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Abstract: In this study, the behavior of permeate flux decline due to scale precipitation of calcium
sulfate on reverse osmosis membranes was investigated. The proposed scaling-based flux model
is able to explain that permeate fluxes attributed to three mechanisms of scale precipitation—cake
formation, surface blockage, and mixed crystallization—converge to the same newly defined scaling-
based critical flux. In addition, a scaling index is defined, which determines whether scale precipitates
on the membrane. The experimental results were analyzed based on this index. The mass-transfer
coefficients of flat membrane cells used in the experiments were measured and, although the coeffi-
cients differed, they could be summarized in the same form as the Leveque equation. Considering
the results of the scale precipitation experiments, where the operating conditions of pressure, solute
concentration, temperature, and Reynolds number were varied, the convergent values of the perme-
ate fluxes are explained by the scaling-based critical fluxes and the scale precipitation zones by the
scaling indexes.

Keywords: reverse osmosis membrane; calcium sulfate; mass-transfer coefficient; scaling-based flux
model; scaling-based critical flux; scaling index

1. Introduction

Since Loab and Sourirajan developed a workable reverse osmosis (RO) membrane of
cellulose acetate in 1960 [1], the development of the RO process over the past six decades
has been remarkable. A major application of the RO process is the production of drinking
water by seawater desalination, including the Ashkelon desalination plant that processes
330,000 m3/d, equivalent to about 15% of the domestic water consumption in Israel, and
desalination applications for drinking water and industrial water production by brackish
water desalination [2]. The RO process is an indispensable technology for the production
of ultrapure water for the cleaning of semiconductors and liquid crystals. In regions
that have domestic water shortage areas, such as the U.S., China, India, the Middle East,
and Singapore, the RO process is used to produce drinking water, industrial water, and
agricultural water using municipal sewage as raw water. Factory wastewater is treated by
the RO process and reused as industrial water. In the food industry, the RO process is widely
used for the concentration and recovery of valuable materials, such as the concentration of
juice from oranges and tomatoes, and recovery of whey in the dairy industry [3,4].

The main problem in the practical operation of RO plants is the prevention and predic-
tion of RO membrane performance degradation. The causes of performance degradation of
RO membranes can be divided into two categories: degradation of the RO membrane itself,
including chemical degradation due to oxidation and hydrolysis, biological, and physical
degradation; and fouling of the RO membrane, which includes the adsorption of dissolved
substances, deposition of organic and colloidal materials, and precipitation of sparingly
soluble inorganic substances (scale) on the membrane. Of these, the precipitation of spar-
ingly soluble inorganic substances, such as calcium, magnesium, and silica compounds,
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on RO membranes is a problem in brackish water desalination, causing restriction of the
recovery ratio of product water. In seawater desalination, the problem is the increasing risk
of precipitation of calcium and magnesium compounds in the concentrated brine due to
the increasing recovery ratio of the produced water [5].

Okazaki and Kimura [6] were the first to analyze scale precipitation phenomena on RO
membranes from a chemical engineering point of view. They proposed the ‘cake formation’
mechanism, in which precipitated scale forms a cake layer, to explain the permeate flux
decline due to scale precipitation and investigated the transient state of permeate flux
decline in detail, including a study of the waiting period for scale precipitation to start
from the supersaturated state of solute concentration. However, in the convergent stage
of permeate flux decline, they only stated that the solute concentration at the membrane
surface became equal to the saturated concentration and the permeate flux converged to a
constant value. Regarding analyses of scale precipitation phenomena on RO membranes,
many reports have been presented on experiments related to the transient state, in which
scale precipitation occurred and the permeate flux decreased rapidly [7–16]. Experiments
and analyses of the transient state of scale precipitation on RO membranes based on
the cake formation mechanism were conducted by Okazaki and Kimura [6] and other
researchers [8,17].

In contrast, a surface blockage mechanism was proposed by Gilron et al. [18] and was
later followed by supporting reports [7,19–25]. Experiments and analyses based on this
mechanism were performed by Gilron et al. and others [18,20–23,26]. In response to these
competing theories, Lee et al. reported that precipitation was due to both surface blockage
and cake formation occurring during precipitation, based on experimental data [27]. Their
view was subsequently supported by experimental observation and analyses by other
researchers [9,10,28–37].

The convergent stage of permeate flux decline due to fouling on the membranes in
RO, nanofiltration, ultrafiltration, and microfiltration was intensively investigated based
on three indices regarding the deposition of organic and colloidal suspended materials on
the membranes: critical flux, below which no fouling occurs and a decline of flux with time
does not occur [38–56]; threshold flux, at or below which a low or nearly constant rate of
fouling occurs and above which the rate of fouling increases markedly [44,46,49,50,52–59];
and limiting flux, which represents the maximum stationary permeate flux that can be
reached by increasing the transmembrane pressure [42,44,46,49,55,60,61].

