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Abstract: Professor Giulio C. Sarti has provided outstanding contributions to the modelling of fluid
sorption and transport in polymeric materials, with a special eye on industrial applications such
as membrane separation, due to his Chemical Engineering background. He was the co-creator of
innovative theories such as the Non-Equilibrium Theory for Glassy Polymers (NET-GP), a flexible
tool to estimate the solubility of pure and mixed fluids in a wide range of polymers, and of the
Standard Transport Model (STM) for estimating membrane permeability and selectivity. In this
review, inspired by his rigorous and original approach to representing membrane fundamentals,
we provide an overview of the most significant and up-to-date modeling tools available to estimate
the main properties governing polymeric membranes in fluid separation, namely solubility and
diffusivity. The paper is not meant to be comprehensive, but it focuses on those contributions that are
most relevant or that show the potential to be relevant in the future. We do not restrict our view to the
field of macroscopic modelling, which was the main playground of professor Sarti, but also devote
our attention to Molecular and Multiscale Hierarchical Modeling. This work proposes a critical
evaluation of the different approaches considered, along with their limitations and potentiality.

Keywords: solubility; diffusivity; permeability; modelling; equations of state; transport models;
molecular simulations; gas separation; polymers

1. Introduction

A multitude of applications are associated with the sorption and transport of gases
and vapors in polymeric materials, such as membrane separation, carbon capture, polymer
production and processing, packaging, volatile organic compound detection, thin-film
coating, and environmental protection [1–8].

Detailed knowledge of sorption and transport in realistic operating conditions is re-
quired in the majority of such applications. For instance, the design of membrane-based
separation processes, which are a low-carbon, low-energy alternative to many conventional
purification processes, requires the full understanding of gas and vapor solubility and
transport behaviors with respect to, e.g., temperature and pressure, to correctly identify
optimal conditions. Furthermore, assessment of membrane performance under mixed-gas
conditions is of great importance, as multicomponent phenomena can greatly affect separa-
tion. An increasing number of process simulators can include and evaluate membrane units
in process design, but the accuracy of material property predictions can be significantly
improved [9].

One fundamental issue to take into account when dealing with polymeric membranes
is that many high-performance materials for fluid separations, e.g., polyimides, are glassy,
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and their non-equilibrium nature makes the sorption and transport of fluids a function
of their thermal, solvation, and mechanical history [10–13]. In such systems, sorption
cannot be described based on equilibrium thermodynamics tools, e.g., activity coefficients
or equation-of-state models.

Certain polymeric membranes are not amorphous but semicrystalline, while most
models refer to disordered phases. The modeling of fluid sorption in semicrystalline mate-
rials is an interesting subtopic in this subject, but it is not treated here, as a comprehensive
review of this topic appeared earlier this year [14].

Combining polymers with inorganic fillers in composite materials yields structures of
undeniable interest in various applications due to their optimal mechanical and thermal
properties. In the membrane separation field, they are conventionally named “mixed matrix
membranes” and are formed by nano-sized particles dispersed in a polymer matrix. The
particles can be dense and impermeable, affecting the membrane separation performance
by modifying its internal morphology, or they can be porous structures that contribute
to membrane separation ability with their intrinsic permeability and selectivity. For the
first type of membranes incorporating impermeable fillers, the modeling of sorption and
transport was reviewed some years ago when this type of structure was the most popular
one [15]; for porous fillers or more generally mixed matrices, we refer the reader to more
recent reviews [16–18].

In this work, we focus on modeling homogenous amorphous polymeric membranes.
We start by presenting macroscopic models for gas solubility in rubbery polymers, namely,
activity coefficient approaches, and Equations-of-State (EoS), and then follow with the
Non-Equilibrium Theory for Glassy Polymers (NET-GP) that extends the prediction of
sorption to glassy polymers. Other tools specifically developed for glassy polymers, but
less generalized, are also presented, such as the Dual-Mode Sorption (DMS) and GAB
equations, together with the more recent fractal model. Subsequently, molecular methods
are described, and their strengths and limitations compared to macroscopic approaches
are highlighted. We devote particular attention to the conditions needed for predictive
calculations and extension to the multicomponent gas phase. For this reason, discussion
of empirical correlations for sorption and transport of pure fluids in various families of
polymers [19,20] falls outside the scope of this review.

2. Modelling Fluid Transport in Dense, Homogenous Polymeric Membranes: The
Solution–Diffusion Model

Simulation of the separation properties of dense homogenous polymer membranes
relies on the so-called solution–diffusion model, briefly recalled hereafter. The steady-state
flux of a gas i across a membrane is experimentally observed to be proportional to the
pressure gradient across the membrane [21]:

Ni = Pi
∆pi

l
(1)

where Ni is the transmembrane flux, which coincides with the diffusive flux Ji in the case of
a negligibly small concentration of the gas in the polymer, as often occurs in gas separation
membrane applications, ∆pi is the partial pressure difference of component i across the
membrane, l is membrane thickness, and Pi is the permeability coefficient. Therefore,
the transport of small molecules in dense polymeric membranes is characterized by a
permeability coefficient, which is defined as the pressure- and thickness-normalized flux
of gas across the membrane. The permeability coefficient is thus introduced through an
operative empirical definition. However, with a few assumptions, it can be shown that, as
far as dense homogenous polymeric membranes are considered, its value can be correlated
to more fundamental and predictable properties, namely the diffusivity and solubility of
the fluid species in the polymeric material. Such development goes under the name of
solution–diffusion model, which was formalized by Wijmans and Baker [21,22] and has
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emerged as the most widely accepted model for the description of transport in dialysis,
reverse osmosis, gas permeation, and pervaporation.

