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Abstract: Five mathematical models for transport description in polymer inclusion membranes
(PIMs) were presented and compared via regression analysis. The applicability of the models was
estimated through the examination of experimental data of Zn(II), Cd(II), Pb(II), and Cu(II) ions
transported by typical carriers. In four kinetic models, a change in the feed and stripping solution
volume was taken into account. The goodness of fit was compared using the standard error of the
regression, Akaike information criterion (AIC), Bayesian (Schwarz) information criterion (BIC), and
Hannan–Quinn information criterion (HQC). The randomness distribution in the data was confirmed
via a nonparametric runs test. Based on these quantities, appropriate models were selected.
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1. Introduction

In past decades, polymer inclusion membranes (PIMs) have been frequently used in
analytical applications. PIMs are employed to separate and preconcentrate various species
such as metals, organics, and pharmaceutical compounds [1–5]. Their use in analytics
requires the development of quantitative descriptions of the transport kinetics, which can
be obtained through mathematical modeling. Appropriate equations can be used for the
calculation of time-dependent values of, for example, the selectivity, concentration, or
recovery factors, since an accurate prediction of these quantities is important in analytics,
especially in the procedures of sample preparation [6].

For many years, simple mathematical models similar to those describing the reaction
kinetics have been used to describe transport in many membrane systems. These equations
have been primarily applied for describing transport in liquid membrane (LM) and PIM
systems. As their main advantage, they enable the calculation of the parameters that
influence transport efficiency (e.g., maximum flux) and predict concentration changes in
respective solutions of the adjacent membrane solutions.

1.1. Model No. 1

Despite the availability of many different kinetic equations, one of the most commonly
employed mathematical models is that proposed by Danesi [7], whose mathematical form
is identical to the differential equations describing the kinetics of first-order reactions:

dc f

dt
= −k1c f (1)

dcs

dt
=

Vf

Vs
k1c f (2)

and results from the general transport scheme in the form of

c f
k1−→ cs (3)
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where k1 denotes the apparent first-order constant for membrane entrance, Vf and Vs are
the volumes of the feed and receiving phase, and cf and cs are the concentrations of a
substance at the given time t in the feed and the receiving solution, respectively.

The calculated k1 values can be further used for the evaluation of the permeability
coefficient (P1, [cm/s]):

P1 = k1
Vf

A
(4)

as well as the initial maximum flux (JM, [mol/cm2·s]), because for the initial condition t = 0
and cf = cf,t = 0, it can be estimated from the well-known relationship [7]

JM = −
Vf

A
dc f

dt
= P1c f ,t=0 (5)

In the above equations, A denotes the membrane surface area [cm2]. This simple model,
as represented by Equations (1) and (2), is most frequently used to describe transport
kinetics in PIMs. For example, only last year, it was used to describe the removal of
fluoride [8] and phenol [9], the separation of mercury(II) [10], the separation of lithium
and magnesium [11,12], the recovery of bismuth(III) [13] and scandium [14], the extraction
of arsenic(V) [15], the separation of Pb(II), Zn(II), and Cd(II) ions [16], and the removal of
antibiotics [17].

Noteworthy is the fact that, in some cases, the model fit quality is poor [15,17] or does
not satisfy the criterion of a random distribution of residuals [10,16]. This means that a
different or more advanced model should be used to describe the transport kinetics.

1.2. Model No. 2

It was previously shown that the transport of Cd(II), Zn(II), Pb(II), and Cu(II) ions
through PIMs containing reactive ionic liquids or D2EHPA (di-(2-ethylhexyl)phosphoric
acid) as a carrier obeys the kinetic laws of a reversible first-order reaction [18,19]:

c f

k1
�
k−1

cs (6)

According to the general transport scheme above, the rate of change in concentrations
in the respective solutions during the membrane transport can be expressed by

dc f

dt
= −k1c f +

Vs

Vf
k−1cs (7)

dcs

dt
=

Vf

Vs
k1c f − k−1cs (8)

This model was also successfully applied for the description of Pb(II) ion transport
through PIMs containing calixresorcin [4] arene derivatives as carriers [20].

