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Abstract: Hemodialysis (HD) membrane fouling with human serum proteins is a highly undesir-
able process that results in blood activations with further severe consequences for HD patients.
Polyvinylidene fluoride (PVDF) membranes possess a great extent of protein adsorption due to
hydrophobic interaction between the membrane surface and non-polar regions of proteins. In
this study, a PVDF membrane was modified with a zwitterionic (ZW) polymeric structure based
on a poly (maleic anhydride-alt-1-decene), 3-(dimethylamino)-1-propylamine derivative and 1,3-
propanesultone. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM),
and zeta potential analyses were used to determine the membrane’s characteristics. Membrane foul-
ing with human serum proteins (human serum albumin (HSA), fibrinogen (FB), and transferrin
(TRF)) was investigated with synchrotron radiation micro-computed tomography (SR-µCT), which
allowed us to trace the protein location layer by layer inside the membrane. Both membranes (PVDF
and modified PVDF) were detected to possess the preferred FB adsorption due to the Vroman effect,
resulting in an increase in FB content in the adsorbed protein compared to FB content in the protein
mixture solution. Moreover, FB was shown to only replace HSA, and no significant role of TRF in
the Vroman effect was detected; i.e., TRF content was nearly the same both in the adsorbed protein
layer and in the protein mixture solution. Surface modification of the PVDF membrane resulted in
increased FB adsorption from both the protein mixture and the FB single solution, which is supposed
to be due to the presence of an uncompensated negative charge that is located at the COOH group in
the ZW polymer.

Keywords: hemodialysis membrane; PVDF; protein adsorption; albumin; fibrinogen; transferrin

1. Introduction

The development of polymer chemistry has offered a broad variety of materials for de-
veloping hemodialysis (HD) membrane technology. The very first HD membrane was made
out of cellophane [1]. During the last 40 years of HD development, different polymers, such
as poly(methyl methacrylate) (PMMA), polyacrylonitrile (PAN), polyethylenimine (PEI),
polyvinylidene fluoride (PVDF), polyamide (PA), cellulose triacetate (CTA), and poly(vinyl
alcohol) (PVA), have been used as the main material for membrane fabrication [2–9]. Cur-
rently, the polysulfone family of polymers (polysulfone (PES), polyarylethersulfones (PAES),
etc.) are used for the production of high-performance membranes, not only for HD but for
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other biomedical applications too, due to their excellent balance of thermal and chemical
resistance and mechanical properties [10–13].

However, interest in other polymers still exists because of the high price of polysulfone
polymers. The limitations of other polymers are determined by their surface chemistry.
PVDF possesses high hydrophobicity, resulting in it being prone to protein adsorption and
membrane–surface interactions, which are considered highly undesirable phenomena for
HD. One of the ways to overcome this disadvantage is to perform chemical modification
and alter membrane surface chemistry [14–18]. The main idea of this modification is to
create a hydrophilic layer on the membrane surface that prevents protein adsorption via
hydrophobic interaction.

This approach was implemented in three generations of HD membranes [19]. The first
generation utilized the presence of OH groups, which possess high hydrophilic proper-
ties [20,21]. However, high hydrophilicity does not necessarily mean high hemocompati-
bility, and OH-containing polymers often trigger complement cascade reactions, resulting
in severe health problems for HD patients. The second generation of HD membranes
appeared from surface modification with ethylene glycol-based polymers [20,21]. The less
hydrophilic O-containing surface was believed to trigger fewer blood coagulation processes
and to reduce fibrinogen adsorption and the coagulation process [18,22].

The latest (third) generation of HD membranes are covered with zwitterionic (ZW)
structures, which comprise equal number of anionic and cationic moieties, resulting in a
total zero charge. Despite being uncharged, the ZW molecule is able to strongly bind water
molecules, thus creating electrostatically induced hydration that is believed to hinder pro-
tein adsorption on the membrane surface [19,23–28]. This approach has been successfully
implemented for many polymer structures, including PVDF membranes, resulting in a
significant improvement in their biocompatibility and antifouling properties [29–32].

Recently, our research group has reported the challenges, trends, and current state of
ZW-modified membranes and has also conducted research showing the improvement in
antifouling properties via surface modification with zwitterion coatings [33–38]. Our group
has studied the interaction of human blood proteins with membrane models using molecu-
lar docking. Those studies were crucial to providing insights and highlighting the functional
group(s) that are responsible for the interactions with human serum proteins. Based on
the computational results, our research group has developed novel ZW membranes that
reduced the inflammatory biomarker released in dialysis patients’ serum [35–38].