In contrast, there are only a few reports on the convergent stage of permeate flux
decline during scale precipitation on RO membranes. Critical flux detection in a silica
scaling RO system was studied by Lisitsin et al. [19]. The application of an equation for
determining the critical flux of colloidal fouling due to scale precipitation was studied by
Shirazi et al. [30]. These reports studied only the transient state of permeate flux decline or
the proposed application of an analytical model of colloidal fouling (deposition) to scale
precipitation on the membrane surface, so further studies are needed.

In this study, we focused on the convergent stage of the permeate flux decline at the
time of precipitation of sparingly soluble inorganic substances (scale) on the RO membrane
and investigated the operating conditions in the scaling (scale precipitation) zone, which is
an important factor for RO membrane performance degradation in practical operation.

Here, deposition and precipitation are defined as follows: deposition is a phenomenon
in which insoluble suspended materials in water adhere to the membrane surface; pre-
cipitation is a phenomenon in which solute dissolved in water is concentrated to become
insoluble material that adheres to the membrane surface.

2. Materials and Methods
2.1. Reagents and Concentration Measurement Methods

The sodium chloride (NaCl) and calcium sulfate dihydrate (CaSO4·2H2O) used in this
experiment were special-grade reagents from Fujifilm Wako Pure Chemical Corp., Osaka,
Japan. Pure water (electrical conductivity less than 1.0 × 10−4 S/m) was obtained from tap
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water treated with an ion-exchange resin cartridge supplied by Nomura Micro Science Co.,
Ltd., Atsugi, Japan.

The solutions of NaCl and CaSO4 were prepared by dissolving NaCl and CaSO4 ·
2H2O of the reagents in pure water. The solute concentrations of NaCl and CaSO4 were
measured according to the following relationship between electrical conductivity and
concentration, which was determined at 25 ◦C by preliminary investigation:

Y = 1522X2 + 4720X, (1)

where X is electrical conductivity (S/m), and Y is NaCl concentration (mg/L) within the
range of less than 1000 mg/L.

The formula for the relationship between electrical conductivity and CaSO4 concentra-
tion at 25 ◦C is as follows:

Y = 15,200X2 + 6150X, (2)

where X is electrical conductivity (S/m), and Y is CaSO4 concentration (mg/L).

2.2. Reverse Osmosis Membranes

The four types of RO membranes used in the experiments were made of cross-linked
fully aromatic polyamide composites and were manufactured by Toray Industries, Inc.,
Tokyo, Japan. Table 1 shows the performance datasheet information supplied by the
membrane manufacturer.

Table 1. Permeate flux and salt rejection of reverse osmosis membranes used in this study.

Membrane Model

UTC-60 UTC-70UL UTC-70 UTC-80

Performance
Permeate flux (m3/(m2d) 0.78 1.15 1.26 0.65
Salt rejection (%) 70.9 99.5 99.7 99.9

Test conditions
Applied pressure (MPa) 0.35 0.75 1.5 5.5
Temperature (◦C) 25 25 25 25
NaCl concentration (mg/L) 500 1500 1500 3.5% Seawater
pH (−) 6.5 6.5 6.5 6.5

2.3. Flat Membrane Cells

Cells A and B used in the experiments were Membrane Master CT-10 lamellar flow-
type flat membrane test cells of transparent acrylic resin made by Nitto Denko Corp., Osaka,
Japan. The effective membrane area was 58.4 cm2 and the cross-sectional area of the feed
channel was a rectangle with a length of 0.75 mm and width of 36.0 mm. External and
internal views of the cell are shown in Figure 1a,b, respectively.

2.4. Experimental Equipment

A flow diagram of the experimental equipment used for the mass-transfer coefficient
measurement and scale precipitation experiments is shown in Figure 2. In the mass-
transfer coefficient measurement, NaCl and CaSO4 were used as solutes; in the precipitation
experiments, CaSO4 was used as the solute. The concentration of NaCl or CaSO4 was
adjusted in the raw water reserve tank (capacity: 1000 L). Raw water was supplied to a feed
tank with a capacity of 30 L by a circulation pump. Some of the raw water that overflowed
the feed tank was returned to the raw water reserve tank. A polysulfone hollow fiber filter
(Toraycube, manufactured by Toray Industries, Inc.) with a nominal pore size of 0.3 µm
was installed in the circulation line to prevent inflow of suspended particles to the feed
tank. The temperature of the feed solution in the feed tank was controlled to maintain a
set value by a heater in the tank and a heat exchanger installed in the circulation line. The
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feed solution in the feed tank was fed in series to Cells A and B, which were equipped with
RO membranes, by a high-pressure pump. By adjusting three valves, namely, (1) the inlet
valve to Cell A at the outlet of the high-pressure pump, (2) the bypass valve that returns
the feed water from the high-pressure pump to the feed tank, and (3) the outlet valve of
Cell B, the feed water to Cell A was set to the desired pressure and flow rate (i.e., Re). The
pressure at the inlet and outlet of Cells A and B was continuously recorded using a sensor
installed in the pressure gauge. The permeate through the RO membranes in Cells A and
B was collected in a beaker with a siphon, and the permeate flow rate was measured by
weighing the unit time mass with an electronic balance (model CG-300, Shinko Denshi Co.,
Ltd., Tokyo, Japan) and automatically recorded by a personal computer. The concentrate
from Cell B was measured by a rotameter flowmeter and the concentrate flow rate was
measured by weighing the unit time mass in a beaker with a siphon using an electronic
balance (model CG-1500, Shinko Denshi Co., Ltd.). To exclude the effect of seed crystals
that may have been present due to precipitation, the experiment was conducted using a
one-pass method, in which the feed solution was not circulated, and the concentrate was
discharged outside the system.
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2.5. Mass-Transfer Coefficient Measurement
2.5.1. Previous Studies