1.3. Model No. 3

In the models presented above, the initial maximum flux can be interpreted as a flux
related to the sorption of molecules into the membrane. In this case, the value of the initial
flux into the receiving phase has no physical meaning because in membrane processes
controlled by diffusion, a time lag should be expected. This means that the minimum
period of time is needed for the formation of the complex and its penetration into the
membrane interior until the release of the first molecules into the receiving phase. At the
beginning of the process, the zero value of the transported substance flux into the receiving
solution should be expected if the membrane has not been pre-equilibrated with the feed
solution. The application of effective carriers and the appropriate membrane composition
allow for minimizing the time lag effect to such an extent that it is not observable in the
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process. However, in order to describe transport through PIMs, considering the diffusive
nature of the process, the time lag should be taken into account, as it is always present in
this type of system. For this purpose, a model whose equations are similar to the equations
describing the kinetics of first-order consecutive reactions can be used:

c f
k1−→ cLM

k2−→ cs (9)

dc f

dt
= −k1c f (10)

dcLM
dt

=
Vf

VLM
k1c f − k2cLM (11)

dcs

dt
=

VLM
Vs

k2cLM (12)

Such a mathematical model is mainly applied for the description of the transport
of various substances through bulk liquid membranes (BLMs). For instance, this model
was applied in the case of the pertraction of chromium(VI) [21,22], chromium(III) [23],
chromium(II) [24], mercury(II) [25], cobalt(II) [26], cadmium (II) [27], and cyanide and
thiocyanate ions [28,29].

1.4. Model No. 4

Analogous to the model proposed by Danesi [7], in this model, a problem with
its fitting to experimental data, as well as the related incorrect residual distribution, is
observed [21,23,28]. The quality of the model fit can be improved by applying a model
similar to a consecutive reaction scheme with a slow reversible step, antecedent to the
irreversible step, according to the scheme

c f

k1
�
k−1

cLM
k2−→ cs (13)

which can be described by the following set of differential equations:

dc f

dt
= −k1c f +

VLM
Vf

k−1cLM (14)

dcLM
dt

=
Vf

VLM
k1c f − k−1cLM − k2cLM (15)

dcs

dt
=

VLM
Vs

k2cLM (16)

This model was previously applied for the description of phenol [30], L-isoleucine [31],
and strontium(II) pertraction [32] through BLMs.

In summary, there are at least four simple kinetic models that can be used to describe
transport through PIMs. Nevertheless, only the model proposed by Danesi [7] is most
frequently applied.

1.5. Model No. 5

It should be noted that in the case of the linear concentration vs. time dependence
for transported substances, an equation similar to those describing a zero-order reaction
(which corresponds to stationary or pseudo-stationary conditions of the transport) can
be used:

dc f

dt
= −k1 (17)

Despite the many different kinetic models that enable the determination of the initial
maximum flux (JM) and a quantitative description of the concentration change in the feed
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and receiving solutions, some authors calculate JM from the first derivative of an exponential
decay function fitted to the feed solution concentration dependence [33–37]. This approach
probably results from problems occurring when fitting the most commonly used kinetic
model (model No. 2) to the experimental data. The calculated JM value describes the system
efficiency. However, it is impossible to obtain a quantitative description of time-dependent
concentrations, especially in the receiving solution. In this case, there is also no possibility of
a physicochemical interpretation of the exponential decay function, contrary to the typical
kinetic models. The main aim of this work is, therefore, to discuss the applicability of the
above simple kinetic models and to select the most appropriate model for the transport
description of substances through PIMs. The usefulness of the models was evaluated with
the use of typical parameters describing the quality of the model fit to the experimental
results of Zn(II), Cd(II), Pb(II), and Cu(II) ion transport. In the model calculations, a change
in the feed and stripping solution volume (because of sampling) was taken into account.
The goodness-of-fit evaluation was estimated using the standard error of the regression,
Akaike information criterion (AIC), Bayesian (Schwarz) information criterion (BIC), and
Hannan–Quinn information criterion (HQC). A nonparametric runs test was also used to
examine the randomness of the residuals.

The novelty of this research is the development of a method for the selection of a
proper model based on appropriate fit quality parameters and a runs test as well as the
application of kinetic models that have never been used for the description of transport
through PIMs.

