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Abstract: In this study, we aimed to provide systematic and critical research to investigate the shear
performance and reveal the corresponding structural response and fracture characteristics of the
monolayer GK membrane. The results demonstrate that the kirigami structure significant alters the
shear performance of graphene-based sheets. Tuning the porosity by controlling the incision size,
pore distribution, and incision direction can effectively adjust the shear strength and elastic modulus
of GK membranes. The trade-off of the stress and strain of the GK membrane is critical to its shear
behaviour. The microstructural damage processes and failure characteristics further reveal that
making more carbon atoms on the GK structure sharing the strain energy is the key to reinforcing
the shear performance of membranes. Based on this, we found that adding the shear loading in the
direction of perpendicular to the incisions on the GK membrane can significantly improve the shear
strength and stiffness of the membrane by 26.2–32.1% and 50.2–75.3% compared to applying shear
force parallel to GK incisions. This research not only broadens the understanding of shear properties
of monolayer GO membrane but also provides more reference on the fracture characteristics of GK
membranes for future manufacturing and applications.
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1. Introduction

By virtue of its monolayer honeycomb dense structure [1], excellent chemical stability [2],
superior electrical and mechanical properties [3], graphene-based membranes have been
widely investigated in the last decade [4]. Recently, graphene and graphene oxide mem-
branes with micro- or nano-pores have attracted extensive research attention of researchers,
which own great potential application prospects in a broad spectrum of fields, including
gas separation and purification [5,6], CO2 capture and storage [7,8], water desalination and
treatment [9,10], DNA sequencing [11,12], hazardous waste containment system [13], chem-
ical processing, bionics [14,15], as well as pharmaceutical and medical applications [16,17].
However, the fixed pore size, weak bending stiffness and low stretchability always limit
the applications of the nanoporous graphene (NPG) membranes [18,19].

To overcome these challenges, in the author’s previous study [20], we proposed using
graphene kirigami (GK) as an ultra-membrane to endow graphene-based membranes with
high adjustability. The concept of kirigami was inspired by ancient arts and derived from
paper for cutting (kiru), folding (oru), and paper (kami) [21,22]. This technique transforms
thin 2D materials into 3D materials to modify material and structure properties [23,24].
The latest theoretical and experimental study has verified that compared with the NPG
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membranes, GK membranes have ultra-high bending stiffness [25] and adjustability with-
out damaging their structure [26,27]. Besides, GK membranes preserve the benefits of the
NPG membranes with micro- or nano-scale defects, single-atom layer thickness, stable
chemical properties and superior mechanical behaviour [20,28]. Moreover, due to the
adjustable superiority, GK structures do not have rigorous pore geometry restrictions used
as membranes, providing a great opportunity for future fabrication and application [28].

Understanding the mechanical properties of GK membranes is the premise of their
application. To date, several studies have reported the mechanical performance of GK
membranes using theoretical methods [25,29]. Qi et al. [29] utilized molecular dynam-
ics simulation to perform that the yield and fracture strain of GK structures could be
approximately a factor of three larger than that of standard monolayer graphene sheets.
They verified that benefiting from the kirigami pattern, the GK structures could be held
in the thinnest possible nanostructures. Bahamon et al. [30] further proposed that GK
membranes could act as the platform for adjustable and stretchable quantum dot arrays.
Gamil et al. [31] studied the shear flexibility of GK under shear loading via the theoretical
analysis, revealing that the kirigami structure was highly efficient in tuning the shear be-
haviour of the monolayer graphene. Through the trade-off between strength and flexibility,
the kirigami technique manipulated the shear performance of graphene-based materials.

Although several previous theoretical researches have explored the mechanical proper-
ties of the GK structure, few systematic studies have been performed on the shear behaviour
and fracture characteristics of GK membranes. Furthermore, the exceeding potential of the
GK membranes for a wide range of applications over other artificial and natural membranes
was highlighted. Nevertheless, the influence of the incision size distribution, incision direc-
tions and surface pore densities on the shear behaviour and fracture characteristics of GK
membranes have not been reported yet. Hence, in this study, we aimed to provide system-
atic and critical research to investigate the shear performance and reveal the corresponding
structural response and fracture characteristics of the monolayer GK membrane. Firstly, the
single-atom incised GK membranes were modelled according to the previous literature [20].
After that, the shear loading was simulated using LAMMPS software [32]. The effects of
incision size, pore distribution, porosity, incision direction and loading gradient on the
shear strength, strain and elastic modulus of the GK membranes were illustrated. The
microstructural damage processes and failure characteristics of monolayer single-atom
incised GK membranes were further discussed.

