 0.1652, 0.6055, 0.1287, 0.1394, 0.1083, and 0.1401 respectively.
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Figure 16. Exergy efficiency of different components.

The root locus method was used to study the stability of the system. If for a bounded
input, there is bounded output then the system is said to be stable. If all the poles lie on the
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right-hand side of the poles zero graphs, then the system is stable. If even a single pole lies
on the left-hand side of the graph the system is said to be unstable. Root locus varies the
gain of the system and plots the poles zero graphs; it allows the user to analyze and identify
the parameters of the control system within which the system should be operated. A
transfer function could be either a first-order system, second-order system, or at maximum
a third order system for the multigeneration cycle. Hence for heat pumps, air conditioners,
refrigeration cycle, and electrolysis, a first-order system is used, while for water treatment,
desalination, and for power generation a cycle zero-order system is used.

A PID controller is used to stabilize the system response and make the system respond
quickly. The PID autotune function is available in MATLAB which provides the best pro-
portional, integral, derivative, and filter coefficient values for the system. In the case of the
air conditioner, these values are P = 1.338, I = 0.08912, D = −1.457, and N = 0.126. Figure 9
shows that earlier the tuned response system was highly unstable and the thermostat was
not maintained until 100 s, however, afterwards the tuning system can achieve a steady
state in 60 s with negligible oscillations.

In the air-conditioner, refrigeration cycle, and heat pump the first-order system was
considered. Figure 17 shows that when the root locus is plotted, it results in a horizontal
line on the left side of the zero poles graph. Because all the poles are lying on the right-hand
side of the graph then any range of mass flow rates could be applied across these sub-cycles
hence the system is stable at any available point. In a study conducted by [28], the response
time of the compressor was experimentally and mathematically calculated, and the time
constant for the air compressor was observed to be 30 s. Hence 30 s was used as the time
constant for the refrigeration cycle transfer function. Figure 18 shows the root locus plot of
the vapor compression cycle.
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For the electrolysis transfer function, the first order system was applied. Electrolysis is
performed by supplying DC to a brine solution which results in the production of hydrogen
and oxygen gas. The PID was also integrated with electrolysis by Simulink. After tuning,
the electrolysis achieved a faster system response and tuned values were obtained as in
Figure 19.
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Figure 19. Time response of electrolysis system before tuning and after tuning.

Battery time response has been studied in multiple literature examples. This multi-
generation cycle time constant of 0.75 s is in reference to the study by [29] which is used in
the Simulink first-order transfer function. Figure 11 shows PID tuned response; obtained
values for the tuned response were P = 1.338, I = 3.565, D = −0.03643, and N = 5.041. Before,
the tuned response system reaches a steady state at 4 s, afterwards the tuned response
system can achieve a steady state at 2 s for the electrolysis system.
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Figure 20 shows that when the root locus plot is plotted a horizontal line on the left-
hand side of the real axis is generated. Since none of the poles lies on the right side of the
pole zero plot, the system is considered stable.
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There were several key finding and results obtained from this study. Overall exergetic
efficiency for operating this multigeneration cycle was equal to 0.1401. For having wind
airspeed of around 7–8 m/s and using biogas produced from the manure of 200–300 cows
in a farm, 140 kg/s desalinated water flow rate was obtained, while 5 × 10−7 kg/s of
hydrogen gas, and 5 × 10−6 kg/s of oxygen gas were obtained from the electrolysis. The
Simulink steady state thermodynamic model was built successfully. In addition, tuned PID
parameters were obtained for the individual cycles, and the root locus graph was plotted
to determine the stability of the thermodynamic cycles.

4. Discussion

The method used to analyze the multigeneration cycle was performed using the
methodology of previous literature. However, the parametric and requirements for this
system were different from other studies. To validate the study performed, the system
was modeled using the available parameters from the studies. After a comparison of the
results, the percentage differences for the gas production, power input, power output, and
exergy efficiency from the available literature were obtained. Table 2 shows deviation of
the results for the calculations from different sources. Since most of the values are close to
each other, the model used tended to generate accurate results like the other similar studies
conducted. For the vapor compression cycle, the difference in exergy efficiency is 0.0%
from Cengel’s [27] vapor compression cycle model. Similarly, for the other cycles like wind
power, biogas production, and electrolysis the difference from the literature is negligible.
For desalination the thermodynamic model prepared is novel, for this reason energy and
exergetic analysis comparison isn’t available N/A; this analysis can only be determined
by changing the operational standard. A limited library is available for thermodynamic
modeling in Simulink. In this study the multigeneration system for sustainable cities was
thermodynamically analyzed using both EES and Simulink software. Additionally, the best
transfer function obtained for the individual components from the literature was used to
obtain steady state response through tuning of the PID controller. Finally, a root locus plot
was provided to identify the stability of the processes of the multigeneration system.
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Table 2. Validation table for the results obtained.

Mass H2/Power
Input/Power Output Exergy Efficiency Source

Present Published Difference Present Published Difference
Vapor Compression Cycle 1.81 1.82 0.5% 56% 56% 0.0% [27]

Wind Power 8100 7792 4.0% 0.8607 0.845 1.8% [30]
Biogas Production 9430 9391 0.4% N/A N/A N/A [25]

Electrolysis 0.06561 0.06562 0.015% 0.6054 0.6055 0.017% [31]
Desalination N/A N/A N/A N/A N/A N/A [26]

5. Conclusions

For this proposed multigeneration cycle, wind and biogas were used as power genera-
tion. For the energetic and exergetic analyses, the cycle was modeled on EES software. The
combined exergetic efficiency was equal to 14%; the major contributor to the loss of overall
exergy was due to biogas since most of the energy obtained from the biogas is lost. Other
results included the COP of the refrigeration cycle and heat pump. The amount of hydrogen
and oxygen produced was also calculated for different current cycles. Fresh water was
produced using the desalination process and hot water was produced using the heat from
the heat exchangers. The cycle was also modeled in Simulink using Python integrated into
MATLAB to use the Cool Prop library. After identifying the expected order of the system
for each component of the cycle, components were tuned for the PID controller while root
locus plots were obtained. Currently, there is a limited library available for thermodynamic
modeling in Simulink and for other programming software. The one which is available
does not provide accurate readings for some of the refrigerants/working fluids. For future
work, the transfer functions could be obtained from the actual compressor, pump, boiler,
and heat exchanger to improve accuracy. A better controller could be introduced to improve
tuning. In addition, the Simulink model could be improved to model a more complex cycle.
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