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Abstract: Membrane fouling is a non-negligible issue affecting the performance of membrane systems.
Particularly, organic fouling is the most persistent and severe form of fouling. The complexation
between inorganic and organic matter may exacerbate membrane organic fouling. This mini re-
view systematically analyzes the role of inorganic matter in membrane organic fouling. Inorganic
substances, such as metal ions and silica, can interact with organic foulants like humic acids, polysac-
charides, and proteins through ionic bonding, hydrogen bonding, coordination, and van der Waals
interactions. These interactions facilitate the formation of larger aggregates that exacerbate fouling,
especially for reverse osmosis membranes. Molecular simulations using molecular dynamics (MD)
and density functional theory (DFT) provide valuable mechanistic insights complementing fouling
experiments. Polysaccharide fouling is mainly governed by transparent exopolymer particle (TEP)
formations induced by inorganic ion bridging. Inorganic coagulants like aluminum and iron salts
mitigate fouling for ultrafiltration but not reverse osmosis membranes. This review summarizes the
effects of critical inorganic constituents on fouling by major organic foulants, providing an important
reference for membrane fouling modeling and fouling control strategies.

Keywords: inorganic matter; organic matter; membrane fouling; interactions

1. Introduction

The rapid development of human society has triggered a population explosion, which
has brought about massive water pollution. The problem of water scarcity has gradually
come to the forefront. Membrane treatment is considered a promising technology widely
used in water reclamation, such as deep purification of secondary effluent from wastewater
treatment plants, seawater desalination, and drinking water purification [1–5]. Its advan-
tages include its simple operation, being energy saving, and having high efficiency and
high safety [6]. Membrane treatments commonly employed in water purification include
forward osmosis (FO), microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and
reverse osmosis (RO). Among these, only FO does not require the application of external
pressure to achieve separation. The process is driven by the osmotic pressure difference
created between the feed solution and draw solution [7–9]. The remaining types of filtration
technology are driven by operation pressure, which accelerates membrane fouling.

Membrane fouling is a complex process that occurs as a result of the interaction
between pollutants in the feed water and the membrane surface, leading to deposition
and adsorption on the membrane. It is an inevitable process that can gradually reduce the
permeate flux during membrane filtration, resulting in increased energy consumption and
a shortened membrane service life [10,11].
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Based on the number of articles published on membranes and membrane fouling since
2001 (Figure 1), membrane technology has received increasing attention, and research on
membrane fouling accounts for almost half of this research. Membrane fouling is evidently
a non-negligible issue in membrane research.
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Figure 1. The total number of publications related to “membrane” and “membrane fouling”.

Membrane fouling includes inorganic fouling, organic fouling, colloidal fouling, and
biofouling. Among these, organic fouling and biofouling are the most severe types of
fouling [12]. Compared with biofouling, organic fouling occurs throughout the entire
membrane separation process and is difficult to control. Previous studies have demon-
strated that using organic matter alone minimizes membrane fouling. Conversely, the
introduction of inorganic matter, particularly metal ions including Ca2+ [13], Mg2+ [12],
Al3+ [14], and Mn2+ [15], can significantly exacerbate membrane fouling by complexing
with the organic matter [16]. Even when the concentration of inorganic species is as low as
10−5–10−3 mol/L, the flux can show significant declines. Moreover, in practical applica-
tions of membrane technology, organic matter generally coexists with inorganic matter in
the feed water. Therefore, studying the impact of inorganic matter on membrane organic
fouling is important.

Three fouling control strategies are membrane modification, regular membrane clean-
ing, and pretreatment technologies. However, the prerequisite for the above strategies is
understanding the mechanism of membrane fouling. From about 300 annual publications
in 2011 to nearly 1000 today, more than 6000 articles on membrane fouling have laid a strong
foundation for the elucidation of membrane fouling mechanisms under various conditions.