2. Methods
2.1. Model Construction

The configuration of the hydrogenated GK membranes with either zigzag or armchair
incisions under shear loading was illustrated in Figure 1. In this study, we only considered
the monolayer single-atom incised GK membranes. By virtue of the single-atom thickness,
high stretchability and high adjustability, the monolayer GK membrane owns many prop-
erties that other single-layer graphene-based membranes do not have [20]. For example,
the pore size of the NPG membrane is fixed. Therefore, in gas purification and water de-
salination applications, NPG membranes often need to adjust the pore size by overlapping
multiple membranes [20,28]. By contrast, for monolayer GK membrane, the pore size could
be controlled via adjusting the applied strains. Multi-layer arrangement of GK membranes
is not necessary in most cases. For model construction processes, two-column of carbon
atoms in the dotted boxes on the graphene sheets were excavated to form incisions, as
shown in Figure 1a. After that, the hydrogen atoms were added to the deboning regions,
and then the smallest GK unit was generated. Then, the GK unit was supercell to the
lattice size of 51.12 × 49.2 Å2 with a periodic boundary. The geometries of the supercell GK
membrane with zigzag incisions were demonstrated in Figure 1b. The porosity of the GK
membranes was adjusted by the following two parameters: the incision length (L) and the
distance between incisions (D), as shown in Figure 1b. The measured L and D of different
zigzag-incised and armchair-incised GK membranes are listed in Table 1. The calculated
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porosity of the GK membrane was defined as the ratio of the excavated carbon atoms to the
total atoms on the pristine graphene sheet, according to the previous report [32]. Here, we
selected the porosity of the GK membranes between 6% and 12%, mainly based on their
future application. Previous reports [20] indicated that the pore size of single-atom incised
GK membranes was at the same level as some atoms and molecules, which could promote
the practical application of GK membranes, such as gas purification and water desalination.
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Figure 1. (a) Generation of a single-atom incised GK membrane. The carbon atoms in the dotted
rectangle were excavated and all dangling bonds were capped using hydrogen atoms. Hydrogenated
GK membranes incised in (b) zigzag and (c) armchair direction.

Table 1. Design parameters of the single-atom incised GK membranes.

Sample L (Å) D (Å) Porosity (%)

ZZ_1_1 18.46 8.52 11.59
ZZ_1_2 16.01 8.52 9.96
ZZ_1_3 13.55 8.52 8.33
ZZ_1_4 11.09 8.52 6.07
ZZ_2_1 16.01 2.84 19.92
ZZ_2_2 16.01 4.26 14.94
ZZ_2_3 16.01 7.10 12.4
AC_3_1 19.88 4.92 8.13
AC_3_2 17.04 2.46 8.54
AC_3_3 19.88 2.46 9.76
AC_3_4 21.30 2.46 10.97
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2.2. MD Simulation Details

Depending on the direction of the shearing deformation, i.e., being parallel or per-
pendicular to the incised direction, a thin layer of carbon atoms at the upper and lower
edges (or left and right edges) were selected while the other region of the GK membranes
was kept fully flexible. And then the left/lower edge was fixed while the right/upper was
moved parallelly at a constant velocity (5 m/s) to impose the shearing force. This velocity
is also used by the previous study [32] and has been proved sufficiently low to obtain
the equilibrium results. Periodic boundary condition was applied in the direction normal
to the shearing force. A NVT ensemble using a Nose-Hoover thermostat and remaining
at a temperature of 300 K was adopted for our modelling with the timestep of 1 fs [33].
Even though a certain degree of residual stress will exist in the GK membranes after the
relaxation stage using the NVT ensemble instead of the NPT ensemble (e.g., Figure 2), the
usage of the NVT ensemble with membranes’ edges fixed is more closer to the practical
nano-fabrication technology of the GK membranes (e.g., selective tearing [20]) than that of
the NPT ensemble. To achieve an initial equilibrium state, the system firstly experienced a
relaxation running of 1.0 ns with the upper and lower edges (or left and right edges) fixed,
and then a 0.5–1.0 ns simulation run was conducted to dynamically apply the shearing
loading. The simulation time of 1 ns for the relaxation stage is found to be sufficient to
obtain the equilibrium results according to the convergence of the system’s potential energy
within 1.0 ns. Our MD modellings adopted the reactive empirical bond order (REBO)
potential [34], which had been found to accurately predict the mechanical responses of
the graphene, e.g., [35,36]. Note that the improper selection of the interaction cut-off ra-
dius in REBO potential can cause non-physical strain hardening in stress-strain curves of
carbon nanostructures. Therefore in our study, we have followed the suggestions from
the previous studies [37–39] and set the cut-off radius to be 0.2 nm to effectively eliminate
this non-physical strain hardening. The forces acting on the edge atoms were summed to
calculate the shearing force. We repeated the simulation procedure for each case for three
times with different initial velocities following a Gaussian distribution, to ensure the repro-
ductivity. No significant deviations were observed among duplicated ones, and therefore
only one typical data from three duplications was presented in our subsequent analysis.
The representative LAMMPS input files can be found in the Supplementary Materials.
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Figure 2. (a) The stress-strain curves of the zigzag-incised GK specimens under shear loading simulation;
(b) The coefficient of stress and shear modulus versus the porosity of GK membrane in Group_1.