The driving force for the diffusion of a penetrant i is the gradient of its chemical potential:

Ji = −ciLi
d(µi/RT)

dz
(2)

where Ji is the steady-state flux, dµi/RT
dz is the chemical potential gradient along z, Li is

the penetrant mobility, also called self-diffusion coefficient, and ci is the penetrant molar
concentration. The diffusive flux can be expressed using concentration as a driving force,
which is the typical formulation of Fick’s law:

Ji = −Di
dci
dz

(3)

In such a formulation, Di is the mutual binary diffusion coefficient of the fluid in the
polymer, which is not only influenced by the penetrant mobility in the system, but also by
thermodynamic effects.

This, in turn, can be correlated to the self-diffusivity Li, for which calculation methods
are more often available [23]:

Di '
(

∂ ln fi
∂ ln ωi

)
T,P

Li (4)

where fi represents gas fugacity, and ωi is the mass concentration of the gas. Mutual
diffusivity Di is obtained as the product of a kinetic factor, the mobility, or self-diffusivity,
Li, and a thermodynamic factor, i.e., the derivative of the fugacity with respect to concentra-
tions, in brackets. The correction introduced by the thermodynamic factor to the diffusion
coefficient is relevant in the case of nonlinear sorption isotherms, such as those typical of
sorption of light gases in glassy polymers, whereas for polymers in the melt state, the effect
is less marked.

It must be noted that diffusive flux coincides with total flux only at low concentrations
of diffusing species in a non-swollen membrane [24]. When the membrane is highly swollen,
a frame-of-reference correction [25,26], which accounts for convective flux in addition to the
diffusive one given by Fick’s law, needs to be applied. Kamaruddin and Koros [27] showed
that assuming negligible convective flux can lead to significant errors in multicomponent
mixtures when the permeability of one component is much higher than that of others.

An alternative approach is to replace Fick’s law in the solution–diffusion model by
the Maxwell–Stefan diffusive transport equation [28], which is based only on the relative
velocities of the components of the system, bypassing the frame-of-reference problem. One
drawback of this approach is that the concentrations of all permeants in the membrane
material are required to calculate the permeant fluxes, which makes it of less immediate use.
So far, Fick’s law has been typically applied even in those cases in which caution is advised.

Integrating Fick’s law across the membrane with the assumption of a uniform diffusion
coefficient across the membrane yields:

Ji = Di
∆ci

l
(5)

Introducing Equation (1) into Equation (5), one finally obtains:

Ji = DiSi
∆pi

l
(6)

which corresponds to Equation (1), recognizing that Pi = DiSi. Si is the incremental ratio
∆ci
∆pi

, which is a way to express the solubility of the fluid in the polymer membrane.
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For high penetrant concentrations in the membranes, the assumption of a uniform
diffusion coefficient is no longer valid, and an average diffusion coefficient is introduced
(subscript u for the upstream side; d for the downstream side) [29]:

Di =
1

∆ωi

∫ ωd,i

ωu,i

−Di(ωi)

1−ωi
dωi (7)

where Di is the local diffusion coefficient, and ωi is the mass fraction of the penetrant inside
the polymer.

Pi = Si·Di (8)

Therefore, permeability can be estimated as the product of the solubility coefficient
and the mutual diffusion coefficient. Consequently, high permeability can result from high
solubility, high diffusivity, or a favorable combination of the two. From a phenomenological
point of view, one can imagine that the permeation process consists of dissolution of the
fluid inside the polymer phase, followed by diffusion across the membrane.

Usually, in permeation experiments, the downstream side is kept at low pressure, and
in such conditions the selectivity of the polymer (perm selectivity) αi,j is equal to the ratio
between the permeability of the more-permeable to the less-permeable gas, and contains a
solubility-selectivity (αS

i,j) and a diffusivity-selectivity contribution (αD
i,j):

αi,j =
Pi
Pj

=
Si
Sj
·Di
Dj

= αS
i,j·α

D
i,j (9)

Analyzing these two properties independently is a useful way to rationalize gas
transport in polymers and the structure–property relationship that can guide membrane
material design [30,31].

Solubility-selectivity provides an important contribution to the overall perm-selectivity
in high free-volume glassy polymers, whereas for low and medium free-volume polymers,
sieving effects are more important, and diffusivity-selectivity has a higher weight [32].
Some authors question the regarding of ultra-high free volume polymers, such as polymers
of intrinsic microporosity (PIMs), as dense materials for which the solution–diffusion
model applies; however, successful modelling studies have been performed based on this
hypothesis [33]. In conclusion, the indication is that high free-volume polymeric materials
can be regarded as dense as far as their separation properties are concerned if they obey
the solution–diffusion model, regardless of their specific microstructure.

An important aspect concerning estimation of selectivity and its separate contributions
is the conditions at which the corresponding properties are measured: if solubility or diffu-
sivity of pure gases are used in Equation (9), the ideal selectivity is calculated, whereas if
the corresponding properties at mixed-gas conditions are used, multicomponent selectivity
is obtained.