2. Experimental

Experimental studies of Zn, Cd, Pb, and Cu ion transport through PIMs contain-
ing various types of carriers were carried out. The following carriers were used for this
purpose: TOPO (tri-n-octyl phosphine oxide, 90% Sigma Aldrich, St. Louis, MO, USA),
D2EHPA (di-(2-ethylhexyl) phosphoric acid, 97% Aldrich, St. Louis, USA), Aliquat 336
(methyl trioctyl ammonium chloride, Aldrich St. Louis, MO, USA), Cyphos IL 101 (tri-
hexyl(tetradecyl)phosphonium chloride, >97% Solvionic, Toulouse, France), and RILC8_Br
(3-(1,3-diethoxy-1,3-dioxopropan-2-yl)-1-octylimidazolium bromide, synthesis described
in [18]). Experimental studies were carried out in the system described in detail in [18,19].
The feed solution was composed of Zn(II), Cd(II), Cu(II), and Pb(II) nitrates (Sigma-Aldrich,
St. Louis, MO, USA, reagent grade, purity≥ 98%) dissolved in 0.5 M HCl (200 cm3) with an
initial concentration equal to 0.002 M. Only in the system with D2EHPA as a carrier, due to
its properties, was a 0.002 M solution of metal ions (initial pH = 4) without HCl used. As the
stripping phase, a nitric acid solution with a concentration of 0.5 M and volume of 100 cm3

was applied. The surface membrane area was equal to 17 cm2. The aqueous solutions
were pumped from the external reservoirs by a peristaltic pump (GILSON MINIPULS
3) at a 16 cm3/min flow rate. During the transport experiments, 1 mL samples from the
feed and the receiving solution were taken for analysis with the flame atomic absorption
method using a SPECTRAA 20ABQ Varian spectrophotometer. The atomic absorption
spectroscopy operating parameters are presented in the Supplementary File (Table S2). All
the experiments were carried out at room temperature (25 ± 2 ◦C).

2.1. Membrane Preparation

PIMs were prepared according to the procedure described in [18,19] using a solution
casting and solvent evaporation technique. Cellulose triacetate (Acros Organics, Morris Plains,
NJ, USA), as a polymer matrix, and o-nitrophenyl octyl ether (Alfa Aesar, Kandel, Germany,
98%), as a plasticizer, were used. The composition and thickness of the membranes applied in
the experiments are presented in Table 1.
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Table 1. The composition and thickness of the membranes used.

Carrier Type
Membrane Composition [wt%]

Thickness [mm]
Carrier NPOE CTA

TOPO 52 30 18 0.100 (±0.005)
Aliquat 336 44 31 25 0.149 (±0.011)

Cyphos IL 101 49 19 32 0.1498 (±0.0014)
D2EHPA 46 29 25 0.199 (±0.043)
RILC8_Br 50 20 30 0.0972 (±0.0074)

2.2. Model Calculations

The ordinary differential equations (ODEs) were solved with the Berkeley Madonna
program v.8.1 (Berkeley, CA, USA) using the Rosenbrock (stiff) method. This method is
related to the Runge–Kutta method; however, it possesses excellent stability properties,
is computationally efficient, and preserves the positivity of the solutions [38,39]. The
parameter values were estimated using the curve fit procedure which minimizes the
deviation between the model output and dataset. The dependences of concentration
changes in the feed and stripping solution were fitted simultaneously.

The most common parameter used to select the model with the best fit quality is
the determination coefficient. However, it was proven that for nonlinear models, the
application of the determination coefficient for the model selection is questionable because
R-squared does not distinguish between good and bad nonlinear models [40].

Therefore, as the fit quality parameter, the standard error of the regression (sy) was
calculated using the following equation:

sy =
√

MSE =

√
RSS

n− p− 1
=

√
∑ (yi − ŷi)

2

n− p− 1
(18)

where RSS denotes the residual sum of squares, MSE is the mean squared error, yi is
the observed value of the response variable, ŷi is a predicted value of the response vari-
able, n is the number of observations (the sample size), and p is the (total) number of
estimated parameters.