There have been many reviews on membrane fouling, mainly focusing on types of
membrane fouling and control strategies [10,17–19], membrane fouling caused by certain
kinds of pollutants [20–23], thermodynamic mechanisms [24], and mathematical model-
ing [25–27]. However, there are few reviews on the effects of inorganic substances on
membrane organic fouling. The essence of membrane organic fouling is that organic and
inorganic substances in the feed water interact to form aggregates deposited and adsorbed
on the membrane, reducing membrane permeability. This can be divided into two pro-
cesses: the pollutant interaction process and membrane fouling process (Figure 2). Firstly,
organic and inorganic substances in the feed water interact with each other according to
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their own physical and chemical properties, such as complexation, adsorption, or mutual
exclusion. Then, based on the results of the above interactions, the composite pollutants
accumulate on the membrane to form substantial membrane fouling. These processes are
worth summarizing systematically.
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Therefore, this study systematically analyzes the reaction processes in membrane
treatment systems with inorganic and organic substances, focusing on the role of functional
groups and chemical bonds during the reaction processes, and the complementary role of
molecular (density functional theory (DFT) and molecular dynamics (MD)) simulations in
explaining the fouling mechanism during membrane fouling experiments. Then, the fouling
behavior of various inorganic–organic complexes on the membrane was summarized, and
the role of key inorganic substances was identified. This article provides a comprehensive
summary of the effects of inorganic substances that have been reported in membrane
fouling research. It can serve as an important reference for membrane fouling modeling
and fouling control strategies.

2. Interactions between Inorganic and Organic Matter

Studies have shown that natural organic matter (NOM) is rich in water environments,
and is the main culprit of membrane fouling [28]; humic acid, polysaccharides, and protein
are the key components of NOM [29]. In studies of organic fouling, these three components
are usually used to represent NOM, so for this article, we reviewed the effect of inor-
ganic species on membrane organic fouling caused by humic acid (HA), polysaccharides,
and protein.

2.1. Humic Acid (HA)

Among the components of NOM, HA is a group of organic polyelectrolytes metabo-
lized from natural and biological degradation. It occupies up to 80% of the total organic
carbon in natural waters; it is abundant in surface water, seawater, groundwater, wastew-
ater, and landfill leachate [30,31], with concentrations ranging from a few mg/L to a
few hundred mg/L [32]. HA contains three primary functional groups: carboxylic acids
(COOH), phenolic alcohols (OH), and methoxy carbonyls (C=O) [33]. These functional
groups can interact with inorganic matter via electrical double layers, neutralization, or
complexation, and these interactions significantly aggravate membrane fouling. At low
silica particle concentrations, silica adsorbs onto HA aggregates through hydrogen bonds,
bridging the HA network together to form large foulants due to the silica–silica interactions
above the critical silica concentration [16]. Similar to silica, Ca2+ and Mg2+ interact with
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the functional groups of HA through hydrophobic interactions, bridging the HA molecules
together to form aggregates that cause membrane fouling. Due to its stronger electrical
neutralization capacity and binding force with HA compared with Mg2+, Ca2+ forms more
aggregates when complexed with HA, leading to increased membrane fouling [31]. The
preserved humic acid components after UF filtration (PHACUF) exhibit a higher affinity for
Mg2+ due to the presence of more than 81.1% hydrophobic or weakly hydrophobic fractions
in the HA after ultrafiltration. These fractions possess a higher charge density and a greater
proportion of aliphatic compounds compared with the original HA. Moreover, the smaller
ionic radius and significantly higher charge density of Mg2+ allow for better specific charge
and complexing ability than Ca2+, enabling easier interaction with the carboxyl group of
PHACUF and resulting in stronger electrostatic adsorption [34].

In summary, the interaction between inorganic substances and humic acids can affect
the structure, properties, and behavior of humic acids, mainly in the following two roles:

1. Ligand interaction: Some inorganic substances can form ligand bonds with functional
groups (e.g., carboxylic acids, hydroxy acids, phenols, etc.) in humic acids. This
coordination can change the structure of humic acids, affecting their solubility, charge
density, and chemical reactivity.

2. Adsorption: Inorganic substances can be adsorbed on the surface of humic acid
molecules to form an adsorption layer. This adsorption can affect the surface proper-
ties, adsorption capacity, and environmental behavior of humic acids.