In the membrane literature, most data refer to pure gas conditions, and only a few
gas mixtures have been experimentally analyzed. Initially, the mixed-gas data were avail-
able almost exclusively for permeability [34–37]. However, over the last decade, more
mixed-gas sorption and, to a more limited extent, mixed-gas diffusion studies have been
performed. In the case of mixed-gas sorption, the available studies are discussed in the
dedicated section, and are mostly related to CO2/CH4 and CO2/hydrocarbon binary
mixtures and CO2/CH4/C2H6 ternary mixtures [24,29,35–54]. For mixed-gas diffusion,
CO2/CH4, CO2/N2/O2, and CO/CO2/N2/O2 mixtures have been studied [55–57]. Such
studies identified and classified differences between ideal and multicomponent selectivity,
especially concerning the overall importance of the solubility-selectivity contribution [32].
Such experimental observations showed the need to develop reliable modelling tools able
to predict mixed-gas behavior, possibly using only pure-gas experimental measurement as
inputs in order to reduce the need for complicated and time-consuming mixed-gas tests.

Finally, it is worth noting that solubility, diffusivity, and permeability depend on tem-
perature, pressure difference, absolute pressure, gas mixture composition, and formation
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history of the sample, the latter factor especially in the case of glassy polymers [19,58,59].
Therefore, any permeability or selectivity value should be coupled to this information
and possibly compared with other materials at homogenous conditions. In particular, the
temperature-dependence of permeability, solubility, and diffusivity is expressed by an
Arrhenius law [60]:

S = S0 exp
(
−∆H̃s/RT

)
(10)

D = D0 exp(−ED/RT) (11)

P = P0 exp(−EP/RT) (12)

where ∆H̃s is the molar enthalpy of sorption, and ED and EP are the activation energies of
diffusion and permeation. The enthalpy of sorption for gas solubility in condensed phases
(liquids or polymers) can be decomposed into two contributions [61]:

∆H̃s = ∆H̃c + ∆H̃m (13)

where ∆H̃c is the molar enthalpy of condensation of the penetrant, and ∆H̃m is the partial
molar enthalpy of mixing the condensed penetrant with the polymer segments.

3. Modelling the Upper Bound of Gas Separation Membranes

An important issue faced in membrane material design is the trade-off between per-
meability and selectivity: highly permeable materials usually display very poor selectivity,
whereas highly selective materials exhibit lower permeabilities [62]. Such behavior is
evidenced by several gas pairs and polymers with very different chemical natures. By
reporting the logarithm of the selectivity versus the logarithm of the permeability of the
most-permeable gas, polymeric membrane performance lies below a limiting line, com-
monly referred to as the “Robeson upper bound” [62,63]. This trade-off sets an upper limit
for the selectivity that can be achieved by the membrane at a fixed permeability, and to the
permeability that can be reached at a fixed selectivity [64,65]. The threshold is empirically
expressed as:

αi,j =
βi,j

P
λi,j
i

(14)

where Pi is the permeability of the more-permeable gas, αi,j is the selectivity of the more-
permeable to the less-permeable gas, and βi,j and λi,j are parameters specific to each gas
couple. Similar trends can also be obtained for solubility and diffusivity [31]. For instance,
by plotting the solubility of the more-soluble gas against solubility-selectivity, a solubility
upper bound can be constructed [31]. Analogously, by plotting the diffusivity of the fastest-
diffusing gas against diffusivity-selectivity, a diffusivity upper-bound is obtained [31].
Several theoretical rationalizations of these trends have been proposed, such as the use of
cohesive energy density to interpret the diffusivity upper bound [66], Sanchez–Lacombe’s
lattice fluid theory to interpret the solubility upper bound [67], and free-volume theory to
interpret the permeability upper bound [68]. Freeman showed that the slope of the upper
bound is correlated to the kinetic diameters of the gas molecules [69]:

λi,j =

(dk,j

dk,i

)2

− 1 (15)

where dk,j is the kinetic diameter of the larger molecule, and dk,i the kinetic diameter of the
smaller molecule. On the other hand, the position of the upper bound line depends both
on size and solubility of the molecules:

βi,j =
Si
Sj

S
λi,j
i exp

{
−λi,j

[
b− f

(
1− a
RT

)]}
(16)
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where Si is the solubility coefficient of the most-permeable gas, Sj the solubility coefficient
of the less-permeable gas, and a and b are parameters from the linear free energy relation
between the preexponential factor in Arrhenius equation for diffusivity and the activation
energy of diffusion observed by Barrer [70] and Van Amerongen [71]; a has a universal
value of 0.64, b is 9.2 for rubbery polymers and 11.5 for glassy ones, and f is an adjustable
universal parameter, fitted to achieve the best representation of selectivity vs. permeability
data [69]. Its value has been calculated as f = 12, 600 cal/mol for polymers in the limiting
curves drawn in 1991 and 14,154 cal/mol in the 2008 update [72]. The upper bounds for
some indicative gas pairs [73] are reported in Figure 1.

Freeman showed that selectivity can be expressed as a function of these parameters
as [69]:

ln αi,j = −λi,j ln Di + ln
Si
Sj
− λi,j

[
b− f

(
1− a
RT

)]
(17)

Assuming that the solubility selectivity changes little with the polymer, and noting
that the term λi,jb is a constant for a given gas couple and for all polymers, it follows
that diffusivity plays a more important role than solubility in determining upper-bound
selectivity values. This is because diffusivity values of fluids in polymers normally vary
over wider ranges than solubility values, as a small size difference between permeants
can result in a large diffusivity difference. The typical way to enhance the performance
of glassy polymers, commonly used for gas separation, is to change the structure by
introducing packing-disrupting units to increase the free volume, thus increasing the
diffusion coefficient and reducing diffusivity selectivity.