Moreover, the criteria for model selection among a finite set of models, such as the Akaike
information criterion (AIC), Bayesian (Schwarz) information criterion (BIC), and Hannan–
Quinn information criterion (HQC), were also calculated. These criteria are most frequently
applied as measures of the goodness of fit of a statistical model and are defined by [40]

AIC = 2 · p − ln(L) (19)

BIC =p · ln(n) − 2 · ln(L) (20)

where ln(L) denotes the log-likelihood function of the statistical model defined by

ln(L) = 0.5 · (−n · (ln(2 · π) + 1− ln n + ln(RSS))) (21)

The Hannan–Quinn information criterion was calculated using the following equa-
tion [41]:

HQC =n · ln
(

RSS
n

)
+2 · p · ln(ln(n)) (22)

Note that the model with lower sy, AIC, BIC, and HQC values is preferred.
Before the model selection, another test should be performed to examine the random

distribution of the residuals. For this purpose, a nonparametric runs test was used [42].
The best model was therefore selected from those in which the randomness of the residuals
was fulfilled.
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3. Results
3.1. Influence of the Feed and Stripping Solution Volume Changes

During the operation of the membrane system, samples of the feed and receiving solution
were taken for concentration analysis (without return). Consequently, the effect of the change
in the volume of the respective solutions was taken into account in the model calculations. The
actual change in volume can be described by a step function, which is problematic to include in
numerical calculations carried out in the Berkeley Madonna ODE solver. Therefore, a nonlinear
function (third-degree polynomial) was used to describe the continuous change in volume
during the system operation. As an example, in Figure 1a, the results of the calculations for the
model proposed by Danesi are compared with those of the same model taking into account
the influence of the feed and receiving solution volume (step and continuous). A comparison
of the fits of the models represented by Equations (7) and (8) is presented in Figure 1b.
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Figure 1. Comparison of the model that does not take into account the volume changes (dashed
lines) with the models using a continuous function (solid lines) and a step function (dotted lines) to
describe the changes in the volume. The systems use D2EHPA (a) and RILC8_Br (b) as carriers.

The results of the concentration vs. time dependence calculations for the feed solution
are almost the same regardless of whether the change in volume is taken into account
or not. For the stripping solution dependence, the application of the continuous (solid
line) or step function (dotted line) for the description of the volume changes leads to a
much better fit of the model to the experimental data. The percentage error between the
calculated values of concentration in the receiving solution for the two best-fit models
does not exceed 1%. Therefore, the solution volume changes in the membrane system
were described by the third-degree polynomial in further model calculations. An exam-
ple of a third-degree polynomial fitting to the experimental results is presented in the
Supplementary File (Figure S1).
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3.2. TOPO as a Carrier

The experimental results of Cd(II), Zn(II), Pb(II), and Cu(II) ion transport through
PIMs with TOPO as a carrier were used for the best model selection. No transport of Cu(II)
ions was observed in this study, i.e., the concentration was below the detection limit of
AAS. The values of the fit quality parameters and the initial maximum fluxes are listed in
Table 2. The lowest values are in bold.

Table 2. The calculated fit quality parameters and initial maximum fluxes for the system with TOPO
as a carrier.

Ion No. Scheme V = f(t)
Randomness

in Data
(Runs Test)

sy × 105 AIC BIC HQC JM × 1010

[mol/cm2·s]

Cd (II)

1 A→B NO NO 7.97 −288.76 −287.87 −339.72 3.006
1a A→B YES NO 6.49 −296.16 −295.27 −347.12 2.926
2 A↔B YES NO 6.70 −294.18 −292.40 −345.01 2.924
3 A→B→C YES YES 3.67 −315.82 −311.15 −366.66 3.036
4 A↔B→C YES YES 3.21 −319.94 −317.27 −370.65 2.989

Zn (II)

1 A→B NO NO 9.66 −281.85 −280.96 −332.81 3.400
1a A→B YES NO 7.52 −290.86 −289.97 −341.82 3.332
2 A↔B YES NO 7.77 −288.86 −287.08 −339.69 3.332
3 A→B→C YES NO 5.57 −300.85 −296.18 −351.69 3.477
4 A↔B→C YES YES 2.87 −324.00 −321.33 −374.71 3.400

Pb (II)

1 A→B NO YES 1.68 −344.75 −343.86 −395.71 0.2411
1a A→B YES YES 1.52 −348.50 −347.61 −399.46 0.2342
2 A↔B YES YES 1.26 −354.47 −352.69 −405.31 0.2485
3 A→B→C YES YES 1.57 −346.50 −341.83 −397.33 0.2342
4 A↔B→C YES YES 1.61 −344.82 −342.15 −395.54 0.2342