2.2. Polysaccharides

Polysaccharides are a type of organic matter that occupies a large proportion of solu-
ble microbial products (SMP) and extracellular polymeric substances (EPS) [35,36]. Due
to its abundance and gelling properties, polysaccharide fouling plays a very important
role in organic membrane fouling and has been widely reported in membrane filtration
studies [37–39]. In its early stages, research on membrane fouling caused by polysaccha-
rides mainly focused on the type and concentration of polysaccharides and calcium and
magnesium inorganic ions. However, advancements in fouling research have revealed
that transparent exopolymer particles (TEP), which arise from the crosslinking of polysac-
charides, are primarily responsible for membrane fouling in the membrane filtration pro-
cess [12,13,40,41]. TEP are a kind of granular polysaccharide with a three-dimensional
network structure; it has been widely reported that TEP have significant abundance in
seawater, surface water, and wastewater [42,43]. Polysaccharides have a propensity to bind
together, creating a substantial three-dimensional network structure, particularly when inor-
ganic ions act as bridging agents. This network can become even more extensive. Therefore,
TEP can serve as an indicator of the degree of crosslinking in polysaccharides. Furthermore,
the concentration and size of TEP are crucial factors when explaining membrane fouling.

In studies of membrane fouling caused by polysaccharides, sodium alginate (SA) is
usually selected to represent polysaccharide-like pollutants. SA (Figure 3) is a linear binary
copolymer containing (1,4)-linked β-d-mannuronate (M) and αl-guluronate (G) residues,
which are randomly arranged along the chain into consecutive M residues (MM-blocks),
consecutive G residues (GGblocks), and alternative M and G residues (MG-blocks) [44].
Each residue has plenty of carboxylate groups and hydroxyl groups, providing abundant
reaction sites for bridging via inorganic ions.

The roles of Ca2+ and Mg2+ on alginate fouling have been well studied; they both
promote interaction between alginate molecules, and the resulting bridging promotes the
formation of TEP. However, these two ions bind differently to alginate. Ca2+ can form ionic
bonds with the carboxylate groups (COO−) and hydrogen bonds with the hydroxyl group
or the oxygen of the ether bond [45]. On the other hand, Mg2+ has large and rigid hydration
shells, and the repulsive interactions between hydrated Mg2+ reduce the local concentration
of Mg2+, the charge density, and the electric double layer field of the alginate chain. Thus,
the binding affinity of Mg2+ to alginate is much weaker than Ca2+. For Mg2+ binding,
ionic bonds are not possible, especially at the low concentrations of polysaccharides in
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membrane systems. In addition, the hydrated Mg2+ cannot lose all the water molecules
in its hydration shells. Therefore, hydrogen bonds can form between the Mg2+ ion and
the oxygen atoms of the COO− (Mg2+· · ·O(COO−)) and OH−(Mg2+· · ·O(OH)) groups in
the alginate chains [12]. In particular, the hydrated Mg2+ ion may share water molecules
in its first hydration shell with the COO− groups of alginates. These various binding
patterns with polysaccharides result in differences in TEP formation: at constant alginate
concentrations, TEP concentrations first increased and then decreased with increasing
Ca2+ concentration, whereas it increased with increasing Mg2+ concentration. However,
the patterns of change in the size of TEP are the same, that is, they all become larger as
the concentration of Ca2+ and Mg2+ increases [45]. What is more, although MG−, MM−,
and GG-blocks have the same functional groups, their binding ability to Ca2+ and Mg2+

differed, with GG-blocks > MM-blocks > MG-blocks, and was dependent on the molecule
chains [12].
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In addition to detailed studies of Ca2+ and Mg2+, the roles of Al3+-SA and silicon-SA
interactions during the membrane filtration process have also been reported [14,46]. Similar
to Ca2+ and Mg2+, Al3+ coordinates with the carboxyl group to form TEP. The binding sites
of silica are the carboxyl and hydroxyl groups.

There are many kinds of polysaccharides, and the structures of different polysaccha-
rides also vary widely. It is not sufficient to examine only alginate as a representative of
polysaccharides to conduct relevant studies, but there are presently only a few studies ex-
ploring the combined effects of other polysaccharides and inorganic matters. Tong et al. [38]
investigated the interactions between polysaccharides with different structures and Ca2+.
Straight-chain polysaccharides with carboxyl groups (alginate and gellan gum) tended
to bind to Ca2+ and accelerate the formation of fouling. The effect of Ca2+ on a branched
polysaccharide with a carboxyl group (xanthan gum) was not obvious, whereas the fouling
behavior of a straight polysaccharide without a carboxyl group (guar gum) was similar to
that without Ca2+. In addition, other studies [47] have investigated the interaction between
the neutral polysaccharide dextran and Ca2+, and found that Ca2+ had a certain inhibitory
effect on fouling, although this effect was weak. This is because dextran is neutral, so it is
difficult for it to have an effect through electrostatic effects.