However, not all separations are dominated by size selectivity: if one species is
much more soluble than the other, such as in the separation of higher hydrocarbons from
natural gas, volatile organic compounds from air, or CO2 from hydrogen, the solubility
selectivity can be higher than the diffusivity selectivity, especially in rubbery polymers.
These materials are called “reverse-selective”. In such cases, the performance plot does
not display an upper bound, but the cloud of different material points is oriented along
the opposite diagonal [74], meaning that the more permeable materials are also the more
selective ones, although an upper limit in performance may be identified [75]. In such
situations, low-temperature separation is preferred, as solubility is enhanced, although a
specific analysis of the activation energies of the different gas mixture components should
be carried out to identify the optimal temperature.

A systematic comparison of gas separation performance of glassy and rubbery poly-
mers for several gas pairs [76] showed that glassy polymers are closer to the upper bounds
for all gas pairs. This was ascribed both to a higher size-sieving ability compared to rubbery
polymers and to higher solubility coefficients owing to their excess free volume. In particu-
lar, perfluorinated and partially fluorinated glassy polymers frequently exhibit the most
favorable combination of permeability and perm-selectivity. An analysis of the solubility
and diffusivity contributions for these important families of polymers [77] showed that sol-
ubility has a higher weight in the overall performance compared to hydrocarbon polymers.

Finally, it is noteworthy that permeability-selectivity performance plots displayed in
the literature are usually obtained using pure gases at room temperature and low pressure.
Studies on the effect of temperature on the position of the upper bound have been re-
ported [78]. The effect of pressure on the position of the upper bound has been analyzed in
the framework of the free-volume theory for the gas couple CO2/CH4 [79,80]. It was found
that plasticization induced by high CO2 pressure would lower the intercept of the upper
bound, βi,j [78]. Mixed-gas effects could also change the performance of membrane materi-
als in the presence of mixtures. In particular, swelling induced by the high concentration of
one gas affects the diffusivity of the other species. In glassy polymers, so-called competitive
sorption limits the solubility of all species present, but to a different extent for each one. As
a result, mixed-gas performance and mixed-gas upper bounds [79] significantly deviate
from the ideal values obtained from pure-gas measurements. Figure 2 shows a few exam-
ples for CO2/CH4 selectivity versus CO2 permeability data for a series of glassy polymers
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suitable for separation. The blue circles refer to the estimated separation performance using
pure-gas measurements, while the red ones indicate the actual performance estimated in
the mixed-gas state.
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Upper bounds are represented by black lines (1991) and blue lines (2008). Red lines represent revisions
proposed in 2015 (solid) and 2019 (dotted). Black squares are non-PIM materials, and blue triangles
represent PIMs. Filled symbols represent newly synthesized ultra-permeable benzotriptycene-based
PIMs. Figure reproduced from [73] under CC-BY license terms.
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Figure 2. CO2/CH4 upper bound for pure-gas (empty symbols) and ~50:50 mixed-gas measurements
(filled symbols) at 35 ◦C and 10 bar for 6FDA-TADPO [27], 6FDA-mPDA [38], PEI [81], PSF [81],
CTA [82], PAR [81], PPO [83], HAB-6FDA [84], TR350 [84], TR400 [84], TR450 [84], AF1600 [85],
AF2400 [85], PIM-1 [82], PIM-Trip-TB [43], and AOPIM [82].

4. Macroscopic Models for Gas Solubility in Polymers

The calculation of gas sorption in polymers consists of the solution of a phase equi-
librium problem, which requires expression of the penetrant chemical potential in the
polymeric phase. However, a distinction must be made based on whether the polymer is
in a rubbery or glassy state. In rubbery polymers, equilibrium is reached instantaneously,
such as in liquids, or within the usual experimental times, and one can choose between
activity coefficient approaches or Equation-of-State (EoS) methods to calculate fluid solubil-
ity. Molecular methods have also been developed to calculate solubility and are presented
and discussed later in Section 7.5. EoS models are endowed with higher predictive power
and provide a complete representation of the polymer–fluid mixture. Indeed, such models
allow the evaluation of the polymer–fluid mixture volume, and thus the swelling, in a
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predictive way. The most-employed EoS models for polymeric systems are those based
on a Lattice Fluid (LF) representation of substances, such as the LF and Non-Random
Hydrogen Bonding [86–88], and those based on hard sphere chain schemes, such as the
Statistical Associating Fluid Theory (SAFT) [89]. Both approaches are very appropriate
in the representation of the thermodynamic behavior of a mixture of polymer and low
molecular weight species.

The case of glassy polymers is different, as the matrix is in non-equilibrium conditions,
and the usual equilibrium thermodynamics results do not hold. In this case, the above-
mentioned approaches cannot be applied. Calculation of gas solubility in glassy polymers
is customarily performed in the literature using the empirical Dual-Mode Sorption (DMS)
model [90–100]. Its simplicity of use and its good correlation with experimental pure-gas
sorption behavior in glassy polymers favor its widespread use, mainly for data-fitting
purposes. Indeed, its empirical nature makes DMS more a correlating tool, as discussed in
the following sections.

A more rigorous and predictive method for glassy polymers is the Non-Equilibrium
Thermodynamics for Glassy Polymers (NET-GP) approach [101]. Such methodology gives
non-equilibrium expressions for the free energy of the system for any EoS of choice by in-
troducing an internal state variable, the polymer density, to describe the out-of-equilibrium
degree of the glassy mixture. This framework has been successfully applied to predict gas
and vapor sorption in a variety of polymeric systems [102,103].

In the following, the theoretical foundations of the aforementioned approaches are laid
out, and examples of their application to calculate mixed-gas sorption in various polymeric
systems are presented.