Transport phenomena of the solute near the RO membrane surface are shown in
Figure 3. To model these phenomena, the permeate flux equation based on concentration
polarization is expressed as follows [62]:

Jv = k ln{(Cm − Cp)/(Cb − Cp)}, (3)

where Jv: permeate flux; k: mass-transfer coefficient; Cb: bulk feed concentration; Cp: per-
meate concentration; and Cm: concentration at membrane surface.
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From a chemical engineering point of view, the value of k is usually calculated using
dimensionless correlation equations, such as the Sherwood (Sh), Reynolds (Re), or Schmidt
(Sc) numbers, which are respectively expressed by the following equations:

Sh = kdh/D; (4)

Re = ρudh/µ; (5)
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Sc = µ/(ρD), (6)

where dh: hydraulic diameter; D: diffusion coefficient; ρ: density of solution; u: feed flow
velocity; and µ: viscosity of solution. The Leveque equation provides a dimensionless
correlation for laminar flow in a channel [62]:

Sh = 1.86(Re·Sc·dh/L)0.33, (7)

where L: length of channel. The value of k is obtained using the Leveque equation for
laminar flow in a channel (Equation (7)) and the Sherwood number (Equation (4)).

2.5.2. Measurement of Mass-Transfer Coefficient by Velocity Variation Method

The flat membrane cell used in this work had a complicated shape in which the feed
inlet and concentrate outlet were not at the edge of the cell, so the mass-transfer coefficient
was directly measured using the velocity variation method [63,64]. The observed rejection
(Robs) by actual measurement of the RO membrane is given by the following equation:

Robs = 1 − Cp/Cb. (8)

The real rejection (R) of the RO membrane is given by:

R = 1 − Cp/Cm. (9)

Substituting Equations (8) and (9) into Equation (3) and transforming it yields:

ln{(1 − Robs)/Robs} = ln{(1 − R)/R} + Jv/k. (10)

In general, k is a function of the feed flow velocity (u) and the following equation can
be applied, where a and b are constants:

k = bua. (11)

Substituting Equation (11) into Equation (10) gives:

ln{(1 − Robs)/Robs} = ln{(1 − R)/R} + (Jv/bua). (12)

This means that a linear plot of ln{(1− Robs)/Robs} against Jv/ua is obtained and the real
rejection R is given by extrapolation to the ordinate. Using this value of R, k is calculated
by Equation (10).

2.6. Scale Precipitation Experiments

Experiments were conducted to investigate the precipitation of CaSO4 on the RO
membrane. The effects of feed pressure, solute CaSO4 concentration, temperature, and Re
on scale precipitation and membrane performance were investigated. Three types of RO
membranes were used: UTC-70UL, UTC-70, and UTC-80, which had high, medium, and
low permeate fluxes, respectively.

3. Results and Discussion
3.1. Mass-Transfer Coefficient
3.1.1. Experimental Measurement of Mass-Transfer Coefficient by Velocity
Variation Method

Cells A and B were loaded with the UTC-60 low-rejection membrane. The results of
measurements of k at 20 ◦C, 30 ◦C, and 35 ◦C as a function of Reynolds number are shown
in Figure 4. The hydraulic diameter dh was calculated according to the method reported
by Shock and Miquel [65]. Figure 4a shows the relationship between Re and Jv, in which
Jv was constant and independent of Re, indicating that the experiment was conducted
within the range where the velocity variation method can be applied. Figure 4b shows
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the relationship between Jv/u0.33 and (1 − Robs)/Robs. The relationship between Re and k
is shown in Figure 4c. The results agree well with those of Kimura and Sourirajan, who
stated that k is proportional to Re to the power of 0.33 in the laminar region, confirming
that the experiments were conducted in the laminar region [66]. Identical values of k were
obtained for Cells A and B.
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3.1.2. Determination of Mass-Transfer Coefficient in Flat Membrane Cell