In summary, there are multiple types of interactions between inorganic substances and
polysaccharides, and these interactions can affect the structure, function, and properties
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of polysaccharides, most intuitively expressed by TEP. These interactions fall into the
following four categories:

1. Ion-exchange interactions: Inorganic ions can undergo an ion exchange with charged
groups (e.g., carboxyl groups, hydroxyl groups, etc.) in polysaccharides. This can
change the charge state of the polysaccharide, affecting the ionic balance of the solution
and the colloidal properties of the polysaccharide.

2. Hydrogen bonding: Inorganic substances can form hydrogen bonds with hydrogen
bonding acceptors (e.g., hydroxyl, amine groups, etc.) in polysaccharides. This
hydrogen bonding can stabilize the structure of polysaccharides and affect their
solubility, viscosity, and gel-forming ability.

3. Coordination: Some inorganic ions can form coordination bonds with functional
groups (e.g., hydroxyl, amine groups, etc.) in polysaccharides. This coordination
can affect the structure and stability of polysaccharides, but also change their optical
properties and catalytic activity.

4. Van der Waals force interactions: There are also van der Waals force interactions
between inorganic substances and polysaccharides, such as intermolecular attrac-
tion, electrostatic interactions, etc., which can affect their mutual adsorption and
cohesion properties.

2.3. Protein

Proteins are common macromolecular organic substances that are similar to polysac-
charides and are major components of SMP and EPS. As with HA and polysaccharides,
they were thought to be one of the main foulants of the membrane during the membrane
filtration process.

In studies of membrane fouling caused by proteins, bovine serum albumin (BSA)
is always chosen to represent protein-like pollutants. The BSA molecule is elliptical
(14 × 4 × 4 nm) with a negative charge, is endogenously fluorescent, and has an isoelectric
point and molecular weight of approximately 4.7 (pH) and 66 KDa, respectively [48]. As
shown in Figure 4a, three homology regions (regions I, II, and III) comprise the three-
dimensional structure of BSA, each consisting of a macrocycle–microcycle–macrocycle
triad. Each BSA molecule contains two tryptophan (Trp) residues, where Trp-212 is located
within the hydrophobic binding region of the protein and Trp-134 is located on the sur-
face of the BSA molecule. When there is only BSA in the feed water, membrane fouling
is mainly caused by protein aggregation from the cross-linking of BSA intermolecular
disulfide bonds, especially at the isoelectric point [49]. However, membrane fouling could
be more complex when inorganic matter coexists with BSA in the feed water. Ca2+ can
form an ionic bridge between two neighboring carboxyl groups of different peptide chains,
resulting in greater aggregation between BSA molecules, and thus more severe membrane
fouling. In contrast, the bridging effect is weaker and membrane fouling is less severe for
Mg2+. This phenomenon is mainly because Mg2+ has a higher charge density than Ca2+

and exhibits a greater salting-out effect [50,51]. The same bridging effect was also reported
for Fe3+ and BSA [52]. The average adhesion force between silica and BSA is much higher
than the average adhesion force between BSA molecules, which causes a large number of
BSA molecules to adsorb on the surface of silica and form large aggregates [53]. This leads
to the destabilization of BSA in solution and to the salting-out effect, causing the SI–BSA
complexes to accumulate on the membrane surface.

Lysozymes (LYZ) (Figure 4b) are also a kind of protein found in various bodily fluids
and tissues, such as tears, saliva, mucus, and egg whites. It is composed of 129 amino acids,
with an isoelectric point and molecular weight of approximately 10.4 (pH) and 14.3 kDa,
respectively [54]. Similar to BSA, LYZ aggregates with silica, but to a lesser extent than
BSA because of its relatively lower molecular weight, lower concentration polarization
modulus, and greater stability [53].
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Casein (Figure 4c) is a complex protein found in milk, mainly consisting of four
different types of protein molecules: αS1-casein, αS2-casein, β-casein, and κ-casein. The
structure of casein can be described as long chains of amino acids that fold and interact
with each other in various ways. The interaction between casein molecules and Ca2+ is
mainly through the formation of Ca2+ bridges between casein molecules, forming larger
aggregates of casein molecules [53].