The results indicate that in the case of Cd(II) and Zn(II) ion transport, the lowest
values of the sy, AIC, BIC, and HQC parameters were obtained for model No. 4, while
model No. 3 was best-fitted to the experimental data of Pb(II) ion transport. Despite the
similarity of the values of the initial fluxes calculated using different models, it should be
remembered that the fit quality of the models is different. For example, Figure 2 depicts
the fit of model No. 1 (dashed line) and model No. 4 (solid line) to the experimental data
of Zn(II) transport. Model No. 1 was the worst-fit model, whereas model No. 4 was the
best-fit model. Furthermore, model No. 1 (and models No. 2 and No. 3) also failed the runs
test because the residuals were not randomly distributed. The best-fit models for all the
transported ions and systems are presented in the Supplementary File.
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The Zn(II) concentration differences in the feed solution, calculated by models No. 1 and
No. 4, were small. Therefore, the same values of the initial maximum fluxes
(JM = 3.400 × 10−10 mol/cm2·s) were evaluated. Significant differences are visible only in the
concentration dependences for the receiving solution, leading to a maximum percentage error
exceeding 5% at the end of the transport. Such a value is inacceptable when the model is used
in analytical applications, e.g., to predict the enrichment factor of analytes.

3.3. Aliquat 336 as a Carrier

The kinetic models were applied for the description of the transport of Cd(II), Zn(II),
Pb(II), and Cu(II) ions through PIMs containing Aliquat 336 as a carrier. Similar to the
system with TOPO as a carrier, transport of Cu(II) ions was not observed (below the
detection limit of AAS). The calculated model fit quality parameters are presented in Table 3,
along with the initial maximum fluxes. Based on these quantities, the most appropriate
models were selected.

Table 3. The calculated fit quality parameters and initial maximum fluxes for the system with Aliquat
336 as a carrier.

Ion No. Scheme V = f(t)
Randomness

in Data
(Runs Test)

Sy × 105 AIC BIC HQC JM × 1010

[mol/cm2·s]

Cd (II)

1 A→B NO NO 13.1 −301.06 −300.07 −357.62 3.476
1a A→B YES YES 12.2 −303.68 −302.69 −360.25 3.347
2 A↔B YES YES 12.6 −301.71 −302.72 −358.08 3.345
3 A→B→C YES YES 4.53 −342.57 −343.57 −398.94 3.718
4 A↔B→C YES YES 4.67 −340.57 −343.57 −396.74 3.718

Zn (II)

1 A→B NO NO 14.8 −295.99 −294.99 −352.55 1.512
1a A→B YES NO 13.6 −299.52 −298.52 −356.08 1.473
2 A↔B YES NO 14.0 −297.52 −298.52 −353.89 1.473
3 A→B→C YES YES 8.59 −316.98 −317.99 −373.35 1.680
4 A↔B→C YES YES 6.36 −328.20 −331.21 −384.38 1.620

Pb (II)

1 A→B NO NO 3.06 −359.07 −358.07 −415.63 0.3340
1a A→B YES YES 2.82 −362.46 −361.46 −419.02 0.3265
2 A↔B YES YES 2.90 −360.46 −361.46 −416.83 0.3265
3 A→B→C YES YES 2.18 −371.92 −372.92 −428.29 0.3363
4 A↔B→C YES YES 2.01 −374.30 −377.30 −430.47 0.3424

Model No. 4 provided the lowest values of all the model fit quality parameters for
Zn(II) and Pb(II) ion transport, whereas model No. 3 showed the best fit in the case of Cd(II)
ion transport. In this membrane system, the best-fitted models led to initial maximum
fluxes higher than 7 to 11%, especially for preferentially transported Cd(II) and Zn(II) ions.

A comparison of the fits of models No. 3 and No. 1 to the experimental data for Cd(II)
ion transport is shown in Figure 3.

The experimental results and the fitted model No. 3 indicate the occurrence of a
time lag in the investigated system and thus the accumulation of transported Cd(II) in the
membrane. The same effect was also observed for Zn(II) and Pb(II) ion transport. This
phenomenon is fundamental in analytical applications since accumulation reduces the
transport efficiency and enrichment factor. Note that for models No. 1 and No. 2, the
accumulation of the transported substance in the membrane was not taken into account.

3.4. Cyphos IL 101 as a Carrier

The fit quality measures obtained from fitting the kinetic models to the experimental
data of Cd(II), Zn(II), Pb(II), and Cu(II) ion transport through PIMs containing Cyphos IL
101 as a carrier are presented in Table 4.
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Figure 3. The best (model No. 3, solid line) and worst (model No. 1, dashed line) model fits for
predicting Cd(II) ion transport through PIMs with Aliquat 336 as a carrier.