3. Results and Discussion
3.1. Porosity Effect

The influence of the porosity on the shear behaviours of the GK membrane is signif-
icant. The porosity of the single-atom incised GK membrane can be tuned through two
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main approaches: adjusting the incision length and the spacing between incisions. Hence,
in this section, the effects of the porosity considering the incision length (Group_1) and the
spacing between incisions (Group_2) on the stress, elastic modulus, structural response,
and fracture characteristics of the monolayer GK membranes under shear loading are stud-
ied. The stress-strain curves of zigzag-incised GK membranes in Group_1 are presented in
Figure 2a, where four curves demonstrate a similar change trend. Under shear loading, the
curve first entered the elastic stage, the stress and strain increasing linearly. When the strain
reached 20%, the elastic modulus decreased, and the curve bent downward due to the
deformation of the GK membranes. Continuing to increase the load, the strength of the GK
membranes hit the peak value. After that, the GK structure failed, and the stress dropped
rapidly. Nevertheless, the GK structure was not completely destroyed and could still bear a
specific load, though the bearing capacity was far less than that of the structurally intact
GK membranes. With the continued increase in strain, the GK membranes eventually
disconnected completely. The calculated stress and elastic modulus of the zigzag-incised
GK membranes are listed in Table 2 and Figure 2b. It can be found that with the increment
of the porosity via rising the incision length, the stress and elastic modulus of the GK
membranes exhibited a linear downward trend. The fitting coefficient was relatively high,
ranging from 0.939 to 0.994.

Table 2. Measured shear properties of the GK membranes based on MD simulation.

Sample Porosity (%) Stress (GPa) Strain E (GPa)

ZZ_1_1 11.59 20.69 0.38 51.87
ZZ_1_2 9.96 33.73 0.42 79.67
ZZ_1_3 8.33 36.48 0.42 94.00
ZZ_1_4 6.07 50.24 0.44 126.27
ZZ_2_1 19.92 22.36 0.64 36.90
ZZ_2_2 14.94 24.09 0.51 49.40
ZZ_2_3 12.4 25.91 0.47 63.13
AC_3_1 8.13 27.82 0.41 64.85
AC_3_2 8.54 32.51 0.54 51.12
AC_3_3 9.76 30.81 0.93 57.38
AC_3_4 10.97 21.01 0.88 38.00

ZZ_1_3_P 8.33 46.03 0.51 141.15
AC_3_2_P 8.54 42.96 0.45 89.57

The microstructural damage processes and failure characteristics of monolayer zigzag-
incised GK membranes in Group_1 are demonstrated in Figure 3. For Sample ZZ_1_1,
the deformation of the GK membrane was relatively uniform in the linear elastic stage, as
shown in Figure 3a. The strain energy between carbon atoms was low except for the two
fixed edges. With the continuous increase of the shear force and the growth to the ultimate
failure stage (Stage II), apparent stress concentration appeared on the zigzag-incised GK
membrane. Due to the narrow graphene unit between incisions, the stress concentration
was mainly concentrated in these regions, resulting in considerable strain energy between
carbon atoms, particularly at the edge of the incisions. The regions with high strain levels
formed folds along the zigzag-incised GK membrane, roughly at a 45◦ to the shear edge
and generating wrinkles. By contrast, the carbon atoms not on the winkles had significantly
lower strain energy than that on the wrinkles. After the peak shear stress was reached, the
zigzag-incised GK membranes would rupture at the incisions closest to the shear edge.
Under this stage (Stage III in Figure 3a), except for the carbon atoms on the fracture surface,
the strain energy of other carbon atoms on the film plummeted, and the GK membrane
suffered severe uneven deformation. When the shear force was continuously increased, the
GK membrane could still bear a specific load, and this part of the load was mainly borne by
the graphene elements at the edge of the shear edge until the structure was broken entirely.
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zigzag-incised GK membrane: Sample (a) ZZ_1_1; (b) ZZ_1_2; (c) ZZ_1_3 and (d) ZZ_1_4.