The aim of the current paper is to investigate human serum protein depositions inside
polyvinylidene fluoride-based dialysis membrane layers using synchrotron radiation micro-
computed tomography (SR-µCT). We also study the influence of the ZW structure on PVDF
membrane fouling with proteins.

2. Materials and Methods
2.1. Materials

PVDF membranes as sheet material were supplied from Sterlitech. Human serum
protein (human serum albumin (HSA), fibrinogen (FB), and transferrin (TRF)) were pur-
chased from Sigma-Aldrich, Oakville, Canada. Gold nanoparticles were purchased from
Nanopartz™, Loveland CO, USA. These nanoparticles were conjugated to human proteins
(albumin, fibrinogen, and transferrin) to be visualized in the SR-µCT. Phosphate buffer
solution, ethanol (≥99.9%), chloroform (≥99.5%), methanol (≥99.9%), 1,3-propanesultone,
and poly (maleic anhydride-alt-1-decene), 3-(dimethylamino)-1-propylamine derivative
(PMAL®-C8, BioReagent, for molecular biology) were purchased from Sigma-Aldrich,
Oakville, Canada. Saline solution was provided by St. Paul’s Hospital.

2.2. Membrane Surface Modification

The procedure of PVDF membrane surface modification is described in our previous
paper [38]. The bare PVDF membrane was vacuum-dried before being introduced into
a 2:1:2 ratio suspension consisting of a premixed 90:10 chloroform–ethanol mixture and
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50% PMAL®-C8. The membrane was completely immersed within this mixture and stirred
(100 rpm at 25 ◦C). Approximately 25 µL of the synthesized polymer solution was utilized
in modifying the membrane. The membrane was then removed from the polymer solution
and washed in ethanol (50%) for 10 min and ultrapure deionized water for 10 min in order
to remove the adhering polymer solution. Subsequently, the membrane was completely
immersed in a propanesultone and methanol mixture at 40 ◦C for 60 min in order to
complete the ring-opening polymerization reaction with PMAL®-C8. Finally, ethanol-
washing and vacuum-drying procedures were carried out before storage. The chemical
structure of the resultant membrane is given in Figure 1. The modified membrane is
referred to here and subsequently as the PVDF-ZW membrane.
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Figure 1. The structure of PVDF membrane modified with ZW polymer coating.

2.3. Human Serum Protein Solution Preparation

Human serum protein solutions were prepared using a saline and phosphate buffer
solution with resultant pH = 7.4. The concentrations of individual proteins and in their
mixtures were as follows: HSA, 50 mg/mL; FB, 2 mg/mL; and TRF, 3 mg/mL. Each
protein was conjugated with corresponding gold NPs before being mixed. The resultant
solutions were injected into PVDF and PVDF-ZW membranes, with further analysis of the
membranes using the X-ray based synchrotron technique.

2.4. In Situ Synchrotron Advanced Imaging Techniques at BioMedical Imaging and Therapy
(BMIT) Beamline

Visualization of protein adsorption was conducted using a monochromatic beam at
20 keV energy. A beam monitor, AA-40 (500 µm LuAG scintillator, Hamamatsu, Japan),
coupled with a high-resolution camera, PCO Dimax HS (PCO, Germany), providing a
pixel size of 5.5 µm and a field of view (FOV) of 4.4 mm × 2.2 mm, was used to record
the X-ray radiographs. A high photon flux allows for very detailed observation of particle
deposition in microscopic layers of the membrane. CT projections were recorded at 20 keV
at the 05ID-2 beamline of the BioMedical Imaging and Therapy (BMIT), at the Canadian
Light Source (CLS), as presented in Figure 2a. The resulting radiographs were converted
into graphical images using Avizo software. Further image analysis was performed using
imageJ software, National Institutes of Health, BSD2. Gold nanoparticles conjugated
with proteins produced the brightest spots on the image, thus providing quantitative
information about the protein amount adsorbed at each scanned layer (see Figure 2b). In
case of adsorption from multiprotein solutions, each protein was detected and analyzed
on the basis of the specific shape of nanoparticles used for conjugation with each protein.
Thus, spherical particles were used for conjugation with HSA, rods (sphericity ratio 0.85)
were used for conjugation with FB, and cylinders (sphericity ratio 0.91) were used for
conjugation with TRF. Detailed information about membrane imaging and radiograph
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representation with membrane division into layers and regions is described in our recent
papers [38–42]. Membrane thickness was modeled with 10 regions of interest (ROIs), as
shown in Figure 2c. Region 1 represents the very top membrane surface. The middle layers
represent the internal membrane structure. The bottom membrane parts are located in
Region 10. In order to ensure the accuracy of the data, four measurements were carried out
for each sample. The data presented in the discussion are an average of the measurements.
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2.5. Analytical Techniques Used for Membrane Characterization
2.5.1. Fourier Transform Infrared Spectroscopy ATR-FTIR Analyses