Table 4. The calculated fit quality parameters and initial maximum fluxes for the system with Cyphos
IL 101 as a carrier.

Ion No. Scheme V = f(t)
Randomness

in Data
(Runs Test)

sy × 105 AIC BIC HQC JM × 1010

[mol/cm2·s]

Cd (II)

1 A→B NO NO 9.53 −313.70 −312.70 −370.26 3.206
1a A→B YES NO 8.96 −316.14 −315.15 −372.70 3.067
2 A↔B YES YES 9.22 −314.15 −312.15 −370.51 3.067
3 A→B→C YES YES 3.30 −355.19 −350.21 −411.56 3.240
4 A↔B→C YES YES 3.41 −353.20 −350.22 −409.38 3.241

Zn (II)

1 A→B NO NO 10.6 −309.47 −308.48 −366.03 2.254
1a A→B YES NO 8.95 −316.17 −315.18 −372.74 2.190
2 A↔B YES NO 9.21 −314.17 −312.18 −372.73 2.190
3 A→B→C YES NO 5.00 −338.60 −333.61 −397.16 2.307
4 A↔B→C YES YES 4.00 −346.78 −343.79 −407.34 2.234

Pb (II)

1 A→B NO NO 26.9 −272.21 −271.21 −328.77 0.7189
1a A→B YES NO 3.79 −350.57 −349.57 −407.13 0.7000
2 A↔B YES NO 3.90 −348.57 −346.57 −404.93 0.7000
3 A→B→C YES YES 3.03 −358.61 −353.63 −414.98 0.7170
4 A↔B→C YES YES 3.09 −356.98 −353.99 −413.15 0.7168

Cu (II)

1 A→B NO NO 0.312 −225.39 −225.09 −254.10 0.007139
1a A→B YES NO 0.322 −224.73 −224.42 −253.44 0.006916
2 A↔B YES YES 0.132 −241.96 −241.36 −271.01 0.01110
3 A→B→C YES NO 0.345 −222.73 −219.82 −251.77 0.006916
4 A↔B→C YES NO 0.373 −220.73 −219.83 −250.11 0.006917

The lowest values—which indicate a better fit of the model to the experimental
data—were observed for model No. 3 used for the description of the Cd(II) and Pb(II)
concentration vs. time dependences. In the case of Zn(II) and Cu(II) ion transport, only
one model satisfied the criterion of the randomness of the data. For the Cu(II) ions, it was
model No. 2, and for the Zn(II) ions, it was model No. 4. The results show that, similar
to the system with Aliquat 336 as the carrier, for Cd(II), Zn(II), and Pb(II) ion transport,
accumulation in the membrane was also observed. The biggest difference between the
initial maximum flux values calculated from the appropriate models was found for the
transport of Cu(II) ions; the JM calculated by the correctly fitted model was over 55% higher
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than the values calculated by the other models. The fitting of the worst (model No. 1) and
best models (No. 4) to the experimental data of Zn(II) ion transport is compared in Figure 4.
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Figure 4. The best (model No. 4, solid line) and worst (model No. 1, dashed line) model fits for
predicting Zn(II) ion transport through PIMs with Cyphos IL 101 as a carrier.

The fits of models No. 1 and No. 4 to the dependence of the concentration changes in
the feed solution were similar, leading to almost identical flux values of Zn(II) ions. For
Cyphos IL 101 as a carrier in PIMs, accumulation of transported Cd(II), Zn(II), and Pb(II)
ions in the membrane was also observed. Differences in the fit of the models appear for the
receiving solution concentration vs. time dependence, indicating that the fit of model No. 5
is much better.

3.5. D2EHPA as a Carrier

The calculated fit quality characteristics of the analyzed models used for the descrip-
tion of Cd(II), Zn(II), Pb(II), and Cu(II) ion transport through PIMs containing D2EHPA as
a carrier are compared in Table 5.

Table 5. The calculated fit quality parameters and initial maximum fluxes for the system with
D2EHPA as a carrier.

