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Abstract: The extraction of Fe(III), Cr(III), and Ni(II) from stainless steel rinse water using non-
dispersive extraction and strip dispersion membrane technology was carried out in a microporous
hydrophobic hollow-fibre module contactor. The fibres were of polypropylene, whereas the organic
extractant DP8R (bis(2-ethylhexyl) phosphoric acid) diluted in ExxsolD100 was used as the carrier
phase. The rinse water containing the three elements was passed through the tube side, and the
pseudo-emulsion formed by the organic phase of DP8R in Exxol D100 and an acidic strip solution
were passed through the shell side in a counter-current operation; thus, a unique hollow fibre module
was used for extraction and stripping. In non-dispersive extraction and strip dispersion technology,
the stripping solution was dispersed into the organic membrane solution in a vessel with an adequate
mixing device (impeller) designed to form strip dispersion. This pseudo-emulsion was circulated
from the vessel to the membrane module to provide a constant supply of the organic phase to the
membrane pores. Different hydrodynamic and chemical variables, such as variation in feed and
pseudo-emulsion flow rates, strip phase composition, feed phase pH, and extractant concentration in
the organic phase, were investigated. Mass transfer coefficients were estimated from the experimental
data. It was possible to separate and concentrate the metals present in the rinse water using the
non-dispersive extraction and strip dispersion technique.
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1. Introduction

When an aqueous solution to be treated has a low metal concentration, conventional
liquid–liquid extraction may not be the most suitable technology for this operation. This
unsuitability is mostly due to losses of the organic phase to the raffinate; thus, options
to take advantage of the selectivity presented by the organic extractants were developed.
Among them, membrane extraction using microporous materials to immobilize the aque-
ous/organic interface within the membrane pores was developed. In this operation, the
solute (metal) is transported from the aqueous solution to the organic phase through the
membrane without phases of dispersion. Moreover, this type of technology combines the
extraction and stripping operations in one single step.

A further development in these membranes technologies was the non-dispersive
extraction and strip dispersion (also known as pseudo-emulsion-based strip dispersion,
etc.), which provided the system with a good level of stability and performance. This
technique varies from the conventional membrane operation (as described above) in which
the strip solution is dispersed into the organic phase, and this pseudo-emulsion is in contact
with the membrane pores; due to the hydrophobicity of such pores, the organic phase is
wetted, and it is supported into the membrane micropores, making possible the transport
of the solute from the aqueous feed solution to the organic phase, and from this to the
stripping phase. This stripping operation is favoured by the continuous mixing of both
organic and stripping phases. Once the operation is finished, the mixing is stopped, the
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organic and strip phases rapidly disengage, the feed phase is depleted of solute, and the
stripping phase concentrates on the solute.

Using one or another type of liquid membrane operations, there were recent references
to its applicability for the recovery and/or elimination of metals from different aqueous
media [1–4]. Besides the above, most recent references to supported liquid membrane
operation using permeation cells investigations have included the transport of Cr(VI) using
organic solutions of the commercially available Cyanex 921 and Cyanex 923 phosphine
oxides [5]; also, the transport of In(III) from HCl solutions has been investigated using the
same methodology and the pseudo-protic ionic liquids TOAH+Cl− and TODAH+Cl− as
carriers [6]. The ionic liquids [omim+][PF6

−] (1-octyl-3-methylimidazolium hexafluorophos-
phate) and methyl trioctylammonium chloride [MTOA+][Cl−] have been investigated in
the separation of Zn(II), Fe(III), Cd(II), and Cu(II) from HCl solutions [7]; in this case, the
ionic liquids were from part of the membrane (polymer inclusion membranes) instead of
being supported within the pores of the membrane support. Another liquid membrane
technology, such as the electromembrane extraction technique, was used in the removal
of Cu(II) from simulated wastewaters [8]; this investigation included the use of two carri-
ers (tris(2-ethylhexyl) phosphate (TEHP) and bis(2-ethylhexyl) phosphate (DEHP)), and
voltage was applied between the graphite anode (inserted in the donor phase semi-cell)
and the stainless steel cathode (inserted in the receiving or stripping phase half-cell). A
supported liquid membrane containing DEHPA (the acidic form of DEHP) in kerosene
as the carrier solution was used in the transport of Nd(III) and Er(III) under different
experimental conditions [9].