With the decrease of the porosity via reducing the incision length, the shear stress and
elastic modulus of the zigzag-incised GK membranes showed an upward trend, rising from
20.7 GPa and 51.9 GPa under 11.6% porosity to 50.2 GPa and 126.3 GPa under 6.1% porosity.
The enhancement of shear resistance was mainly due to the decrease in the incision length.
More carbon atoms bore the strain energy during the shear loading, as presented in Figure 3.
As the incision length was reduced to a certain extent, the destruction mode of the zigzag-
incised GK membrane also changed. As the interval between incisions increased, the strain
energy that could be borne was also enhanced, and it was not easy to be broken in parallel,
as demonstrated in Stage IV in Figure 3a. Instead, the failure mode was a through-hole
formed between two adjacent incisions on the edge of the sheared edge. In this failure
mode, the stress drop of the zigzag-incised GK membrane was relatively low, and the
whole membrane still owns a specific bearing capacity, as exhibited in Stage III of Figure 3d.
The carbon atoms that initially suffered from high strain energy maintained a similar level,
and the carbon atoms at the edge produced a more significant stress concentration until the
membrane was utterly destroyed.
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Another way to tune the porosity of the single-atom incised GK membrane was by
changing the interval of the incision. To further investigate the influence of the incision
interval length on the shear behaviour of the zigzag-incised GK membrane, Samples
Group_2, as well as Sample ZZ_1_2, were considered. The stress-strain curves, stress
strength and elastic modulus of zigzag-incised GK membranes in Group_2 are shown in
Figure 4. Similar to the GK membranes in Group_1, with the increase of porosity, the shear
stress of the specimen showed a decreasing trend, dropping from 33.7 GPa (10.0% porosity)
to 22.4 GPa (19.9% porosity). Figure 4b further presented that the porosity of the zigzag-
incised GK membranes in Group_2 had a quadratic function correlation with their peak
strength and elastic modulus (R2 = 0.897 − 0.999). The difference was that the strain showed
an opposite changing trend. When the porosity was 10%, the strain of the zigzag-incised
GK membrane at the peak stress was only 0.42. However, when the porosity increased by
19.9%, the strain of the GK membrane at the peak stress grew to 0.64, rising approximately
52.4%. This simulation result indicated that more incisions in the zigzag-incised GK could
efficiently reinforce the adjustability of the membranes.
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Adjusting the porosity of the single-atom incised GK membrane by changing the
incision interval also affected the structure’s failure mode, as presented in Figure 5. Sample
ZZ_2_1 exhibited an utterly different failure mode from the samples in Group_1. The
difference mainly came from two aspects. On the one hand, after Sample ZZ_2_1 reached
its peak strength, the structure only suffered small-scale damage. Therefore, the partly
damaged zigzag-incised GK membrane could still bear a particular load. As the load con-
tinued to increase, part of the GK membrane’s structure was again damaged. Experiencing
three stress dropping, Sample ZZ_2_1 finally lost the bearing capacity. On the other hand,
different from samples in Group_1, when the sample was finally destroyed, severe damage
occurred at the edges of the two fixed edges, proving that in Sample ZZ_2_1, many carbon
atoms were in the limit state of strain energy when they were destroyed. As the interval
between incisions increased and the porosity reduced, the failure modes of Samples ZZ_2_2
and ZZ_2_3 were similar to those of the samples in Group_1, mainly destroyed at the
shear edge.
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3.2. Incision Direction Effect

Due to the unique chirality of graphene, the influence of incision direction on the
mechanical properties of the GK membranes needs to be further explored. Previous studies
reported that graphene had distinct electrical and thermal conductivity in different chiral
directions [40,41]. Hence, this section revealed the effects of the incision direction on the
shear behaviour. In order to better compare the shear behaviour and fracture characteristic
of the GK membranes with the incision direction effect, we selected the armchair-incised
and zigzag-incised GK structures with similar porosity for analysis. The stress-strain curves
of the GK membranes with approximately 8.1–8.6% porosity (Samples AC_3_1, AC_3_2
and ZZ_1_3) and 9.8–11% porosity (Samples AC_3_3, AC_3_4 and ZZ_1_2) are presented in
Figure 6. It could be found that with similar porosity, zigzag-incised GK membranes could
withstand slightly higher shear strength than armchair-incised ones, while the armchair-
direction incisions would assist in increasing the strain of the membranes.