Prior to characterization, these membrane specimens were appropriately vacuum-
dried for one day at 30 ◦C. They were then placed on a Renishaw-inVia Raman Microscope
(Renishaw, UK) stage and were ready for surface chemical analysis using attenuated total
reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Both bare and ZW-coated
PVDF membranes were probed for membrane-bound chemical groups with IR spectra, all
recorded in transmittance mode.

2.5.2. Scanning Electron Microscope (SEM)

The comparative surface morphologies of both ZW-coated and bare membranes were
recorded with the aid of a Hitachi SU8010 Field-Emission Scanning Electron Microscope,
Hitachi, Ibaraki, Japan. All SEM images were recorded at 3 kV accelerating voltage in order
to avoid burning of the Cr-coated membrane samples (Q150T ES).

2.5.3. Zeta Potential Analyzer

A Zetasizer-Nano (Malvern Instruments Ltd., Malvern, UK) was used to measure
the HD membranes surface charge (zeta potential) with a precision of ±0.01 mV. The
membrane sample preparation and software steps are detailed in our recent study [43].

3. Results and Discussion
3.1. Zwitterionic-Polymer-Modified and Unmodified PVDF Membrane Characteristics

Figure 3 shows the ATR-FTIR spectra of both zwitterionic-polymer-modified (PVDF-
ZW) and unmodified (PVDF) membranes. As expected, the spectrum of the bare membrane
shows peaks corresponding to C-F vibration, 1410 (bending) and 1199 (stretching) cm−1,
as well as C-H vibrations at 2978 (stretching) and 1383 (deformation) cm−1 [43]. The
alteration in PVDF peak intensities and positions for the PVDF-ZW sample attests to the
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surface polymer adsorption, especially the suppressed peaks at 2978 cm−1 (C-F bending)
and 1383 cm−1 (C-F stretching) [44–46]. The PVDF membrane was polymerized with
the zwitterionic polymer, and the effect of this process could be identified by ATR-FTIR
analysis. Evidence of polymer adsorption on PVDF for the PVDF-ZW membrane can be
seen in the absorption peaks related to stretching vibrations of N-H, C-N, and C-C around
3000, 1471, and 1000 cm−1, respectively. There are still characteristic absorption bands for
N-H wagging at 764 cm−1. These are the main chemical groups of PMAL-C8 moiety on the
zwitterionic polymer. It is important to note that these peaks are completely absent from
the spectrum of the unmodified membrane [47]. The ring-opening polymerization reaction
of 1,3-propanesultone after reaction with the tertiary amine on PMAL®-C8 yields new IR
vibration peaks at 1619 cm−1 corresponding to N-H (bending). This marks the acylation of
propanesultone ring in the presence of methanol. The presence of sulfonate SO−

3 (stretching)
chemical groups as well as that of CH3 and CH2 (bending) could also be seen at 1039, 1381,
and 1462 cm−1, respectively [47]. The symmetric and asymmetric stretching sulfonate
vibrations that would have been seen at 1055 and 1238 cm−1, respectively, are not observed,
which is due to the overlapping CF2 peak around 1182 cm−1. The band at 1664 cm−1 could
be assigned to amide C=O stretching, whereas the one at 1524 cm−1 is N-H stretching
of the O=C-NH groups in the polymer chain [48]. Compared with virgin PVDF, a new
peak at 953 cm−1 appeared in the zwitterionic sulfobetaine PVDF membrane, which can
be attributed to the quaternary amine groups. The observed evidence of ZW on the PVDF
membrane shows that the chemical modification process via dip coating was successful.
This indicates that the polymer coated the PVDF membrane. Tiny shoulder peaks consistent
with the C-H bond are common for both membranes at 2900 cm−1.