A general overview of the models to calculate fluid solubility in polymers is given
in Table 1.

4.1. Activity Coefficient Models

Activity coefficient models describe the non-ideality of mixtures by providing a rela-
tionship between the excess free energy of the mixture (Gex, temperature, pressure, and
composition, from which activity coefficients to be used in phase equilibrium calculations
are obtained:

ln γi =
∂

∂ni

(
Gex

RT

)
T,p,nj 6=i

=
Ḡex

i
RT

(18)

Activity coefficient models were originally derived for liquid mixtures and subse-
quently extended to encompass specific features of polymers, such as high molecular
weight, but also free volume, crosslinks, or semicrystalline structure.
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Table 1. Overview of the most-employed models for fluid solubility in polymers. The definition of all variables and symbols can be found in Appendix B.

Material Model Type Common Version System
Representation What It Provides Pure Component

Parameters *
Adjustable Binary

Parameters #
Extension to

Multicomponent?

Activity coefficient
model Flory Huggins (FH) Lattice Gex Solubility isotherm 1 per component

(liquid density) 1: χij Yes

Lattice Fluid (LF)
[86,104] 3 per component (p∗, T∗, ρ∗)

Non-random
Hydrogen Bonding

(NRHB) [87,88]

Compressible

Lattice
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The most important activity coefficient model used for polymer solubility is the Flory–
Huggins one [106,107], which was developed to describe the Gibbs free energy of mixing
polymeric mixtures using statistical concepts for the mixing entropy, by invoking, for
the first time, the idea of a lattice to describe matter. The model can be used to describe
the behavior of amorphous rubbery polymers, and extensions exist to account for elastic
contributions due to crosslinking [108] or for the presence of a crystalline fraction in
the polymer [109]. Other activity coefficient models such as Non-Random Two Liquids
(NRTL) [110,111] or UNIFAC [112,113] have been modified and tested for the calculation of
solubility in polymers, obtaining different results. The review by Lipnizki and Tragard [114]
provides examples of application to membrane separation of many activity-coefficients
models. Recent applications of the Flory–Huggins and NRTL models to membrane systems
can be found in [115–117], and an example is shown in Figure 3.
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Figure 3. Sorption isotherms of (a) R32 (difluoromethane) and (b) R125 (pentafluoroethane) at 30 ◦C
in a Pebax membrane and in two mixed-matrix membranes containing ionic liquids. Solid lines
correspond to the fit of experimental data to the Flory–Huggins model with varying values of the
interaction parameter χij. Figure reproduced from [116] under CC-BY license terms.

One important limitation encountered in the application of this class of models to gas
sorption is that they do not provide a relation between density, temperature, pressure, and
composition (i.e., an equation of state); therefore, they cannot describe polymer swelling
during sorption.

4.2. EoS Models: Lattice Fluid Equations of State

Lattice fluid (LF) theories employ statistical mechanics arguments to derive expres-
sions for the free energy of the system G and, in turn, of all other thermodynamic properties
of the system, including the chemical potential, according to its definition:

µi =

(
∂G
∂ni

)
T,p,nj 6=i

(19)

In the lattice-fluid representation, each molecule is considered a flexible chain com-
posed of r segments (mers) immersed in a lattice of cubic cells. The Flory–Huggins
model [106,107] assumes the lattice to be fully occupied, while in the Sanchez and La-
combe model [86,104], empty cells are possible in the system. The entropy of the system is
estimated through the number of possible configurations of the lattice. The energy of the
lattice is obtained by summing all the pairwise energetic contributions of first neighbors
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and considering null interaction between molecule segments and empty cells. The Gibbs
free energy expression in this model thus becomes:

G = NrkBT∗
{
−ρ̃ +

p̃
ρ̃
+ T̃

[
1− ρ̃

ρ̃
ln(1− ρ̃) +

1
r

ln(ρ̃)
]}

(20)

where T̃, p̃, and ρ̃ are the reduced temperature, pressure, and density, respectively, defined
in Appendix B. Each substance is univocally characterized by the macroscopic parameters
T∗, p∗, and ρ∗, which are related by the relations reported in Appendix B. The characteristic
pressure of the system, p∗, is associated with its cohesive energy density, i.e., the strength
of intermolecular interactions.

By minimizing the free energy with respect to volume at a constant temperature and
pressure, one obtains the Lattice Fluid EoS, which is formally identical for pure components
and mixtures, provided that the corresponding definition of the reduced variables T̃, p̃, ρ̃
is used:

ρ̃ = 1− exp
[
− ρ̃2

T̃
− p̃

T̃
− ρ̃

(
1−∑N

i
φi
ri

)]
(21)

Therefore, the extension to mixtures is straightforward. Each species present in the
mixture occupies Nr,iri lattice cells, and the composition of the system φi is expressed as
the fraction of lattice sites occupied by i. Furthermore, it is assumed that the close-packed
volume of each species is conserved at multicomponent conditions, and the total number
of binary interactions in the mixture is the sum of the corresponding interactions for the
pure components. These two hypotheses grant additivity of the close-packed volumes.

Mixing rules for the macroscopic parameters are:

1
ρ∗

= ∑N

i
ωi
ρ∗i

(22)

p∗ = ∑N

i
φi p∗i −∑N−1

i ∑N

j>i
φiφj∆p∗ij

where ∆p∗ij = p∗i + p∗j − 2
(
1− kij

)√
p∗i ·p∗j

(23)

ρ̃ = 1− exp
[
− ρ̃2

T̃
− p̃

T̃
− ρ̃

(
1−∑N

i
φi
ri

)]
(24)

where ∆p∗ij expresses the characteristic binary interactions between species i and j and
contains an adjustable parameter kij, to account for deviations from the geometric mean
mixing rule. Such a parameter is present in practically every EoS model.