Figure 7 further illustrates the structural stress and strain change factors by analyzing
the failure modes of armchair-incised membranes. The failure mode of Sample AC_3_1 was
similar to that of the zigzag-incised based group, both of which were due to the shearing
action to form wrinkles on the membranes, contributing to the high strain energy of the
carbon atoms on the wrinkles, which eventually led to destruction. With increasing porosity,
armchair-incised GK membrane’s damage processes and failure characteristics radically
changed. Figure 7b demonstrates the damage processes of Sample AC_3_2. When the
specimen was subjected to peak shear strength, the regions between incisions formed
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wrinkles along the diagonal of the membrane, approximately 45◦ from the direction of the
shear load. The carbon atoms in this region bore high strain energy, reaching 0.6–0.8 eV,
while the carbon atoms in other regions sustained smaller strain energy. Subsequently,
the specimen fractured at the connection between the incisions, and the stress produced
a significant drop from 30.8 GPa to about 10.1 GPa, accompanied by a vast membrane
deformation. The strain energy on the membrane was redistributed after rupture, and
the whole membrane still had a specific shear resistance. After that, the shear strain was
continuously applied to the Sample AC_3_2, and the whole specimen was continuously
pulled along the failure defect until it was destroyed.
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As the porosity continued to rise, the failure characteristics of the armchair-incised
membranes produced a more considerable change. For Sample AC_3_3, there were two
apparent peaks in the sample under the action of shear force, and the peak strength after
the damaged structural part was higher, as presented in Figure 7c. Due to the extreme value
of the strain energy of some carbon atoms at the fixed edge, Sample AC_3_3 suffered a
small-scale failure at Stage I-II, and the stress produced an inevitable drop. However, since
the main structure of the GK was integrated, the overall strain field of the carbon atoms
on the membrane changed a little. As the shear loading to Stage III continued to increase,
severe stress concentration occurred on the two fixed edges, some C-C bonds were broken,
and the overall structure was destroyed. For Sample AC_3_4, different from other samples,
the GK membrane entered a wave stage after the shear elastic stage. This was mainly due
to breaking individual C-C bonds in Sample AC_3_4 under shearing action, resulting in
some minor stress dropping and redistribution of strain energy. When the shear stress was
increased to 21 GPa, a large-scale fracture occurred at the intermediate incision interval,
and the structure was severely damaged. It should be noted that the armchair-incised
GK membrane owned higher strain, up to 0.88–0.93 for Samples AC_3_3 and AC_3_4,
109–114% larger than that of zigzag-incised GK membrane under similar porosity.
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3.3. Shear Loading Directions Effect