Using hollow fibre modules, the transport of Fe(III) using a pseudo-protic ionic liquid
derived from the primary amine Primene JMT and sulphuric acid was investigated [10]; in
this work, acidic strip dispersion was used to recover the metal from loaded organic phases.
The same hollow fibre strip dispersion technology was used to extract Pd(II) and Pt(IV) from
synthetic and real solutions using alkoxymine-1-propylpyridinium derivatives [11]. Hollow
fibre modules in supported liquid membrane configuration were recently used in the non-
dispersive extraction of Cu(II) and Zn(II) using trifluoroacetylacetone as the carrier [12].
Also, a quaternary ammonium salt (Aliquat 336) dissolved in toluene as the carrier phase
immobilized in the pores of a hollow fibre module was used in the co-extraction of As(V)
and Hg(II) [13]. A hollow-fibre-supported liquid membrane operation using sunflower oil
as the carrier was used in the separation of Hg(II) from simulated wastewaters [14]. Using
the same supported liquid membrane operation as in the above reference, the transport of
Sm(III) was investigated through the use of DEHPA (bis(2-ethylhexyl) phosphoric acid)
and EHEHPA (mono 2-ethylhexyl ester) [15].

In the production of stainless steel and after the pickling step, the steel surface must
be rinsed with water in order to clean it and to get rid of all acids on the steel surface.
From this rinse operation, the exhausted water contains iron(III), chromium(III), nickel(II),
and nitric and hydrofluoric acids in different compositions. Although neutralization of
these waters with lime commonly occurs prior to its discharge, more stringent legislation
regarding the discharge of nitrates and other pollutants has led to investigations into the
use of more advanced and environmentally friendly techniques for the treatment of these
rinse waters. One of the proposed methods combined the use of a membrane (filtering,
reverse osmosis, electrodyalisis) and ion exchange technologies [16,17] though the use of
liquid–liquid extraction [18], and other technologies [19] have been proposed.

This manuscript investigates the use of an advanced liquid membrane technology,
non-dispersive extraction and strip dispersion, using a hollow fibre module to treat rinse
water for an industrial plant. Different variables were investigated, including hydrody-
namic and chemical conditions, flow rates, pH, compositions of the feed phase, extractant
concentration in the organic phase, etc. Under the most adequate experimental conditions,
it was possible to separate and/or concentrate the various metals present in the rinse water.
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2. Materials and Methods
2.1. Materials

The commercial acidic extractant DP8R (bis(2-ethylhexyl) phosphoric acid) was ob-
tained from Daihachi (Japan), with a molecular weight of 322 and a density of 0.98 g/cm3

(20 ◦C). It was used without further purification. Exxsol D100 (99% aliphatics) obtained
from Exxon Chem Iberia, Spain, was used to dissolve the extractant.

The original rinse water proceeded from a Swedish plant, and it was subjected to a
treatment in order to recover both nitric and hydrofluoric acids [16], resulting in a solution
containing 0.1 g/L each of Fe(III), Cr(III), and Ni(II). All other chemicals used in this work
were of AR grade.

The hollow fibre module device used in the experimental work was obtained from
Hoechst Celanese: Liqui-Cel 8 × 28 cm 5PCG-259 contactor and 5PC5-1002 Liqui-Cel
laboratory LLE. The corresponding specifications were given in a previous publication [10].

2.2. Methods

The operational method was similar to that described in the literature [10]. A schematic
view of the membrane operation, using one contactor in the recirculation mode of both the
feed and pseudo-emulsion phases, is shown in Figure 1.
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Figure 1. Schematic view of the hollow fibre membrane process for extracting metals contained
in the rinse water. 1—feed phase vessel. 2—pumps. 3—flow-meters. 4—hollow fibre module.
5—pseudo-emulsion vessel.

Figure 2 shows a detailed view of the stripping process. The metal-loaded organic
phase was put into intimate contact with the strip phase due to the continuous mixing of
both phases, and the metals were being transferred from the organic to the strip phase (1).
Once the operation finished, mixing was stopped, and both phases quickly disengaged (2),
resulting in an organic phase depleted of metals, which can be used in a new extraction
operation, and a stripping phase containing the metal(s) in a concentrated form.

In the operation, the volume of the feed phase was 4 L, whereas the volume of the
pseudo-emulsion phase was 0.8 L (0.4 L each of the organic and stripping solutions). At
elapsed times, aliquots of the feed and pseudo-emulsion vessels were taken and analysed
for metal concentrations in the aqueous solutions through atomic absorption spectrometry
(Perkin Elmer 1100B spectrophotometer, Oxford, UK). The percentage of metals extracted
was calculated as:

%M =
[M]f,0 − [M]f,t

[M]f,0
· 100 (1)
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where [M]f,t and [M]f,0 are the metal concentrations in the feed phase at an elapsed time and
time zero, respectively. With respect to the reproducibility of data, several experiments were
performed to check the feasibility and consistency of results under the same experimental
conditions. Reproducibility was found to be good enough for the results obtained for a
fixed period of time using three sets of data. The overall permeation coefficient (P) was
calculated using the next equation:

ln
[M]f,t
[M]f,0

= −A·P
V

t (2)

where A was the membrane area (1.4 m2), V was the volume (4 L) of the feed phase, and
t was the elapsed time. Based on three observations, the p value exhibited a variation
of ±2%.
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Figure 2. Details of the transfer process. 1—non-dispersive extraction in the hollow fibre module.
2—metal transfer in the pseudo-emulsion vessel. 3—distribution of phases in the pseudo-emulsion
vessel after phases of disengagement.

3. Results and Discussion

The extraction of metals using an organic derivative of phosphoric acid, such as DP8R,
responded to a cation exchange mechanism that, in a general form, can be described by the
next equilibrium [20]:

Mn+
aq + nHRorg ⇔ MRnorg + nH+

aq (3)

where HR represents the active group of the extractant, and the subscripts aq and org
represent the respective aqueous and organic phases. Thus, extraction proceeded at high
pH values (low acidic concentrations), shifting the equilibrium to the left, and stripping was
carried out using more concentrated acid solutions, shifting the equilibrium to the right.

However, and due to the possibility of the extractant dimerization [21], the above
equilibrium takes a most elaborated form in function of the oxidation state of the metal [22]:

M2+
aq + n(HR)2org

⇔ MH2(n−1)R2norg + 2H+
aq (4)

M3+
aq + n(HR)2org

⇔ MH2n−3R2norg + 3H+
aq (5)

where n is a stoichiometric factor that depends on the metals extracted in the organic phase.

3.1. Evaluation of DP8R as an Extractant (Carrier) for Fe(III), Cr(III), and Ni(II)

A series of tests were conducted to investigate the performance of the extractant in
the removal of these metals from the solution. Firstly, experiments were carried out on
solutions that contained single metals; thus, the feed solution contained 0.1 g/L of each
metal (separately) at pH 3.0, whereas the pseudo-emulsion phase contained 20% v/v DP8R
in Exxsol D100 and 1 M of sulphuric acid as the strippant. The results of these experiments
are shown in Figure 3.
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Figure 3. Extraction of single metals using DP8R. Feed flow: 34 cm3/min. Pseudo-emulsion flow:
180 cm3/min. Temperature: 20 ◦C.

It can be seen that from the beginning of the experiment, iron(III) was extracted
preferably to chromium(III) and nickel(II), reaching 99% extraction after three hours against
90% chromium(III) extraction at this time. Nickel(II) was extracted at a rate of 65% after
five hours of reaction time. Within the extraction data, the overall permeation coefficient
for each metal was estimated using Equation (2). Table 1 summarizes these values together
with the rate of metal recovery in the strip solution.

Table 1. Overall permeation coefficients (single metal feed phase) and rate of recovery in the
strip solution.

Metal P·104, cm/s %R a

iron(III) 1.2 3
chromium(III) 0.66 95

nickel(II) 0.17 95
a After 5 h.

These results showed that both chromium(III) and nickel(II) can be stripped from the
organic solution using sulphuric acid, but not iron(III). Also, and as expected from the
results shown in Figure 1, the permeation order followed the series Fe(III) > Cr(III) > Ni(II).

Also, the performance of the extractant was investigated when the feed phase (rinse
water) contained the three metals together. The experimental conditions were the same
as those used in Figure 1, and the percentage of metal extraction against time is plotted
in Figure 4.

These results indicated that in this multi-elemental solution, the rate of iron(III) extrac-
tion was greater than that of chromium(III) after four hours of reaction time. In any case,
both metals were nearly quantitatively extracted (99%) from the feed phase after 5 h. In the
case of nickel(II), 36% of metal extraction was reached after the fifth hour of reaction. The
respective overall permeation coefficients and the rate of recovery in the strip solution are
given in Table 2.

Again, it was shown that both chromium(III) and nickel(II) can be recovered from the
organic phase using sulphuric acid as the strippant; in the case of iron(III), and as shown
in Table 1, this acidic chemical was ineffective in recovering the metals from the loaded
organic phase.
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Comparison of the overall permeation coefficient values in Tables 1 and 2 shows that
in the case of the multi-elemental solution (Table 2), these values were lower than the
respective ones obtained when single-metal solutions were used in the experiment (Table 1).
This decrease was attributable to the population or crowding effect [23] produced by the
presence of various solutes in the feed phase. This crowding effect was not predictable, and
when occurs, it must be experimentally determined for each solute-carrier phase system.
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Figure 4. Metal extraction using DP8R in ExxsolD100 from a multi-elemental solution. Experimental
conditions as in Figure 1.