Membranes 2023, 13, x  5 of 13 
 

 

3. Results and Discussion 
3.1. Zwitterionic-Polymer-Modified and Unmodified PVDF Membrane Characteristics 

Figure 3 shows the ATR-FTIR spectra of both zwitterionic-polymer-modified (PVDF-
ZW) and unmodified (PVDF) membranes. As expected, the spectrum of the bare mem-
brane shows peaks corresponding to C-F vibration, 1410 (bending) and 1199 (stretching) 
cm−1, as well as C-H vibrations at 2978 (stretching) and 1383 (deformation) cm−1 [43]. The 
alteration in PVDF peak intensities and positions for the PVDF-ZW sample attests to the 
surface polymer adsorption, especially the suppressed peaks at 2978 cm−1 (C-F bending) 
and 1383 cm−1 (C-F stretching) [44–46]. The PVDF membrane was polymerized with the 
zwitterionic polymer, and the effect of this process could be identified by ATR-FTIR anal-
ysis. Evidence of polymer adsorption on PVDF for the PVDF-ZW membrane can be seen 
in the absorption peaks related to stretching vibrations of N-H, C-N, and C-C around 3000, 
1471, and 1000 cm−1, respectively. There are still characteristic absorption bands for N-H 
wagging at 764 cm−1. These are the main chemical groups of PMAL-C8 moiety on the zwit-
terionic polymer. It is important to note that these peaks are completely absent from the 
spectrum of the unmodified membrane [47]. The ring-opening polymerization reaction of 
1,3-propanesultone after reaction with the tertiary amine on PMAL®-C8 yields new IR vi-
bration peaks at 1619 cm−1 corresponding to N-H (bending). This marks the acylation of 
propanesultone ring in the presence of methanol. The presence of sulfonate SOଷି (stretch-
ing) chemical groups as well as that of CH3 and CH2 (bending) could also be seen at 1039, 
1381, and 1462 cm−1, respectively [47]. The symmetric and asymmetric stretching sulfonate 
vibrations that would have been seen at 1055 and 1238 cm−1, respectively, are not ob-
served, which is due to the overlapping CF2 peak around 1182 cm−1. The band at 1664 cm−1 
could be assigned to amide C=O stretching, whereas the one at 1524 cm−1 is N-H stretching 
of the O=C-NH groups in the polymer chain [48]. Compared with virgin PVDF, a new 
peak at 953 cm−1 appeared in the zwitterionic sulfobetaine PVDF membrane, which can be 
attributed to the quaternary amine groups. The observed evidence of ZW on the PVDF 
membrane shows that the chemical modification process via dip coating was successful. 
This indicates that the polymer coated the PVDF membrane. Tiny shoulder peaks con-
sistent with the C-H bond are common for both membranes at 2900 cm−1. 

 
Figure 3. ATR-FTIR of unmodified PVDF and zwitterionic-polymer-modified PVDF membranes. 

Figure 4 depicts the surface morphologies of both bare and ZW-coated PVDF mem-
branes. The presence of homogeneous fine strains, characteristic of the PVDF membrane, 
is conspicuous in Figure 4a. The magnified image in Figure 4b shows distinct microporous 
structures with different sizes (approximately 0.1 μm max). It is clear that the morphology 
of the pristine PVDF is quite different from that of the modified membrane, as can be seen 
in Figure 4b,d. The zwitterionic polymer significantly altered the PVDF membrane but 
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Figure 4 depicts the surface morphologies of both bare and ZW-coated PVDF mem-
branes. The presence of homogeneous fine strains, characteristic of the PVDF membrane, is
conspicuous in Figure 4a. The magnified image in Figure 4b shows distinct microporous
structures with different sizes (approximately 0.1 µm max). It is clear that the morphology
of the pristine PVDF is quite different from that of the modified membrane, as can be seen
in Figure 4b,d. The zwitterionic polymer significantly altered the PVDF membrane but did
not block micropores, with no observable agglomeration. The membrane surface charge
measurements showed evidence of zwitterionation of the PVDF membrane. The PVDF and
PVDF-ZW have a surface charge of −2.5 and 0.35, respectively.
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3.2. Human Serum Protein Adsorption from Protein Mixture Solution