Ion No. Scheme V = f(t)
Randomness

in Data
(Runs Test)

sy × 105 AIC BIC HQC JM × 1010

[mol/cm2·s]

Cd (II)

1 A→B NO YES 4.10 −347.39 −346.39 −403.95 0.4684
1a A→B YES YES 4.29 −345.58 −344.58 −402.14 0.4548
2 A↔B YES YES 4.43 −343.49 −341.50 −399.86 0.4579
3 A→B→C YES YES 2.90 −360.39 −355.41 −416.76 0.4757
4 A↔B→C YES YES 3.38 −353.53 −350.54 −409.71 0.4652

Zn (II)

1 A→B NO NO 6.36 −329.88 −328.89 −386.44 3.514
1a A→B YES NO 5.24 −337.63 −336.63 −394.19 3.413
2 A↔B YES NO 5.42 −335.39 −333.40 −391.76 3.421
3 A→B→C YES YES 3.44 −353.59 −348.61 −409.96 3.527
4 A↔B→C YES YES 3.51 −352.03 −349.04 −408.21 3.512

Pb (II)

1 A→B NO NO 10.3 −310.67 −309.68 −367.24 2.792
1a A→B YES YES 7.91 −321.14 −320.15 −377.71 2.747
2 A↔B YES YES 8.14 −319.14 −320.15 −375.51 2.747
3 A→B→C YES NO 5.75 −333.02 −334.03 −389.39 2.881
4 A↔B→C YES YES 2.37 −367.68 −370.68 −423.85 2.822
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Table 5. Cont.

Ion No. Scheme V = f(t)
Randomness

in Data
(Runs Test)

sy × 105 AIC BIC HQC JM × 1010

[mol/cm2·s]

Cu (II)

1 A→B NO YES 2.27 −371.02 −370.02 −427.58 0.2180
1a A→B YES NO 2.29 −370.80 −369.81 −427.37 0.2121
2 A↔B YES YES 1.31 −392.16 −393.16 −448.53 0.2425
3 A→B→C YES NO 2.35 −368.80 −369.81 −425.17 0.2121
4 A↔B→C YES NO 2.42 −366.88 −369.89 −423.06 0.2122

The transport kinetics in this system can be described by various models satisfying
the criterion of the randomness of the data, especially for the transport of Cd(II) ions. From
the comparison of the fit quality parameter results, all of the fit criteria using model No. 3
were lower than those of the other models for Cd(II) and Zn(II) ion transport. The lowest sy,
AIC, BIC, and HQC values for Pb(II) ion transport were found for model No. 4, while for
Cu(II) ions, the lowest values were found for model No. 2. The calculated initial maximum
fluxes using different models were similar. However, a decidedly different fit of the models
to the experimental data was observed (see Figure 5). For Cu(II) ion transport, the initial
maximum flux calculated by model No. 2 was approx. 14% higher when compared to the
values calculated by the other models.
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model fits for predicting Pb(II) ion transport through PIMs with D2EHPA as a carrier.

3.6. Reactive Ionic Liquid (RILC8_Br) as a Carrier

A summary of the fit quality measures of the analyzed models is presented in Table 6.
In this membrane system, no transport of Cu(II) ions was observed.

All the fit quality measures indicate that there was only one kinetic model appropriate
for the description of Cd(II), Zn(II), and Pb(II) ion transport through PIMs using RILC8_Br as
a carrier. In the case of Cd(II) and Zn(II) ion transport, except for model No. 2, no other model
met the random distribution of residuals criterion. Choosing an inappropriate model leads
to substantial errors in the initial maximum flux values. The calculated JM values from the
best-fit model were higher by approx. 22% for Cd(II) ions and up to 74% for Zn(II) ions. The
proper choice of this model for the description of metal ion transport through PIMs containing
reactive ionic liquids was also confirmed by the results presented in [18].
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Table 6. The calculated fit quality parameters and initial maximum fluxes for the system with a
reactive ionic liquid (RILC8_Br) as a carrier.

Ion No. Scheme V = f(t)
Randomness

in Data
(Runs Test)

sy × 105 AIC BIC HQC JM × 1011

[mol/cm2·s]

Cd (II)

1 A→B NO NO 7.19 −322.84 −321.95 −379.41 7.499
1a A→B YES NO 7.04 −323.72 −322.82 −380.28 7.260
2 A↔B YES YES 2.286 −367.70 −365.93 −424.08 9.190
3 A→B→C YES NO 8.74 −314.07 −309.40 −370.44 7.260
4 A↔B→C YES NO 9.00 −311.99 −309.32 −368.16 7.260

Zn (II)