In summary, there are a variety of interactions that can occur between inorganic
substances and proteins that have important implications for protein structure, function,
and stability. These interactions fall into the following three categories:

1. Ionic interactions: Inorganic substances can have ionic interactions, such as salt-
bridging, with charged amino acid residues in proteins. This interaction can affect the
secondary structure and stability of proteins.

2. Hydrogen bonding: Inorganic substances can have hydrogen bonding interactions
with amino acid residues in proteins, including the carbonyl, hydroxyl, and amino
groups of amino acids. The formation of hydrogen bonds can affect the folding and
stability of proteins.

3. Non-covalent interactions: Inorganic substances can also interact with proteins
through non-covalent interactions such as van der Waals forces, hydrophobic effects,
and hydrophobic interactions. These interactions can affect the structure, folding, and
interactions of proteins.

2.4. Molecular Simulation

Molecular simulation is a bridge between experiment and theory, and with the de-
velopment of computing power and simulation theory, molecular simulation technology
has been widely used in the environmental field. Recently, in the research of membrane
contamination, some scholars have used density functional theory (DFT) or molecular
dynamics (MD) simulations to further verify the membrane fouling mechanism and have
achieved promising results [14,16,55–57].

2.4.1. MD

MD simulation is a computational technique used to model and study the behavior
and dynamics of atoms and molecules over time. In MD simulation, the positions and
velocities of atoms or molecules are simulated based on classical mechanics. The interac-
tions between atoms or molecules are described by a force field potential, which includes
terms representing bond stretching, angle bending, and non-bonded interactions such as
electrostatic forces and van der Waals forces. It provides valuable insights into the behavior
and properties of molecular systems that are difficult or impossible to study experimentally,
offering a powerful tool for scientific research and discovery [58–61].

https://www.rcsb.org
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With the help of MD, the process of SA and BSA respectively forming aggregates
with HA was investigated in depth [55]. Our results showed that (Figure 5) electrostatic,
hydrophobic, and hydrogen bonding were the main types of interactions in the BSA–HA
system, and Ca2+ did not play a role. However, in the SA–HA system, the main interaction
was water-mediated Ca2+ bridging between the deprotonated carboxylate portion of the
humic acid molecule and the binding pocket on the alginate. The complexation between
silica and HA was also further clarified by MD, revealing that hydrogen bonding was the
main interaction force between HA and silica and occurred in two cases. In Case 1, one HA
molecule interacts with two Si molecules, and in Case 2, one HA molecule interacts with
twenty Si molecules. Silica can bind to hydroxyl (−OH), ether (−O−), carboxyl (−COOH),
amide (−CONR2), and carbonyl (−CO−) groups on the HA main chain. However, the
carboxyl group is the main functional group that binds to silica [16].
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Figure 5. Molecular dynamics simulations: (a1) BSA − HA; (a2) SA − HA (N—blue, O—red, C—black,
H—white, and Ca2+—green); (b1) a hydrogen bond formed in Case 1 between one Si molecule and
one HA molecule; (b2) multiple hydrogen bonds formed in Case 2 between three Si molecules and
one HA molecule; (b3) hydrogen bonds formed among different Si molecules in Case 2; (b4) the
average hydrogen bond number formed by each functional group on the HA during the entire
simulation (100 ns) [16,55].

2.4.2. DFT

DFT is a computational quantum mechanical method used to calculate the electronic
properties of atoms, molecules, and solids. It is based on the concept of electron density,
rather than wavefunctions, to describe the electronic structure. It provides valuable insight
into molecular and solid-state systems, enabling predictions of properties such as molecular
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geometries, electronic energies, charge distributions, and reaction energies. It is widely
used in chemistry, physics, and materials science, as it offers a good balance between
accuracy and computational efficiency [62–66].