Table 2. Overall permeation coefficients (three metals together in the feed phase) and rate of recovery
in the strip solution.

Metal P·105, cm/s %R a

iron(III) 6.9 2
chromium(III) 5.1 90

nickel(II) 0.66 90
a After 5 h.

3.2. Effect of Varying the Feed Phase Flow Rate on Metal Extraction

Once it was established that DP8R can be used to extract (transport) the various metals
present in the rinse water, further investigation was performed to study the influence of
several variables on metal removal from the feed phase.

Firstly, the influence of the feed phase flow rate on Fe(III), Cr(III), and Ni(II) extraction
(transport) across the fibres impregnated with a solution of DP8R in Exxsol D100 was
investigated. The feed phase contained 0.1 g/L each of the three elements at pH 2.5,
whereas the pseudo-emulsion phase was composed of an organic phase of 20% v/v DP8R
in the organic diluent and a stripping solution of 1 M of sulphuric acid. Feed phase
flow rates varied between 17 and 120 cm3/min, and the pseudo-emulsion flow rate was
maintained constant at 180 cm3/min.

Figure 5 shows that both iron(III) and chromium(IIII) increased their respective percent-
ages of extraction at a fixed time, with the increase in the feed flow rate up to 80 cm3/min,
and then it decreased. At 80 cm3/min, 95% extraction can be reached after 2 and 3 h
for iron(III) and chromium(III), respectively. This behaviour was reflected in the increase
in the overall permeation coefficient values, from 17 to 80 cm3/min, and, from then, in
a decrease of these values at higher flow rates. It was described [24] that two types of
diffusional resistances can be found in the transport process of solutes across an organic
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phase supported in the pores of a membrane. These resistances were due to (i) the feed
phase boundary layer and (ii) the membrane.

Figure 5 and Table 3 show the results of this investigation.
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Table 3. Overall permeation coefficients and recovery rates in the stripping solution.

Flow Rate, cm3/min PFe·104, cm/s PCr·105, cm/s %RFe
a %RCr

a

17 0.13 1.5 2 90
34 0.69 5.1 3 90
80 1.1 7.1 3 89

100 0.89 6.3 2 91
120 0.40 4.0 3 90

a After 5 h.

Thus, at 80 cm3/min, the thickness of the feed phase boundary layer was minimized,
and, as a consequence, the feed phase resistance to metal transport was also minimized; this
resulted in consideration of the fact that the diffusion contribution of metal species present
in the feed phase to the transport phenomena was constant [25]. However, the appearance
of this minimum thickness of the boundary film did not imply the complete elimination of
the aqueous diffusion layer, although, as said above, its resistance was minimized [26].

The decrease in metal transport at flow rates exceeding 80 cm3/min can be attributable
to various effects: (i) the increase in the turbulence created in the feed phase at these higher
flow rates, which resulted in a displacement of the organic phase trapped in the membrane
pores (this removal contributed to making difficult the maintenance of the interface within
the pore limits), and (ii) the direct relationship between the increase in the feed flow and a
lower residence time of the feed solution in the hollow fibre module, and a third effect due
to the possible formation of stable emulsions along the tube side of the fibres as the feed
flow increased [27].

In the case of nickel(II) extraction, this metal was extracted at a maximum rate of
22% and five hours of reaction time. Thus, it was evident that nickel was transported at
a much lower rate than iron(III) and chromium(III), i.e., at 80 cm3/min, and the overall
permeation coefficient values for nickel(II), iron(III), and chromium(III) were 5.1 × 10−6,
1.1× 10−4, and 7.1× 10−5 cm/s, respectively. In terms of metal separation, and considering
the separation factor (SP) as the ratio of the permeation coefficients:

SP =
PM1

PM2
(6)
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the values of the SP for the systems Fe-Ni and Cr-Ni were 22 and 14, respectively, indicating
the possibilities for the separation of iron(III) and chromium(III) from nickel(II) using the
present experimental conditions.

The metal concentration factor was evaluated and defined as the ratio of the metal
concentration in the stripping phase at the end of the experiment to the initial metal
concentration in the feed phase. The chromium(III) concentration in the strip solution was
around nine times of the initial metal concentration in the feed phase. The feasibility of
recovering metals from the rinse water with this membrane operational mode using DP8R
in Exssol D100 as the carrier phase was proved. It should be noted here that as iron(III) was
not stripped with sulphuric acid, this concentration factor was not considered here (see
below for iron(III) stripping).