Recent studies employing the Sanchez–Lacombe EoS in the study of gas/polymer
systems can be found in [118–121]. Figure 4 is a representation of one the latest applications
of the theory to the sorption of pure CO2 in polydimethylsiloxane (PDMS), a rubbery
membrane. The pressure range considered in the measurements encompasses the transition
from gas-like to liquid-like behavior of CO2, which is reflected in the sorption trend by a
reduction of the slope. The LF model is able to represent such a transition in the sorption
trend at each temperature correctly without adding any adjustable parameter.

Another model belonging to the class of compressible lattice theories, but accounting
for specific polar interactions between sites, is the Non-random Hydrogen Bonding (NRHB)
theory [87,88]. This model contains parameters for pure components plus additional
parameters for associating interactions. The first two pure component parameters are the
enthalpic and entropic contributions, ε∗i,h and ε∗i,s, respectively, to the mean interaction
energy per molar segment ε∗i , correlated through the following equation:

ε∗i = ε∗i,h + (T − 298.15)ε∗i,s (25)
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Figure 4. CO2 sorption in PDMS at different temperatures. Filled symbols: experimental data from [122]:
triangles, 25 ◦C; circles, 35 ◦C; diamonds, 45 ◦C; squares, 55 ◦C. Empty triangles: experimental data
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2022, Elsevier.

The third parameter is associated with the close-packed density of the lattice ρ∗i . As in
the lattice fluid theory, the first three parameters are usually fitted on LV equilibrium data
for the fluids and on PVT data for the polymers. The fourth parameter associated with each
component i is the shape factor, si, which represents the ratio of molar surface to molar
volume, and it is usually estimated via the group contribution UNIFAC [126,127].

In this model, the binary interaction parameter kij acts on the characteristic energy
rather than on the characteristic pressure as in the LF model:

ε∗ij =
(
1− kij

)√
ε∗i ε∗j (26)

For systems displaying hydrogen bonding or Lewis acid/Lewis base interactions,
two additional parameters for each association interaction between a functional group α

and a functional group β are introduced: the association energy E0
αβ and the association

entropy S0
αβ. The values of the association parameters relative to a given component (self-

association) can be retrieved by fitting the equilibrium thermophysical properties of the
species. Cross-interaction parameters between functional groups belonging to different
molecules are estimated via combining rules of the two self-associating parameters:

E0
αβ =

E0
αα + E0

ββ

2
; S0

αβ =

S0
αα

1/3
+ S0

ββ
1/3

2

1/3

(27)

For the expressions of chemical potential, we direct the reader to the original papers [87,88].

4.3. EoS Models: Statistical Associating Fluid Theory (SAFT)

Equations of state based on Statistical Associating Fluid Theory are a family of models
that possess a strong theoretical foundation based on molecular considerations. The SAFT
models were initially developed in the early 1990s [128,129] and have undergone numer-
ous subsequent modifications [130,131]. They are all based on Wertheim’s perturbation
theory [132–134] and thus belong to the so-called “perturbative models”. Perturbative
methods start by providing an expression for the thermodynamic properties of a reference
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fluid. The thermodynamic properties of all other systems can then be calculated using
additional contributions (perturbations) that account for deviations from the reference
fluid. Such contributions can be given by rigorous equations, polynomial expansions, or
empirical terms. SAFT models usually provide the expression for the residual Helmholtz
free energy Ares, i.e., the difference between the actual Helmholtz free energy and that of the
ideal gas at the same temperature and volume. One possible example of such methodology,
corresponding to the picture shown in Figure 5, is reported below:

Ares = Ahs + Adisp + Achain + Aassoc (28)

The different terms refer to interaction terms of the real fluid:

- Hard sphere repulsive interaction (hs), which is a property of the reference fluid;
- Attractive dispersion terms (disp), corresponding to the formation of weak interactions;
- Chain formation contribution (chain), relative to the formation of covalent bonds;
- Association interaction contributions (assoc), for polar interactions between groups.

The difference between the various SAFT versions is related to the different expressions
used to calculate the various terms and for the “reference fluid” chosen. For instance, in
the Huang and Radosz version (HR-SAFT) [129], the dispersion term is based on a square
well approximation of the binary interaction potential fitted on the data for Argon, while in
the Perturbed Chain SAFT (PC-SAFT) proposed by Sadowski et al. [135], the perturbations
are applied to a hard chain system and the model is able to more accurately represent the
chain-like shape of linear alkanes and polymers.
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Figure 5. Schematic of different contribution to Helmholtz free energy in SAFT theory. Reproduced
with permission from [136]. Copyright 2015, Elsevier.

Pure fluid properties are described with three parameters: the radius σ of the sphere,
the number of spheres per molecule m, and the interaction energy u0, which relates well
to the depth of potential energy. Mixtures usually require an additional binary parameter
for couples of species in the mixture, which affects the interaction energy parameters. At
least two associating parameters are required for each hydrogen bonding interaction. Such
parameters refer to the interaction energy and the distance between associating groups.
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The chemical potential required for calculating the solubility of the fluid in the mixture
is obtained as:

µi − µIG
i =

∂

∂ni

(
Ares

RT

)
T,V,nj 6=i

(29)

For equilibrium calculations, the chemical potential of the different components in the
vapor phase and in the polymer phase have to be equal so that for every vapor mixture
composition and set of operative conditions, a system in Nc − 1 equations with Nc − 1
unknowns can be written, which can be solved in order to obtain the equilibrium concentra-
tion of different penetrants in the polymer. The general expression of the SAFT EoS is not
simple and usually cannot be written in a single equation. The set of equations to be solved
for solubility calculation in the case of PC-SAFT is reported in the Appendix of [135].