As described in Section 2.5.1, the Leveque equation, shown in Equation (7), is a
dimensionless correlation equation for the mass-transfer coefficient in regions of laminar
and channel flows. These experiments were conducted in the laminar and channel flow
regions, as described in Section 3.1.1, so the experimental results for the CaSO4 and NaCl
solutes at temperatures of 20 ◦C, 30 ◦C, and 35 ◦C were summarized in the form of
the Leveque equation and plotted as shown in Figure 5a. Because the real rejection of
CaSO4 was high in these experiments (approximately 98%), NaCl, which has a lower
rejection of approximately 70%, was also examined. The concentrations of NaCl and CaSO4
in the feed solution were sufficiently low (100–160 mg/L) to assume that the physical
properties of the feed solution, ρ and µ, were same as those of pure water. The values
of ρ and µ of pure water at different temperatures are given by the Chemical Engineers’
Handbook [67]. The values of D of NaCl in water at different temperatures were given
by their measured values and the equation for temperature dependence of the diffusion
coefficient by Olson et al. [68]. The values of D of CaSO4 in water at different temperatures
were given by Haskell’s equation [69] and the Chemical Engineers’ Handbook [67]. The
results could be summarized by the following dimensionless correlation with a coefficient
of 1.15:

Sh = 1.15(Re·Sc·dh/L)0.33. (13)
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mass-transfer coefficient. (a) Re vs. Sh/(Re Sc dh/L)0.33, (b) Difference in flow in the cell between
Leveque report and this experiment.

The difference between the coefficient of 1.86 of the Leveque equation and this exper-
imental coefficient of 1.15 can be attributed to the difference in the geometry of the flat
membrane cell used in the experiments, particularly the solution inlet and outlet positions,
as shown in Figure 5b. Mass-transfer coefficients of the flat membrane cell under operating
conditions could be calculated using Equations (4) and (13).

3.2. Permeate Flux Change with Time
3.2.1. Introduction of Scaling-Based Flux Model

Three types of scale precipitation mechanisms related to the decline in permeate flux in
RO membranes are proposed: cake formation, surface blockage, and mixed crystallization,
as shown in Figure 6 [27,28,31,33]. The convergent values of decline in permeate flux by
each mechanism were studied using a newly proposed scaling-based flux model.
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Figure 6. Scaling-based flux model. (a) Cake formation mechanism. (b) Surface blockage mechanism.
(c) Mixed crystallization mechanism. Jv: permeate flux; JvC: migration of solute with permeate flux;
−D(dC/dx): diffusion of solute; Cm: solute concentration on membrane surface; Cs: saturated solute
concentration; Cb: solute concentration of bulk feed; Cp: solute concentration of permeate flow; and
δ: thickness of boundary layer.

(a) Cake formation mechanism

Under the condition of no scale precipitation on the membrane surface, shown in
Figure 3, Equation (3) is valid due to the concentration polarization in the region near the
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membrane surface. As shown in Figure 6a, when solute flux (JvC) increases, Cm exceeds
the saturated concentration of solute, Cs, i.e., it becomes supersaturated. In supersaturated
solutions, scale crystal nuclei are generated and grow into crystals. The crystals transfer
to the membrane surface with Jv, precipitate on the membrane surface, and form a cake
(scale) layer. The permeate can pass through the gaps between the crystals of the cake
layer. An increase in the thickness of the cake due to the precipitation of crystals on the
membrane surface enlarges the permeation resistance of the cake; therefore, Jv decreases,
the amount of solute transferred to the membrane surface decreases, Cm decreases, and
the supersaturation and crystallization rate also decrease. Eventually, when Cm = Cs,
the crystal nuclei and crystals in solution near the membrane surface cease to form, and
precipitation on the membrane surface also ceases. The increase in the thickness of the cake
on the membrane surface also ceases, the permeation resistance becomes constant, and the
permeate flux ceases to decrease and converges to a constant value.

(b) Surface blockage mechanism

As shown in Figure 6b, when Cm > Cs due to concentration polarization, a crystal
nucleus is generated and becomes a crystal on the membrane surface, which grows to
cover the surface. The crystallized portion of the membrane surface blocks permeation, so
the effective membrane area decreases, the permeate flux of the entire membrane surface
decreases, and the amount of solute transferred to the membrane surface decreases. The
solute concentrations of both the non-crystallized and crystallized parts of the membrane
surface take on the same Cm because the flow and diffusion rates of the solution are
sufficiently large compared with the crystallization rate. The amount of solute transferred
to the membrane surface decreases due to the decline in permeate flux. As a result,
Cm decreases and the crystallization rate decreases. Eventually, when Cm = Cs, the supply
of solute to the membrane surface is in dynamic equilibrium with diffusion of solute back
to the bulk, so crystal growth ceases and the area of crystal covering the membrane surface
also ceases to increase. As a result, the permeable membrane area ceases to decrease and
becomes constant, and the permeate flux of the entire membrane surface converges to a
constant value.