1 A→B NO NO 4.99 −337.41 −336.52 −393.97 1.386
1a A→B YES NO 5.09 −336.61 −335.72 −393.17 1.345
2 A↔B YES YES 1.66 −380.57 −378.79 −436.95 2.414
3 A→B→C YES NO 5.23 −334.61 −329.94 −390.98 1.345
4 A↔B→C YES NO 5.69 −332.61 −329.94 −388.78 1.346

Pb (II)

1 A→B NO YES 1.79 −378.51 −377.62 −435.07 1.075
1a A→B YES YES 1.84 −377.49 −376.59 −434.05 1.049
2 A↔B YES YES 0.651 −417.98 −416.19 −474.34 1.344
3 A→B→C YES YES 1.88 −375.49 −370.81 −431.86 1.049
4 A↔B→C YES YES 1.93 −373.53 −370.86 −429.70 1.049

The fit of models No. 2 and No. 4 to the experimental data of Cd(II) ion transport is
shown in Figure 6. The results indicate a much better fit of model No. 2. Moreover, no time
lag effect was observed in the investigated system. The undetectable time lag may result
primarily from the properties of the carrier used, as well as the application of the thinnest
membrane in the experiments.
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4. Conclusions

An appropriate mathematical model enables a quantitative prediction of concentration
changes in external solutions and the calculation of, e.g., the time needed to achieve the
maximum concentration, recovery, or enrichment factor of the transported substances.

Among the numerous equations used to describe transport kinetics, it is impossible
to choose only one as the most appropriate. The presented results indicated that the
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application of the most frequently used model (proposed by Danesi) is significantly limited
because of the nonrandomly distributed residuals.

The selection of the appropriate model should be based on the values of the standard
error of the regression, Akaike information criterion (AIC), Bayesian (Schwarz) information
criterion (BIC), or Hannan–Quinn information criterion (HQC) after the runs test evaluation
(residuals’ randomness check).

Of the models presented in this report, model No. 4 is the most universal. However,
the model selection should be individualized for each experimental relationship. It was
also found that a nonlinear equation (third-degree polynomial) can be successfully used to
describe solutions’ volume changes in a membrane system (because of sampling), leading
to a better fit of the model to the experimental data.

The results indicated that the models that have not been used thus far for transport
description in PIMs, i.e., models No. 3 and No. 4, can be successfully applied. These
models are particularly important in the case of systems where a time lag is observed. This
mainly applies to systems with carriers characterized by a high partition coefficient (high
sorption of transported substances to the membrane), slow diffusion inside the membrane
(e.g., because of the relatively high membrane thickness), or slow kinetics of extraction and
re-extraction at the respective membrane interfaces.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes13020236/s1, Table S1. List of differential equations
used in an appropriate models. Table S2. Atomic absorption spectroscopy operating parameters.
Table S3. The calculated kinetic parameters and initial maximum fluxes for the system with TOPO
as a carrier. Table S4. The calculated kinetic parameters and initial maximum fluxes for the system
with Aliquat 336 as a carrier. Table S5. The calculated kinetic parameters and initial maximum fluxes
for the system with Cyphos IL 101 as a carrier. Table S6. The calculated kinetic parameters and
initial maximum fluxes for the system with D2EHPA as a carrier. Table S7. The calculated kinetic
parameters and initial maximum fluxes for the system with reactive ionic liquid (RILC8_Br) as a
carrier. Figure S1. The 3rd degree polynomial fitting to the experimental results for system with
D2EHPA as a carrier. Figure S2. The best fitted models for predicting Cd(II) (a), Zn(II) (b), and
Pb(II) (c) ions transport through PIM with TOPO as a carrier. Figure S3. The best fitted models
for predicting Cd(II) (a), Zn(II) (b), and Pb(II) (c) ions transport through PIM with Aliquat 336 as a
carrier. Figure S4. The best fitted models for predicting Cd(II) (a), Zn(II) (b), Pb(II) (c), and Cu(II) (d)
ions transport through PIM with Cyphos IL 101 as a carrier. Figure S5. The best fitted models for
predicting Cd(II) (a), Zn(II) (b), Pb(II) (c), and Cu(II) (d) ions transport through PIM with D2EHPA
as a carrier. Figure S6. The best fitted models for predicting Cd(II) (a), Zn(II) (b), and Pb(II) (c) ions
transport through PIM with a reactive ionic liquid (RILC8_Br) as a carrier.
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