The mechanism of synergistic fouling by Ca2+ and SA was clarified by DFT calculations
(Figure 6). The intramolecular ligand interactions between Ca2+ and SA chain appeared to
be impossible, whereas Ca2+ could form six coordination bonds with oxygen-containing
groups such as carboxyl, hydroxyl, and oxygen atoms of the sugar ring and glycosidic bond
of SA. The two SA chains occurred preferentially through the intermolecular binding of
Ca2+ to form a three-dimensional structure [57]. Similarly, the effect of PACl as a coagulant
on the membrane fouling by SA during membrane treatment was calculated using DFT.
The low concentration of Al3+ preferentially coordinated with the terminal carboxyl groups
in the SA chains to form a homogeneous gel with low permeability. Higher concentrations
of Al3+ would coordinate with non-terminal carboxyl groups and lower the negatively
charged chains of alginate, resulting in a morphology shift/cake layer from gel layer to
floc [14].
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3. Membrane Fouling Behavior Based on Inorganic–Organic Interactions

Membrane fouling is a complex process caused by the deposition and adsorption
of substances with different physical and chemical properties, as well as by mechanical,
physical, or chemical interactions with the membrane surface during filtration [10]. As
summarized above, inorganic matter in the feed water is bridged with various functional
groups such as carboxyl, hydroxyl, and carbonyl groups in the organic matter to form
reticulated or three-dimensional aggregates. Under operating pressure, these aggregates
can cover the membrane surface and cause membrane fouling and a subsequent decrease
in permeate flux. This process is called a pollutant–membrane interaction, which is closely
related to the characteristics of the membrane itself and the physicochemical properties
of the aggregates. Table 1 summarizes the patterns regarding the effects of inorganic
and organic matter interactions on membrane fouling in recent years (nanofiltration is
categorized as RO in this table). The level of fouling is expressed under the “Variation
of Normalized Flux Compared with Organic Matter Fouling Only” heading, based on
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inorganic–organic interactions. Positive values mean that the addition of inorganic matter
enhances the permeate flux and alleviates the membrane pollution, whereas negative
values mean that the addition of inorganic matter reduces the water flux and increases the
membrane pollution. A change in water flux with the increase in inorganic concentrations
can also reflect an effect on membrane fouling.

The fouling behaviors of UF and RO are slightly different. As long as inorganic
substances are present in the feed water, RO membrane fouling is exacerbated, and the
degree of membrane fouling is directly proportional to the concentration of inorganic
matter. Due to the small pore size (below 1 nm) of the RO membrane [67] and the high
operating pressure, the pollutant is constantly compacted on the membrane, resulting
in increasingly poor water permeability. However, in the UF system, when the feed
water is injected with aluminum salts as coagulants, the membrane fouling is accidentally
mitigated (the variation of normalized flux is positive), and the permeate flux is higher
than when the organics existed alone. This is mainly because, although Al3+ can complex
with organics to form an agglomerate, the agglomerate is deposited on the surface of the
UF membrane in a loose and porous manner, with better adsorption, so that the organic
contaminants are less compacted in the membrane pores and the removal rate of the
organics by UF is also enhanced [68,69]. Similarly, using iron salts as a type of coagulant
can also reduce UF membrane fouling and, unlike aluminum salts, it has a weaker effect
and does not immediately reduce membrane fouling (the variation of normalized flux is
positive). Instead, permeate flux gradually recovers as the Fe3+ concentration increases.
This may due to iron salts producing a denser layer of contamination compared with
aluminum salts [70]. Ca2+ has also been found to mitigate UF membrane fouling in the
HA–Ca2+ system [71]. When the concentration of Ca2+ was low (1 mM), the addition of
Ca2+ reduced the electrostatic repulsion between HA and UF membranes and promoted
the formation of a dense fouling layer of HA on the membrane surface. With an increase in
Ca2+ concentration, HA formed larger porous aggregates, whereas the hydration repulsion
force was enhanced, weakening the adhesion between the pollutant and UF membrane.
This reduced the membrane fouling, and recovered the permeate flux, to the extent that it
even exceeded the flux from HA alone.

Table 1. The trend of permeate flux based on inorganic–organic interactions.