In order to check the reproducibility of the set-up, a number of metal permeability
values were evaluated using the same experimental conditions as above. The values for the
three different sets were found to be 0.99 × 10−4 cm/s, 1.12 × 10−4, and 1.13 × 10−4 cm/s
for iron(III) and 6.99× 10−5, 7.11× 10−5, and 7.24× 10−5 cm/s in the case of chromium(III).

3.3. Influence of the Pseudo-Emulsion Phase Flow Rate and Composition on Metal Transport

The influence of varying the pseudo-emulsion flow rate on the transport of the metals
presented in the feed phase was investigated. For these experiments, the feed and pseudo-
emulsion phases were similar to those used in Section 3.2, whereas the feed phase flow
rate was maintained constant at 80 cm3/min and the pseudo-emulsion phase flow rate
was varied in the 100–180 cm3/min range. The results from this investigation showed that
the variation of the pseudo-emulsion flow rate had a negligible effect on the extraction
(transport) of the metals.

Using the same experimental conditions as in Section 3.2, the variation of the composi-
tion of the stripping phase of the pseudo-emulsion was investigated. The use of sulphuric
acid solutions in the 0.5–2 M concentration range did not affect the metal extraction, and it
also had a negligible effect on the percentages of metal recoveries in the stripping phase
(around 3% for iron(III) and around 90% for chromium(III) and nickel(II)). As it was men-
tioned above, sulphuric acid was not effective in the recovery of iron(III) from the loaded
organic phase; the recovery of this element from these organic phases is described in a
further subsection.

3.4. Influence of the pH Value of the Feed Phase on Metal Transport

In these cationic exchange systems, the proton concentration gradient between the feed
and the stripping phases must be one of the driving forces to consider for the permeation
of the metal ion.

Pseudo-emulsion phases composed of 20% v/v DP8R in Exxsol D100 and 1 M of
sulphuric acid and feed phases of 0.1 g/L each of Fe(III), Cr(III), and Ni(II) at various
pH values (1–3) were used to investigate the effect of this variable in the transport of the
three metals.

Figure 6 shows the variation in the percentage of extraction of iron(III) (left) and
chromium(III) (right) with time, whereas Table 4 summarizes the values of the overall
permeation coefficients and the recoveries of the elements in the stripping solution at the
end of the experiments.

From Figure 6, it can be seen that the pH value of the feed phase greatly influenced
the extraction, and, consequently, the transport of both iron(III) and chromium(III), thus
increasing this extraction as the pH of the solution increased. Obviously, this was due to
the fact that, in accordance with Equations (3)–(5), a decrease in the proton concentration of
the aqueous phase produced a shifting of the equilibrium to the right, thus favouring the
extraction of the metals.
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Table 4. Overall permeation coefficients at various pH values of the feed phase and recoveries in the
stripping solution.

pH PFe·10−4, cm/s PCr·10−5, cm/s %RFe
a %RCr

a

1 0.40 0.40 2 90
2 0.66 0.46 2 93

2.5 1.1 0.71 3 89
3 2.5 1.2 3 92

a After 5 h.

Comparison of iron(III) and chromium(III) extraction indicated that iron(III) extraction
was favoured over the extraction of chromium(III); however, a near complete extraction
(99%) of both metals from the feed solution was achieved. This result was important
because using the adequate reaction time and pH value, it was possible to separate both
Fe(III) and Cr(III) from Ni(II) (see below), leaving this last element as the only one present
in the raffinate after the extraction or transport process had finished. This behaviour
was reflected in the values of the overall permeation coefficients, shown in Table 4, as
the correspondents to iron(III) were always greater than these of chromium at the same
pH values. Moreover, under low proton concentration, diffusion of metal–extractant
complexes across the membrane fibres containing DP8R in Exxsol D100 becomes the
rate-governing step [28].

With respect to nickel(II) extraction, Figure 6 (bottom centre) indicates that this element
is only appreciably extracted (near 48%) at pH 3 and after five hours of reaction, as the
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percentage of extraction is less than 5% for values of pH below 2. The corresponding overall
permeation coefficient values were 0.51× 10−5 cm/s at pH 2.5 and 1.1× 10−5 cm/s at pH 3.

The results derived from Table 4 with respect to the overall permeation coefficient
values were consistent with the theory that, using these cation-exchange carriers, metal
(solute) transport was inversely related to the proton concentration in the feed phase.

3.5. Influence of DP8R Concentration in the Organic Phase on Metal Extraction

As it was easy to understand, an organic phase containing no extractant resulted in
negligible extraction or transport of a given solute; thus, the presence of the extractant was
a key component of the system to reach success in the extraction or transport process.