(c) Mixed crystallization mechanism

Figure 6c shows the case where the cake formation and surface blockage mechanisms
occur simultaneously when crystals are precipitated on the membrane surface. The con-
centration of the solute at the membrane surface, Cm, becomes supersaturated due to
concentration polarization and crystal nuclei are generated in the supersaturated solution,
which grow into crystals. These are transferred by the permeate flux to precipitate on the
membrane surface and form a cake (scale) layer. At the same time, crystal nuclei are gener-
ated on the membrane surface and become crystals that grow to cover the surface. Owing
to both the increase in the permeation resistance of the permeable cake on the membrane
surface and the decrease in the effective permeable membrane area caused by the growth
of impermeable crystals, the permeate flux decreases and the amount of solute transferred
to the membrane surface decreases. The difference in solute concentration between the
surface of the impermeable crystals and that of the cake disappears because the flow and
diffusion rates of the solution are sufficiently large compared with the crystallization rate,
resulting in the same solute concentration, Cm, on the surfaces of the impermeable crystals
and the cake. As the amount of solute supplied to the membrane surface decreases, the
solute concentration in the supersaturated solution and crystallization rate also decrease.
Eventually, when Cm = Cs, the generation of crystal nuclei and crystal growth in the solution
near the membrane surface cease, and the precipitation of crystals on the membrane surface
also ceases. At the same time, the growth of crystals on the membrane surface ceases, so
the area of crystals covering the membrane surface ceases to increase. The permeable mem-
brane area stops decreasing and becomes constant; therefore, the permeation resistance
and permeable membrane area also become constant, and the permeate flux of the entire
membrane surface converges to a constant value.
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Although the trajectory of the permeate flux decline and the amount of scale on the
membrane surface differ for the three mechanisms described above, both the precipitation
and growth of crystals on the membrane surface cease when Cm in the supersaturated state
decreases and becomes equal to Cs. In these three cases, the permeate flux Jv of the entire
membrane surface is considered to converge to a scaling-based critical flux (Jsc), defined by:

Jsc = k ln{(Cs − Cp)/(Cb − Cp)} = constant. (14)

Jsc is obtained by substituting k, Cb, and Cp, which are obtained experimentally, and
Cs which are 2050, 2080, 2090 and 2100 mg/L at 20 ◦C, 25 ◦C, 30 ◦C and 35 ◦C, given by
Chemical Handbook [70,71] into Equation (14). This concept is defined as the scaling-based
flux model.

3.2.2. Scaling Index

The scaling index (SCI) is defined as a discriminant equation for scale precipitation
operating conditions as follows:

SCI = Jv/Jsc = Jv/[k ln{(Cs − Cp)/(Cb − Cp)}]. (15)

(1) When SCI > 1, the following equation pertains from Equations (3) and (15):

ln{(Cm − Cp)/(Cb − Cp)} > ln{(Cs − Cp)/(Cb − Cp)}. (16)

Given that the natural logarithm is a monotonically increasing function, for x, y > 0,
x > y ⇔ ln(x) > ln(y). Therefore, if Equation (16) is satisfied, the following equation is
also satisfied:

(Cm − Cp)/(Cb − Cp) > (Cs − Cp)/(Cb − Cp). (17)

Rearranging the above gives the following equation:

Cm > Cs. (18)

In other words, when SCI > 1, then Cm > Cs, so Cm becomes larger than Cs and scale
precipitation on the RO membrane surface occurs.

(2) When SCI ≤ 1, the same consideration as above results in Cm ≤ Cs, where Cm
is equal to or smaller than Cs and scale precipitation on the RO membrane surface does
not occur.

3.2.3. Osmotic Pressure Model

It is widely accepted that Equations (19) and (20) of the osmotic pressure model [62]
can be applied to Jv in the region where solute precipitation on the RO membrane surface
does not occur:

Jv = A (∆P − ∆π); (19)

∆π = π(Cm) − π(Cp), (20)

where A: pure water permeability; ∆P: operating pressure difference; ∆π: osmotic pressure
difference; π(Cm): osmotic pressure on membrane surface; and π(Cp): osmotic pressure of
permeate solution. Here, Cm is given by the following equation, which is a variation of
Equation (3):

Cm = Cp + (Cb − Cp) exp(Jv/k). (21)

From Equations (19) and (20), Jv is determined by A, ∆P, and ∆π. The A value of
Equation (19) in this experiment was obtained directly from a pure water permeation
experiment for each membrane.
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3.2.4. Experimental Results of Permeate Flux Change with Time

To analyze the mechanism of scale precipitation, the change in the permeate flux of the
RO membrane with time due to scale precipitation was measured. The results are shown
in Figure 7a. The experimental conditions were as follows: temperature: 30 ◦C; operating
pressure: 0.50 MPa; CaSO4 concentration at inlet of Cell A: 875 mg/L; and brine flow rate at
outlet of Cell B: 1.67 × 10−6 m3/s (= 100 mL/min). In Cell A, which was equipped with the
high-permeate flux UTC-70UL RO membrane, the permeate flux decreased after the start
of operation and converged to the scaling-based critical flux expressed by Equation (22):