The application of different type of SAFT models to phase equilibria involving poly-
mers has been considered in several works, considering amorphous and crystalline systems,
as well as random and block-copolymers [130], and has continued to be routinely applied
in recent studies [137–140] with success, as shown, for example, in Figure 6. However, due
to the inherent complexity of the EoS, SAFT models are seldom employed in the analysis of
penetrant permeability, although some examples may be found in the literature [137,141].
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Figure 6. Example application of the PC-SAFT model to calculate (a) n-C4H10 and (b) CH4 sorption
isotherms as a function of temperature [137]. Experimental data from [47]. Reprinted with permission
from [137]. Copyright 2020, Elsevier.

4.4. Non-Equilibrium Thermodynamics for Glassy Polymers (NET-GP)

The Non-Equilibrium Thermodynamics for Glassy Polymers (NET-GP) approach [101,102,142]
provides an extension of EoS theories to non-equilibrium materials, and is therefore suitable
for the calculation of the solubility of fluids in glassy polymers. The NET-GP approach
applies to homogeneous, isotropic, and amorphous phases. The non-equilibrium density
of the glassy polymer ρpol acts as an internal state variable and accounts for the out of
equilibrium degree of the material. The theory provides a method to calculate the non-
equilibrium chemical potential by using the free energy expression provided by any EoS:

µNE
i

(
T, p, ω, ρpol

)
= µ

Eq
i

(
T, ω, ρpol

)
(30)
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Even though the glassy polymer is not in a thermodynamic equilibrium state because
it tends to densify over time, this process is slow compared to the characteristic time of
a sorption process; therefore, it is possible to assume that a “pseudo” phase equilibrium
condition can be reached by the polymer in contact with the gas phase, and thus calculate
the amount of sorbed gas by imposing the equality of the chemical potential of the penetrant
in the two phases:

µ
NE(pol)
i

(
T, p, ω, ρpol

)
= µ

Eq(gas)
i (T, p, y) (31)

The equilibrium chemical potential in the gas phase µ
Eq(gas)
i is obtained by means of a

suitable equation of state for the gas phase.
The NET-GP approach requires knowledge of the polymer density at each pressure

used in the computation of the sorption isotherm. For the proper evaluation of its value
during sorption, experimental dilation measurements are needed. However, when such
data are lacking, a linear relation between polymer specific volume and partial pressure of
each penetrant can be assumed, as this has often been observed experimentally for different
light gases [58,124,143]. At these conditions, adjustable swelling coefficients ksw,i can be
defined as follows:

1
ρpol

=
1

ρ0
pol

1 +

Np

∑
i = 1

ksw,i pi

 (32)

In the case of a single penetrant, ksw can be evaluated by knowledge of one point
of the sorption isotherm in the high-pressure range. When Tg is experimentally acces-
sible, ksw values can also be predicted by using the rheology model presented in [144].
Hasani et al. [145] recently proposed a predictive sorption calculation framework, using the
latter formulation for the swelling calculation [144] and estimating the binary coefficients
kij independently by considering an empirical correlation between kij and the Hansen
solubility parameters for several polymers.

Shoghl and coworkers [146] bypassed the need for the swelling coefficient by intro-
ducing an estimate of the polymer free volume as a function of solute concentration, dry
polymer density, and the lattice fluid characteristic density ρ∗. The approach provides
accurate results in the case of non-swelling gases, such as CH4, N2, and Ar, for which the
effect of the free-volume correction is expected to be modest. In the case of a swelling agent,
such as CO2, the prediction is still in fairly reasonable agreement with the data; however,
the model does not seem to correctly capture the shape of the sorption isotherms in the
materials analyzed.

Recently, Marshall et al. [147] proposed the dry glass reference perturbation theory
(DGRPT) to predict polymer swelling within the NETGP framework once the density of
the pure (unpenetrated) polymer ρ0

pol is known, thus reducing the number of adjustable
parameters and/or experimental data required to compute solubility at high pressure. This
method provides a closure relation for the polymer chemical potential through perturbation
of the dry glassy reference state, allowing the self-consistent calculation of the swollen
polymer density in the presence of pure gases or mixtures. The approach yielded good
results in the calculation of sorption of pure and binary vapors and liquids in various glassy
polymers [147].

The most popular application of the NET-GP theory makes use of the Lattice Fluid
Equation-of-State frame-of-reference, and goes by the name of Non-Equilibrium Lattice
Fluid (NELF) model [101,102,142,148], which is the extension of the Sanchez–Lacombe (SL)
LF EoS [86,104,149] to the non-equilibrium glassy state by means of the NET-GP theory.

As previously mentioned, in the non-equilibrium phase, the polymer density value,
needed to calculate the parameters, must be determined experimentally, whereas for the
gas phase, the equilibrium density results from solving the SL LF EoS.