Organic
Matter

Membrane
Type

Organic Matter
Concentration

Inorganic Matter
Filtration Time

Variation of Normalized Flux
Compared with Organic

Matter Fouling Only

The Trend of
Permeate FluxSpecies Concentration

HA

UF

10 mg/L [68] Al3+ 0.3 mM 7.5 min +10.21% increase

50 mg/L [72]
Mg2+

0.025 mM 60 min
−2.66%

/Ca2+ −9.37%
Fe3+ −9.03%

10 mg/L
DOC [71] Ca2+

1 mM
120 min

−43.49%
increase10 mM −16.27%

100 mM +8.30%

20 mg/L [70]

Ca2+ 0.02 mM

5 min

−34.47%
decrease0.2 mM −49.07%

Mg2+ 0.02 mM −27.33%
decrease0.2 mM −44.10%

Al3+ 0.02 mM −7.55%
increase0.2 mM +4.40%

Fe3+ 0.02 mM −30.19%
decrease0.2 mM −21.38%

RO
10 mg/L [73] Ca2+

1 mM
45 h

−24.12%
decrease3 mM −30.35%

5 mM −35.77%

50 mg/L [16] Si 6 mM 10 h −38.29% /
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Table 1. Cont.

Organic
Matter

Membrane
Type

Organic Matter
Concentration

Inorganic Matter
Filtration Time

Variation of Normalized Flux
Compared with Organic

Matter Fouling Only

The Trend of
Permeate FluxSpecies Concentration

Polysaccharides

UF

50 mg/L SA
MM-block

Ca2+ [12,74]

1 mM
48 h

−53.10%
decrease2 mM −63.20%

50 mg/L SA
GG-block

1 mM
24 h

−80.50%
decrease2 mM −83.86%

50 mg/L SA
MG-block

1 mM
72 h

−10.31%
decrease2 mM −12.67%

50 mg/L SA [45]

Ca2+

0.13 mM

200 min

−39.12%

decrease
0.25 mM −42.36%
0.50 mM −44.51%
0.75 mM −45.17%
1.00 mM −46.41%

1.5 mM −42.36%
increase5.00 mM −41.11%

10.00 mM −23.31%

Mg2+

0.13 mM −28.11%

decrease

0.25 mM −31.86%
0.50 mM −33.37%
0.75 mM −36.71%
1.00 mM −39.22%
1.5 mM −46.21%
5.00 mM −49.37%
10.00 mM −51.73%

RO

10 mg/L
Gellan gum

Ca2+ [38]

1 mM

45 h

−34.31%
decrease3 mM −50.59%

10 mg/L SA
1 mM −46.61%

decrease3 mM −47.31%

Si [46] 2 mM 1000 min −25.30% /

BSA

UF

20 mg/L [69] Al3+

0.1 mg/L

10 min

+27.33%

increase
0.3 mg/L +29.36%
0.9 mg/L +9.22%
1.5 mg/L +7.69%

500 ppm [52]

Fe3+

0.1 mM 100 min

−12.31% /

Ca2+ 0 /

/

RO

50 mg/L [75]
Mg2+

1 mM 25 h
−30.51% /

Ca2 −36.86% /

35 mg/L [53] Si 2.8 mM 500 mins −46.66% /

300 mg/L [48] Ca2+
0.5 mM

20 h
−2.17%

decrease1 mM −18.66%
2 mM −21.39%

4. Conclusions and Perspectives
4.1. Conclusions

This mini review systematically analyzed our current understanding of the roles of
inorganic matter in organic membrane fouling. The conclusions are:

1. Inorganic matters like Ca2+, Mg2+, Al3+, and silica readily interact with organic
foulants like humic acids, polysaccharides, and proteins via mechanisms including
ionic bonding, hydrogen bonding, coordination, and van der Waals forces. These facil-
itate the formation of larger aggregates that exacerbate membrane fouling, especially
in the RO system.

2. Molecular modeling techniques, such as MD and DFT, are valuable tools for gaining
molecular insights into membrane fouling, facilitating a clearer understanding of
organic membrane fouling mechanisms.

3. Polysaccharide fouling is primarily governed by the formation of TEP, which is
induced by the bridging of inorganic ions between polysaccharide chains.

4. Inorganic coagulants, such as aluminum (Al) and iron (Fe) salts, are capable of alle-
viating UF organic membrane fouling by forming loose and porous fouling layers
through complexation with organic matter.
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4.2. Perspectives

At present, membrane research has mainly focused on the interaction between a single
organic substance and a single inorganic substance. In the future, molecular simulation
calculations should be used to study the membrane fouling behavior caused by interac-
tions between multiple types of organic and inorganic substances, which is more in line
with practical applications. In addition, based on the enhancing effect of inorganic ions
on organic membrane pollution, we recommend developing reagents similar to heavy
metal catchers to precipitate complex inorganic ions from the influent, thereby alleviating
membrane pollution.
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