In this study, the pseudo-emulsion phase consisted of various concentrations (20–80% v/v)
of DP8R in Exxsol D100 and 1 M of sulphuric acid, and this phase was used to extract
iron(III), chromium(III), and nickel(II) from a feed phase of pH 2.5. Feed and pseudo-
emulsion phases were maintained at 80 cm3/min and 180 cm3/min, respectively. The
results of the investigation are shown in Figure 7, which represents the percentage of metal
extraction versus time at the various extractant concentrations used.
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These results showed that for both metals, an increase in the extractant concentration
from 20 to 60% v/v was accompanied by an increase in the metal extraction rate at any
elapsed time. It should be noted that the reaction time required to reach 99% extraction
increased with the decrease in the extractant concentration. In the case of 60% v/v solution
and iron(III), the time required was one hour against three hours for a solution of 20% v/v,
whereas in the case of chromium(III), the time required was of one and a half hours and
five hours for extractant concentrations of 60% v/v and 20% v/v, respectively, and similar
dependences were reported in the literature [29–31]. In the case of nickel(II), the same effect
was observed, though the percentage of nickel extraction at a fixed time was much lower
than the values obtained for both iron(III) and chromium(III) (Table 5).

Table 5. Percentages of extraction for Fe(III), Cr(III), and Ni(II).

Time, h Fe(III) Cr(III) Ni(II)

0.5 92 73 10
1 99 95 13
3 99 99 24
5 99 99 36

Organic phase: 60% v/v DP8R in Exxsol D100. Other experimental variables as in Figure 7.

Table 6 shows the various overall permeation coefficients derived from the extraction results.
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Table 6. Overall permeation coefficients at the various carrier concentrations investigated.

Extractant, % v/v PFe·10−4, cm/s PCr·10−4, cm/s PNi·10−6, cm/s

20 1.1 0.71 4.9
40 1.8 1.2 5.7
60 3.7 2.4 7.4
70 2.0 1.7 no data
80 1.2 0.97 no data

As shown in Table 6, in the 20–60% v/v carrier concentrations range, there was an
increase in the metal transport with the increase in the carrier concentration in the organic
phase; thus, in this range of concentrations, membrane diffusion becomes dominant. How-
ever, at 60% v/v DP8R concentration, a maximum transport was reached and, consequently,
metal transport was dominated by diffusion across the boundary film of the feed phase. At
this maximum transport, a limiting overall permeation coefficient can be estimated using
the next relationship:

Plim =
Df
df

(7)

where Df represents the diffusion coefficient of the metal species in the feed phase
(averaging value of 10−5 cm2/s [32]) and df is the minimum thickness of the feed phase
boundary layer. Considering the permeation values showed in Table 7, the values of df
were 2.7 × 10−2 cm and 4.2 × 10−2 cm for iron(III) and chromium(III), respectively.

Table 7. Iron(III) flux values at various initial metal concentrations in the feed phase.

[Fe]f,0, g/L P·10−4, cm/s J·10−9, mol/cm2·s
0.1 3.7 0.67

0.25 2.8 1.3
0.5 1.9 1.7
1 0.95 1.7

As can be seen from Figure 7 and Table 7, at extractant concentrations exceeding
60% v/v, iron(III) and chromium(III) extraction decreased; thus, metal transport across
the liquid membrane did, as well. These results were attributable to an increase in the
viscosity of the organic phase resulting from the increase in the extractant concentration in
this organic phase [33–35].

Assuming that the extractant concentration ([HR]TOT) in the membrane fibres was
constant, the next equation determined the apparent diffusion coefficients of metal species
in the organic phase [36]:

Dap
org =

J·dm

[HR]TOT
(8)

where dm is the fibre wall thickness (3 × 10−3 cm) and [HR]TOT 1.8 M (60% v/v). The metal
flux (J) was calculated, under the appropriate experimental conditions, as:

J = PM·[M]f,0 (9)

with PM being the overall permeation coefficient of the metal (Table 6). The values of
Dorg

app for iron(III) and chromium(III) were 1.1 × 10−9 cm2/s and 7.8 × 10−10 cm2/s,
respectively.

3.6. Influence of the Initial Iron(III) Concentration in the Feed Phase on Metal Transport

In the stainless steel rinse operation, iron(III) has ordinarily been the element that
presents the greatest concentration in the water; thus, we also investigated the effect of
varying the iron(III) concentration on the transport of the element and also its influence on
the transport of the other two elements that accompanied iron(III) in the rinse water.
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For this investigation, to the solution containing 0.1 g/L each of chromium(III) and
nickel(II), varying (0.1–1 g/L) iron(III) concentrations were added, which were the pseudo-
emulsion phase formed by 60% v/v DP8R in Exxsol D100 and 1 M of sulphuric acid as
organic and strippant solutions, respectively.