Jsc = k ln{(Cs − Cp)/(Cb − Cp)} = 6.88 × 10−6 m3/(m2 s). (22)
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Figure 7. Time course of permeate flux and scaling-based critical flux. (a) Pressure: 0.5 MPa, (b) Pres-
sure: 0.8 MPa, (c) Pressure 1.0 MPa. Test conditions: temperature: 30 ◦C; pressure: (a) 0.50 MPa,
(b) 0.8 MPa, (c) 1.0 MPa; feed CaSO4 concentration: 875 mg/L; brine flow rate: 1.67 × 10−6 m3/s
(= 100 mL/min); Re: (a) 125 (Cell A) and 123 (Cell B), (b) 127 (Cell A) and 123 (Cell B), (c) 127 (Cell A)
and 124 (Cell B); and membrane: UTC-70UL (Cell A) and UTC-70 (Cell B). Scaling-based critical flux
was Jsc = k ln{(Cs − Cp)/(Cb − Cp)} = 6.9 × 10−6 m3/(m2 s). Osmotic pressure model flux in (a) was
Jv = A (∆P − ∆π) = 4.22 × 10−6 m3/(m2 s) for UTC-70.

The following values for Cell A, given from experiments and calculations, were applied:

Re = 125; (23)

k = 1.59 × 10−6 Re0.33 m/s = 7.82 × 10−6 m/s; (24)

Cs = 2090 mg/L; (25)

Cb = 885 mg/L; (26)

Cp = 29.9 mg/L. (27)

When Jv converges to Jsc, then Jv = Jsc and SCI = 1. Figure 7a shows the elapsed time
on the abscissa, permeate flux on the first ordinate, and SCI on the second ordinate. The
gray zone with SCI > 1, i.e., Jv > Jsc, is the scaling zone; the white zone with SCI ≤ 1, i.e.,
Jv ≤ Jsc, is the non-scaling zone.

Cell B was equipped with the medium-permeate flux UTC-70 RO membrane. The
initial permeate flux (Jv,0) was in the range of Jv,0 ≤ Jsc, i.e., the non-scaling zone of SCI ≤ 1.
There was no precipitation of solute CaSO4 and the permeate flux maintained the initial
value, which was consistent with the osmotic pressure model of Equation (28):

Jv = A(∆P − ∆π) = 4.22 × 10−6 m3/(m2 s). (28)

The following values for Cell B, given by experiments and calculations, were applied:

A = 9.52 × 10−6 m3/(m2 s MPa) (29)

∆P = 0.50 MPa; (30)

Cb = 896 mg/L; (31)
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Cp = 9.3 mg/L; (32)

Re = 123; (33)

k = 1.59 × 10−6 Re0.33 m/s = 7.78 × 10−6 m/s; (34)

Cm = Cp + (Cb − Cp) exp(Jv/k) = 1540 mg/L; (35)

π(Cm) = 0.0569 MPa; (36)

π(Cp) = 0.0003 MPa. (37)

The value of π was given from the solute concentration and the van’t Hoff equation [72]:

∆π = π(Cm) − π(Cp) = 0.0566 MPa. (38)

The results when the pressure was set at 0.8 MPa are shown in Figure 7b and when
1.0 MPa, in Figure 7c.

3.3. Study of Convergent Value of Permeate Flux with Scale Precipitation
3.3.1. Effect of Operating Pressure on Convergent Value of Permeate Flux

The relationships between the operating pressures and convergent values of the
permeate fluxes (Jv,∞) were measured. The results are shown in Figure 8. Cell A was
equipped with UTC-70UL, a high-permeate flux membrane, and Cell B with UTC-70, a
medium-permeate flux membrane. In both Cells A and B, scale precipitation did not occur
in the non-scaling zone where the initial permeate flux (Jv,0) was in the range of Jv,0 ≤ Jsc,
i.e., SCI ≤ 1. The permeate flux was proportional to the operating pressure and consistent
with the osmotic pressure model flux with the pure water permeability coefficients of
UTC-70UL and UTC-70, as shown in Figure 8.
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ignored, so Jsc could be expressed as a function of Cb as follows: 

Jsc = k ln(Cs − Cp)/(Cb − Cp)} = (5.17 × 10−5 − 6.79 × 10−6 ln Cb) m3/(m2 s),  (40)

where 
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Figure 8. Effect of operating pressure on convergent permeate flux. Test conditions: tem-
perature: 30 ◦C; feed CaSO4 concentration: 875 mg/L; brine flow rate: 1.67 × 10−6

m3/s (= 100 mL/min); Re: 124–127 (Cell A) and 122–124 (Cell B); and membrane: UTC-
70UL (Cell A) and UTC-70 (Cell B). Simulated line of scaling-based critical flux is given by
Jsc = k ln{(Cs − Cp)/(Cb − Cp)} = 6.9 × 10−6 m3/(m2 s). Simulated lines of osmotic pressure model
flux are given by Jv = A (∆P − ∆π), A = 1.80 × 10−5 m3/(m2 s) for UTC-70UL and Jv = A(∆P − ∆π),
A = 9.52 × 10−6 m3/(m2 s) for UTC-70.