Based on the SR-µCT analysis, we detected a difference in the protein composition in
the adsorbed layer on the membrane surface in comparison with the protein composition
in the initial solution (see Figure 5). Thus, the content of HSA in the protein mixture in the
initial solution is 90%, whereas this value drops to less than 80% in the protein mixture
layer adsorbed by membranes. Moreover, the HSA content for the PVDF membrane is
4% higher than that for the PVDF-ZW membrane. Interestingly, the HSA content tends to
decrease with membrane thickness (see Figure 6a) for both membranes.
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It is to be noted that the change in HSA content is compensated by the corresponding
increase (by more than 12%) in FB content predominately; i.e., no significant change in TRF
content is observed, and its content remains on the same level for both the initial solution
and the adsorbed protein layer. Notably, the FB content for the PVDF-ZW membrane is the
highest (3% higher than that for PVDF membranes), indicating a higher interaction of the
PVDF-ZW membrane with this protein. As well as for overall FB content, FB content inside
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the membrane also tends to increase (see Figure 6b), compensating the corresponding
decrease in HSA content (see Figure 6a).

TRF content across membrane thickness possesses the same tendency to increase as in
the case of FB, although the absolute change in TRF content is less than 1%, whereas FB
content changes within 3–4%.

The protein–protein and protein–membrane interactions induced a gain of free energy,
so the protein molecule underwent conformational changes and spread on the membrane
surface as a part of the third stage. Depending on the degree of interaction, a large protein
can dislocate a small one in a phenomenon called the Vroman effect. This dynamic interac-
tion and equilibrium lead to progressive changes in the composition of the protein cake
layer, affecting the filtration performance and biocompatibility profile of the surface [49–53].

Considering adsorbed protein distribution (see Figure 7), not quite uniform distribu-
tion could be observed for both membranes. Proteins were shown to tend to locate more at
the bottom of the membrane (high index regions), whereas both membranes have a similar
pattern in protein distribution.
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3.3. FB Adsorption from Its Single Solution

Besides the adsorption of the protein mixture, FB adsorption from its single solution
was also studied, since this protein is believed to play a major role in the blood clotting
process. Figure 8 demonstrates the difference in FB adsorption ratios when FB is adsorbed
from its single solution and from a protein mixture. For both membranes, an increased FB
adsorption ratio was observed when FB was adsorbed from the protein mixture, which can
be explained by the Vroman effect. Thus, HSA has a concentration of 50 mg/mL, which
results in its adsorption on the membrane surface and its further replacement with FB.
Without HSA, the adsorption rate of FB seems to be reduced, resulting in a lower adsorption
ratio. Moreover, the PVDF-ZW membrane possesses a slightly higher FB adsorption, which
correlates with increased FB content in the adsorbed protein layer (see Figure 5).
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The possible explanation for the increased FB adsorption by the PVDF-ZW membrane
could be related to ZW polymer structure and charge distribution (see Figure 9). In
addition, FB illustrated an anisotropic charge distribution of fibrinogen by computing the
local charges of each domain [54,55]. Thus, it can be stated that this polymer contains
an uncompensated negative charge located at the COOH groups. Although the COOH
group possess weak acidic properties, this seems to be enough to affect protein adsorption,
causing some increase in electrostatic interaction between the membrane surface and
positive moieties in the FB molecule.
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When FB distribution across membrane thickness is considered (see Figure 10), it can
be observed that PVDF and PVDF-ZW membranes possess different behaviors. Thus, FB is
uniformly distributed across PVDF-ZW membrane thickness, whereas unmodified PVDF
holds FB predominately in the middle regions.
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4. Conclusions

PVDF and PVDF-ZW membranes possess similar behaviors in protein adsorption.
Thus, both membranes tend to adsorb more FB, resulting in a change in protein composition
in the adsorbed layer in comparison with the protein mixture solution; i.e., FB content in
the adsorbed protein layer increased from 3.6% (protein mixture solution) to 15% for PVDF
and 18% for PVDF-ZW membrane. This increase in FB content was compensated by the
corresponding decrease in HSA content, indicating the major role of HSA in the Vroman
effect. At the same time, TRF content was not affected and remained approximately the
same for the protein mixture solution and adsorbed protein layer for both membranes. This
assumption was confirmed by comparing the FB adsorption ratio of the FB single solution
and FB adsorption from the protein mixture solution. FB adsorption from the protein mix-
ture solution was higher for both membranes. Notably, the PVDF-ZW membrane adsorbed
more FB compared with the unmodified membrane. This difference is supposedly due to
the structure of the ZW polymer used for modification. The presence of the uncompensated
charge located on COOH groups resulted in a stronger interaction with the FB molecule,
causing increased FB adsorption.
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