The direction of shear loading applied to the GK structure is another significant factor
affecting the shear behaviour of the membranes. In Sections 3.1 and 3.2, the shear force
applied on GK membranes was always parallel to the incision direction. Therefore, this
section applied the shear force along the direction perpendicular to the incisions of the
GK membranes. For better comparison, we selected Sample ZZ_1_3 and Sample AC_3_2
to ensure other parameters were unchanged. The cases after changing the load direction
were marked as Sample ZZ_1_3_P and Sample AC_3_2_P, as presented in Figure 8. It could
be found that the shear performance of the GK membranes was significantly improved
after the shear load was changed to be perpendicular to the incision direction. The shear
stress increased from 32.5–36.5 GPa to 43–46 GPa, rising approximately 26.2–32.1%. The
toughness of the GK membranes was also enhanced, with an increment of 50.2–75.3% from
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51.1–94 GPa to 89.6–141.2 GPa. The improvement in shear properties had a more significant
effect on the zigzag-incised GK membrane.
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Figure 9 further exhibits the microstructural damage processes, and failure characteris-
tics of the GK membrane loaded perpendicular to the direction of the incisions. Compared
with Group_1 to Group_3, loaded perpendicular to the incisions of GK membranes, the
sample exhibited a more complex post-peak variation. This was mainly because the failure
of GK membranes was no longer along the shear edges but along the direction perpendic-
ular to the wrinkles formed on the structure. Therefore, the rupture of the C-C bonds on
the GK membranes progressed step by step, and the fluctuation after the peak was also
more intense. For Sample ZZ_1_3_P, the rupture of the membrane was mainly divided
into the following steps. With the growth of shear force, the strain energy was mainly
concentrated on the formed wrinkles. The load-bearing strain of some C-C bonds reached
the limit and rupture occurred, and a load of GK membranes also appeared to drop to
a certain extent. Afterwards, a small-scale redistribution was performed on the strain
energy on GK membranes. Due to the fracture of some C-C bonds, the strain that the GK
membrane could withstand was also higher, and the stress was increased correspondingly.
As the strain continued to increase, an obvious shear crack appeared in Sample ZZ_1_3_P
(Stage VI-VIII in Figure 9a). With the expansion of the main crack, the strain of carbon
atoms on the crack reached the limit and then broke, and the GK membrane was destroyed.
Sample AC_3_2_P also exhibited a similar destruction mode as Sample ZZ_1_3_P. In this
failure mode, the peak shear stress was higher than the carbon atoms subjected to the high
strain, so the GK membranes had a higher shear strength and toughness than Group 1–3.
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4. Conclusions and Outlooks

In this work, the shear behaviour and fracture characteristics of the single-atom incised
GK membranes in both zigzag and armchair directions were studied via MD simulations.
Our results indicated that when the porosity was varied by controlling the incision length,
the shear strength and elastic modulus of GK membranes decreased linearly with increasing
porosity. However, as the porosity on GK membranes was adjusted by changing the interval
between incisions, although the shear strength and elastic modulus of GK membranes still
dropped with the increase of porosity, they presented a quadratic function relationship.
The failure mode of the zigzag-incised GK membrane was mainly shear-edge shear failure.
For zigzag-incised GK membranes, the smaller interval between incisions was, the lower
the shear strength of the membrane would be, but shear strain would grow. Under the
same porosity, changing the incisions of the GK structure to the armchair direction would
lead to a slight decrease in the shear strength of the membranes, weakening approximately
2.9–23.7%. Nevertheless, changing the direction of the shear loading on GK membranes
could significantly improve the shear strength and stiffness of the membrane. When shear
loading was applied perpendicular to the incisions on the GK membrane, the structure’s
shear strength and elastic modulus increased about 26.2–32.1% and 50.2–75.3%, respectively.
The improvement of shear performance was mainly due to the change of strain field and
failure mode of the GK membranes. As the shear loading was applied perpendicular to the
incisions on the GK membrane, more carbon atoms were subjected to high strain energy.
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After exceeding the limit strain energy, the GK membrane was gradually broken along the
direction perpendicular to the wrinkles, so it also exhibited well post-peak bearing capacity.

The vital issue investigated in this work is the effects of the incision size, pore distri-
bution, incision direction and shear loading direction on the shear behaviour of the GK
membrane. Optimizing the shear performance of the GK membrane is still a challenge
in materials design since many factors influence the shear behaviour. In future research,
we decide to optimize the design of the GK membrane by adjusting various parameters
to achieve better shear performance based on existing work and with the assistance of
the machine learning method [42]. A machine learning method is a promising approach
to screening over an ample design space, which has been successfully applied in design-
ing solid electrolytes in lithium batteries [43] and predicting the thermal conductivity for
nanomaterials [44]. Hence, we consider that the effects of the incision size, pore distribu-
tion, incision direction and shear loading direction on the shear performance of the GK
membrane can be optimized by combining molecular dynamics simulations and machine
learning. Besides, according to the latest report [20], the single-atom incised GK membranes
could be produced through focused-ion-beam and irradiation-induced techniques. We also
plan to further fabricate the single-atom incised GK membrane using the focused-ion-beam
technique and test the corresponding shear performance by experimenting.

Overall, this research demonstrated the shear performance of the GK membranes. It
may assist the audience in a broad spectrum of fields, including CO2 capture and storage,
water desalination, wastewater treatment, hazardous waste containment system, chemical
processing and bionics to better understand the mechanical properties of the GK membrane
for further practical applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/membranes12090886/s1, Script S1: representative LAMMPS input
script for MD simulations.
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