In the scaling zone, where Jv,0 was in the range of Jv,0 > Jsc, i.e., SCI > 1, scale precipi-
tated on the membrane surface, and the permeate flux decreased with time and converged
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to the calculated scaling-based critical flux (Jsc) (triangle marks in Figure 8). The four values
of Jsc were almost same and the average values were as follows:

Jsc = k ln(Cs − Cp)/(Cb − Cp)} = 6.9 × 10−6 m3/(m2 s). (39)

Jsc was constant and independent of the operating pressure. Equation (39) is in good
agreement with the experimental results.

3.3.2. Effect of CaSO4 Concentration on Convergent Value of Permeate Flux

The relationship between the CaSO4 concentration and the convergent value of perme-
ate flux is shown in Figure 9. In the non-scaling zone, where the CaSO4 concentration was
small and the initial permeate flux was in the range of Jv,0 ≤ Jsc, i.e., SCI ≤ 1, there was no
decrease in permeate flux with time and Jv was consistent with the osmotic pressure model
flux. In the scaling zone, where the initial flux was in the range of Jv,0 > Jsc, i.e., SCI > 1, the
permeate flux decreased with time and converged to the calculated scaling-based critical
flux (triangle marks in Figure 9). Cp was small enough compared with Cb to be ignored, so
Jsc could be expressed as a function of Cb as follows:

Jsc = k ln(Cs − Cp)/(Cb − Cp)} = (5.17 × 10−5 − 6.79 × 10−6 ln Cb) m3/(m2 s), (40)

where
k = 1.50 × 10−6 Re0.33 m/s = 6.79 × 10−6 m/s (at 20 ◦C, Re = 97). (41)
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Figure 9. Effect of CaSO4 concentration on convergent permeate flux. Test conditions: temperature:
20 ◦C; pressure: 0.80 MPa; brine flow rate: 1.67 × 10−6 m3/s (= 100 mL/min); Re: 93–98 (Cell A)
and 92–94 (Cell B); and membrane: UTC-70UL (Cells A and B). Simulated line of scaling-based
critical flux is given by Jsc = k ln{(Cs − Cp)/(Cb − Cp)} = (5.17 × 10−5 − 6.79 × 10−6 ln Cb) m3/(m2 s).
Simulated line of osmotic pressure model flux is given by Jv = A (∆P− ∆π), A = 1.41× 10−5 m3/(m2 s)
for UTC-70UL.

Equation (40) is in good agreement with the experimental results.

3.3.3. Effect of Temperature on Convergent Value of Permeate Flux

The relationship between temperature and the convergent value of the permeate flux
is shown in Figure 10. Under the experimental conditions, the initial permeate flux was in
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the region of the scaling zone in the range of Jv,0 > Jsc, i.e., SCI > 1. From the beginning of
operation, the permeate flux decreased with time and converged to the calculated value of
the scaling-based critical flux (triangle marks in Figure 10).
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Substituting Equations (4)–(6) into Equation (13), the relationship between the mass-
transfer coefficient (k) and diffusion coefficient (D) of the temperature-dependent term can
be summarized as follows:

k = αD0.67, (42)

where
α = 1.15(u/L)0.33(1/dh)0.34. (43)

The relationship between D and T can be expressed as follows from Wilke’s equa-
tion [67,73]:

Dµ/T = c (constant). (44)

The relationship between µ and T was expressed by Andrade as follows [74]:

µ = a1 exp(b1/T), (45)

where a1 and b1 are material constants. From Equations (44) and (45), the relationship
between D and T is expressed by the following equation:

D = (c/a1)(T exp(−b1/T)). (46)

Substituting Haskell’s equation, data from the Chemical Engineers’ Handbook, and
experimental data yields the following equation [67,69]:

k = 1.38 × 10−5(T exp(−2005/T))0.67 m/s. (47)
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The simulated line of Jsc with respect to T is given as follows:

Jsc = k ln{(Cs − Cp)/(Cb − Cp)}
= 1.23 × 10−5(T exp(−2005/T))0.67 m3/(m2s).

(48)

Equation (48) is in good agreement with the experimental results.

3.3.4. Effect of Reynolds Number on Convergent Value of Permeate Flux

The relationship between Re and the convergent value of the permeate flux is shown in
Figure 11. Cell A was equipped with the UTC-70UL membrane, which had a high permeate
flux, and the operating conditions shown in Figure 11 were in the scaling zone where Jv,0 >
Jsc, i.e., SCI > 1. The flux decreased with time and converged to the calculated scaling-based
critical flux (triangle marks in Figure 11). Jsc can be expressed as a function of Re as follows:

Jsc = k ln{(Cs − Cp)/(Cb − Cp)} = 1.45 × 10−6 Re0.33 m3/(m2 s). (49)Membranes 2022, 12, 894 17 of 21 
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Figure 11. Effect of Reynolds number on convergent permeate flux. Test conditions: tem-
perature: 30 ◦C; pressure: 0.80 MPa; feed CaSO4 concentration: 875 mg/L; and membrane:
UTC-70UL (Cell A) and UTC-80 (Cell B). Simulated line of scaling-based critical flux is given by
Jsc = k ln{(Cs − Cp)/(Cb − Cp)} = 1.45 × 10−6 Re0.33 m3/(m2 s). Simulated line of osmotic pressure
model flux was Jv = A (∆P − ∆π), A = 4.83 × 10−6 m3/(m2 s MPa) for UTC-80.