The results shown in Figure 8 indicate that an increase in the initial iron(III) concentra-
tion in the feed phase produced a decrease in iron(III) transport. This negative influence can
be related to the fact that with the increase in this concentration in the solution, the organic
phase filling the membrane pores of the fibres was saturated with the iron(III)–extractant
complex formed in this phase. After, the metal–extractant complex slowly began to diffuse
into the bulk of the organic phase, decreasing the mass transfer in the DP8R-Exxsol D100
phase. The increase in the initial iron(III) concentration in the feed phase produced two
effects: (i) in the case of iron(III), this increase in the initial concentration resulted in a
decrease in iron permeability from 3 × 10−4 cm/s to 9.5 × 10−5 cm/s for iron(III) con-
centrations of 0.1 g/L and 1 g/L, respectively, and (ii) in the case of chromium(III) and
nickel(II), the permeation (extraction) across the liquid membrane was greatly reduced;
this reduction in the permeability can be attributed to two effects: (i) a decrease, due to the
increase in iron(III) concentration, in the number of extractant molecules available to be
complexed with chromium(III) and nickel(III), and (ii) the aforementioned population or
crowding effect due to the presence in the solution of greater iron(III) concentrations [23].
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In practical terms, the above situation can be avoided by increasing the membrane
surface, and also with longer reaction times [37].

Using Equation (9), the flux values for the different initial iron(III) concentrations
investigated in this work can be calculated; Table 7 shows these flux values.

These values indicated that, in accordance with Equation (9), the flux value increased
with the corresponding increase in the initial metal concentration in the solution [38], and
the transport process was controlled by diffusion in the feed phase. This tendency was
maintained up to 0.5 g/L concentration of iron(III), beyond which the metal flux became
constant. This was probably due to a saturation of the fibre pores with the iron–extractant
complex, which resulted in a lower effective membrane area [39].

3.7. Recovery of Iron(III) from the Iron-Loaded Organic Phase

As it was previously described, sulphuric acid was not an effective strippant for this
element when loaded in this DP8R extractant. Thus, in this work, once the organic and
strip phases disengaged, the iron(III)–organic phase contained in the pseudo-emulsion
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vessel was separated from the strip solution containing chromium(III), and it was then
stripped with 1 M of hydrochloric acid for ten minutes at 20 ◦C in an O/A ratio of 1. After
phase disengagement, the strip solution contained nearly 95% of the iron(III) concentration
(0.99 g/L) of the initial organic phase; the concentration factor (see Section 3.2.) for iron(III)
was about nine times.

After iron(III) stripping, the extractant can be regenerated to a new non-dispersive
extraction step. The reaction responsible for iron(III) stripping can be generalized as:

FeR3org + 4HClaq ⇔ 3HRorg + FeCl−4aq
+ H+

aq (10)

The formation of the anionic iron(III)–chloride complex allowed for the stripping of
this element. It is worth mentioning here that the non-existence of these anionic complexes
in sulphuric (and nitric) acid may be the explanation for why these two mineral acids were
not good strippants for iron(III) when acidic extractants were used to extract this metal.

3.8. A Proposal for the Treatment of Rinse Waters Using this Membrane Technology

After investigating the feasibility of the use of non-dispersive extraction and strip
dispersion with DP8R in Exxsol D100 as a carrier phase for the treatment of rinse waters,
several proposals can be drawn:

(i) In all cases, the rinse water must be treated as described in the literature [16] to remove
the acid from it.

Proposal 1:

(ii) Separate iron(III) and chromium(III) from nickel(II) in the extraction step; this led
to a raffinate containing just nickel(II) and an organic phase containing iron(III) and
chromium(III);

(iii) Separation of chromium(III) from iron(III) through selective stripping with sulphuric acid;
(iv) Iron(III) stripping with hydrochloric acid.

Proposal 2:

(ii) Selective extraction of iron(III) and chromium(III) from iron(III), as described in
Proposal 1;

(iii) Co-stripping of both elements with hydrochloric acid.

Proposal 3:

(ii) Co-extraction of the three elements; this led to a raffinate that can be recycled to the
rinse process as water;

(iii) Co-stripping of the three elements with hydrochloric acid.

There were more sub-variants, but the above seemed to be the simplest. In any case,
the selection of one of them must be performed if the recovery of the metals seemed to be
attractive from a profitable point of view, and congruent with the necessities of a given
plant, etc.