Equation (49) is good agreement with the experimental results.
Cell B was equipped with a UTC-80 membrane for seawater desalination, which had

a low permeate flux, and the operating conditions were in the non-scaling zone where
Jv,0 ≤ Jsc, i.e., SCI ≤ 1. Scale precipitation on the membrane did not occur and the permeate
flux was consistent with the osmotic pressure model flux (Equation (19)).

4. Advice for Reverse Osmosis Plant Designers, Operators, and
Membrane Manufacturers

To prevent scale precipitation in RO plants, it is recommended to calculate the scaling
index (SCI) for solutes that may precipitate, such as CaSO4, CaCO3, and SiO2, in the most
downstream RO module of an RO plant. Scale precipitation on the RO membranes can then
be prevented by designing the plant and setting the operating conditions so that SCI ≤ 1,
which is in the non-scaling zone.

For practical use, the modified scaling-based critical flux J’sc = k ln(Cs/Cb) can be used
instead of Jsc in the region of high observed rejection of the RO membrane, and J’sc can
be calculated regardless of membrane type if the value of k of the RO module is known.
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For the experiments shown in Figures 8–11, the errors of J’sc with respect to Jsc were less
than 7% when the observed rejection of the RO membrane was greater than 90%; for the
observed rejections of 88.6%, 81.1%, and 66.6%, the errors of J’sc with respect to Jsc were
7.7%, 18.2%, and 35.3%, respectively. Therefore, the modified scaling-based critical flux
(J’sc) should be carefully applied to practical operation, considering whether the observed
rejection of the RO membrane is high enough.

It is recommended that RO membrane manufacturers measure the mass-transfer
coefficient (k) of commercially available RO modules with the velocity variation method
and disclose it to users, because this can be more easily measured by the manufacturer than
by individual users. This will allow RO plant designers and operators to easily calculate
the scaling-based critical flux and SCI, and to design and operate the RO plant to avoid
scale precipitation.

5. Conclusions

1. The phenomena of scale precipitation on a membrane surface were investigated. Using
a newly proposed scaling-based flux model, the permeate fluxes of three mechanisms
related to scale precipitation phenomena—cake formation, surface blockage, and
mixed crystallization—were explained to converge to the same scaling-based critical
flux, defined by Equation (14).

2. The scaling-based critical flux and scaling index (SCI) defined by Equation (15) were
investigated. An operating condition described by SCI > 1 is a scaling zone, in which
scale precipitates on the RO membrane surface, and the permeate flux decreases with
time and finally converges to the scaling-based critical flux. An operating condition
described by SCI ≤ 1 is a non-scaling zone, in which there is no scale precipitation on
the RO membrane surface and no decline in permeate flux with time.

3. Experiments were conducted to investigate the effects of operating conditions, such
as pressure, solute concentration, temperature, and Re. It was found that scale precipi-
tation on the RO membrane surface could be determined by the scaling index (SCI).
In the non-scaling zone (SCI ≤ 1), there was no scale precipitation on the membrane
surface and the permeate flux was constant with time; in the scaling zone (SCI > 1),
the permeate flux decreased with time and finally converged to the scaling-based
critical flux.
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Abbreviations

A Pure water permeability (m3/(m2 s Pa))
a Constant
a1 Constant
b Constant
b1 Constant
C Solute concentration (mg/L)
Cb Solute concentration of bulk feed (mg/L)
Cm Solute concentration on membrane (mg/L)
Cp Solute concentration of permeate (mg/L)
Cs Saturated concentration of solute (mg/L)
c Constant
D Diffusion coefficient (m2/s)
dh Hydraulic diameter (m)
Jsc Scaling-based critical flux (m3/(m2 s))
J’sc Modified scaling-based critical flux (m3/(m2 s))
Jv Permeate volume flux (m3/(m2 s))
Jv,0 Initial permeate volume flux (m3/(m2 s))
Jv,∞ Convergent permeate volume flux (m3/(m2 s))
k Mass-transfer coefficient (m/s)
L Length of flow channel of cell (m)
P Operating pressure (MPa)
∆P Operating pressure difference (MPa)
R Real rejection (−)
Robs Observed rejection (−)
Re Reynolds number (−)
Sc Schmidt number (−)
Sh Sherwood number (−)
SCI Scaling index (−)
T Temperature (K)
u Flow velocity (m/s)
x Distance (m)
α Constant
δ Boundary layer thickness (m)
µ Viscosity (Pa s)
π Osmotic pressure (MPa)
∆π Osmotic pressure difference (MPa)
ρ Density (kg/m3)
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