With any of the above proposals, the organic phase of DP8R in Exxsol D100 can be
recycled to a new non-dispersive extraction and strip dispersion step.

3.9. Estimation of the Mass Transfer Coefficient Values for Metal Transport

Following the same theoretical development as described in the literature [10], a final
expression for the overall permeation coefficient can be written as:

1
P
=

1
kf

+
ri

rln

1
DM,f·km

(11)

where kf is the feed phase mass transfer coefficient, ri is the inner hollow fibre radius, rln is
the hollow fibre log mean radius, DM,f is the metal species distribution ratio, and km is the
membrane mass transfer coefficient. From the above, the expression R = Rf + Rm can be
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derived, which expresses that the overall resistance (R) was the sum of the local resistances
due to the feed phase diffusion (Rm) and the membrane diffusion (Rm).

It was established [40] that the flow velocity of the feed phase governed the individual
feed mass transfer coefficient (kf):

kf = 1.5
Da

di

(
d2

i ·vf
Da·L

)1/3

(12)

where Da is the diffusion coefficient of metal species in the feed phase, di (24 × 10−3 cm)
is the inner fibre diameter, va (0.3 cm/s) is the mass flow velocity of the feed phase, and
L (15 cm) is the fibre length. At the optimum feed flow of 80 cm3/min, the value of kf was
established as 6.4× 10−4 cm/s. This coefficient depended on the hydrodynamic conditions,
the characteristics of the hollow fibres, and the diffusion of the solute in the feed phase.

This kf value was greater than the overall permeation coefficient values showed in
Table 6; thus, the contribution of the fractional resistance due to the feed phase solution
(Rf

0) to the overall resistance (R) can be calculated as:

R0
f =

Rf
R
·100 (13)

Under the present experimental conditions, the values of Rf
0 for the different metals

were shown in Table 8.

Table 8. Values (%) of the contribution of the fractional resistance due to the feed phase.

Extractant, % v/v Fe(III) Cr(III) Ni(II)

20 17 11 0.8
40 29 19 0.9
60 59 38 1

It can be seen that this step was not the rate controlling of the overall transport process of
these metals, except in the case of iron(III) and using an extractant concentration of 60% v/v,
where the contribution of the fractional resistance due to the feed phase was of 59%.

The membrane mass transfer coefficient (km) can be calculated from the next expression [41]:

km =
Dm·ε·dlm
τ·dm·do

(14)

where Dm (averaging 10−6 cm2/s) is the diffusion coefficient in the organic phase [42–44],
ε (0.3) is the membrane porosity, τ (3) is the membrane tortuosity, dm (3 × 10−2 cm) is
the membrane thickness, and dlm is the log mean diameter of the hollow fibre. Then,
the calculated value of km is 3.0 × 10−5 cm/s. This coefficient did not depend on the
hydrodynamic conditions applied on a given permeation system; it was only dependent on
the fibre characteristics and the diffusion coefficient of the solute–carrier complex formed
in the organic solution filling the fibre pores.

The effective diffusion coefficient of the metals–DP8R complexes across the membrane
phase can be calculated as [43,45]:

Deff = km·dm·τ (15)

The value of this coefficient was 2.7 × 10−6 cm2/s, and this coefficient is also depen-
dent on the characteristics of the hollow fibres.

4. Conclusions

Non-dispersive extraction and strip dispersion investigations, with a single hollow
fibre module for simultaneous extraction and stripping in counter-current mode, were
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used for the treatment of rinse waters from stainless steel pickling. The results indicated
that metal extraction to the organic phase increased with the increase in the extractant
concentration in the organic phase, and, consequently, metal transport was governed by
membrane diffusion. However, from a certain limiting extractant concentration (60% v/v),
the extraction and, thus, the mass transfer control were shifted to the feed phase. At the
highest extractant concentrations, the decrease in the metal extraction (transport) was
attributable to an increase in the viscosity of the organic phase. Also, metal extraction was
maximized using flow rates of 80 cm3/min and 180 cm3/min for the feed and pseudo-
emulsion phases, respectively. Metal extraction was also pH dependent, and the extraction
increased as the pH of the feed solution increased from 1 to 3. This demonstrated that the
driving force of metal transport was the difference in proton concentrations between the
feed (low) and the stripping (high) phases. Experimental data were used for estimation
of various mass transfer coefficients related to the transport system. The stability of this
hollow fibre membrane operation was found to be good under controlled flow rates in
the feed phase. This technique is a promising alternative to other separation technologies,
especially when the metal concentration in the feed solution is low.
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