The expression of the chemical potential of the SL LF model, to be used in Equation (31),
is given below.
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µi
RT

= ln(ρ̃φi)− ln(1− ρ̃)

[
r0

i +
ri + r0

i
ρ̃

]
− ri − ρ̃

r0
i ν∗i
RT

p∗i +
N

∑
j = 1

φi

(
p∗j − ∆p∗i,j

)+ 1 (33)

Definitions of the variables used are reported in Appendix B.
Some studies that have applied the NELF model in recent years have tested the model

in a variety of systems and conditions, such as commodity polymers and high performance
ones, both at low and high pressure, for light gases and condensable vapors, and with
mixed-matrix membranes and semicrystalline materials [121,150–154].

The NE approach can be applied to the SAFT and PC-SAFT EoS as well, yielding the
NE-SAFT and NE-PC-SAFT models, respectively [155], which are better-suited to describe
polar and associating species, but no explicit expression is available for the chemical
potential due to the higher complexity of the free energy expression [156]. Application of
the NET-GP framework to the Non-Random Hydrogen Bonding (NRHB) EoS [87,88] has
been reported as well [157,158], also in the mixed-gas case [159,160].

4.5. Dual-Mode Sorption (DMS) Model for Glassy Polymers

The Dual-Mode Sorption (DMS) model [90–100] postulates the existence of two dif-
ferent gas populations at equilibrium with one another inside glassy polymers,. The first
one is dissolved in the dense portion of the material, and it is described by Henry’s law.
The second one saturates the non-equilibrium excess free volume of the polymer, thought
of as microvoids in the polymer phase, and it is described by a Langmuir curve. The
total sorbed gas as a function of gas fugacity can be expressed as a sum of these two
contributions [92,98]:

ci = kD,i fi +
C′H,ibi fi

1 + bi fi
(34)

The parameter kD,i is Henry’s law constant, while bi is the Langmuir affinity constant,
which represents the ratio of the rate constants of sorption and desorption of penetrants in
the microvoids. C′H,i is the Langmuir capacity constant, which characterizes the sorption
capacity of a glassy polymer for a certain penetrant in the low-pressure region and is
connected to the excess free volume, which can vary with sample history [161,162]. For
every gas–polymer pair, the three parameters are retrieved through a nonlinear least-square
best-fit of pure-gas sorption data. C′H,i decreases as temperature increases and has been
shown to vanish at the glass transition temperature (Tg) of the polymer [163], while the
temperature dependence of kD and b is described by a van’t Hoff relation [61]:

kD = kD0e−
∆H̃D

RT (35)

b = b0e−
∆H̃b
RT (36)

In Equations (35) and (36), ∆H̃D and ∆H̃b are the enthalpies of sorption for Henry and
Langmuir modes, respectively, R is the gas constant, and T is the temperature.

Extension of this model to multicomponent sorption [164] is based on phenomeno-
logical arguments, suggested by the theory of competitive sorption of gases on catalysts,
which exhibit a Langmuir behavior. The amount of free volume in a polymer is limited,
because the model does not consider swelling; therefore, the various penetrants compete
to occupy it, and, as a consequence, the sorbed concentration will be lower than in the
pure-gas case. It is assumed that the competition is controlled by the relative values of the
product of the affinity constant and partial pressure (or fugacity) of each penetrant. Further
hypotheses are that the affinity parameter bi, Henry’s constant kD,i, and the molar density
of a component sorbed inside the Langmuir sites are independent of the presence of other
penetrants. The final expression for the concentration of component i in the presence of a
second component j is given by:
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ci = kD,i fi +
C′H,ibi fi

1 + bi fi + bj f j
(37)

In the case of more than 2 penetrants, the general expression is:

ci = kD,i fi +
C′H,ibi fi

1 + bi fi + ∑j 6=i bj f j
(38)

The characteristic gas–polymer parameters found in Equations (37) and (38) are the
same as those in Equation (34), which are retrieved from a least-square fit of pure gas
isotherms. It is also commonplace to write Equations (34) and (37) using the partial
pressure of each gas instead of its fugacity. However, when the approximation of ideal-gas
behavior is not valid, such as when high pressures or gas mixtures are considered, the
fugacity constitutes a more appropriate measure of the chemical potential, which is the
driving force for gas sorption in the polymer. It has been verified that using pressure-based
or fugacity-based parameters yields the same results in mixed-gas sorption calculations;
therefore, the accuracy of the multicomponent calculations with the DMS model does not
depend on this choice [46,49,51,165].

The DMS model correlates the pure sorption isotherms of most penetrants in glassy
polymers well; however, it does not allow representation of all types of isotherms encoun-
tered, such as the sigmoidal ones of alcohols in glassy polymers [166]. There have been
studies aimed at overcoming this limitation: for example, by incorporating multilayer
sorption theory, a DMS based model capable of representing all the different shapes of
sorption isotherms encountered was developed [167]. Another issue is that the adjustable
parameters of the DMS model depend on polymer history and operating conditions, as
well as on the temperature and pressure range investigated, and they lack predictive ability
outside their range of derivation [168].

Furthermore, some inconsistencies are intrinsically related to the main assumptions of
the model: the approach does not explicitly account for penetrant-induced swelling even
though it may be associated with the physical dissolution mechanism, as no change in
the Langmuir capacity (and thus in the excess free volume contribution) is considered in
the whole solubility isotherm. When the sorption/desorption hysteresis is then inspected
(see e.g., [169]), different C′H values are required to describe the two different branches
(pressure increasing or pressure decreasing), thus leading to a physical inconsistency of a
model parameter, the Langmuir capacity, which undergoes a step-change corresponding
to the maximum pressure data point, and, as such, it assumes two different values at the
same point. These model parameters do not actually represent material properties, and
they should rather be considered as coefficients of a useful mathematical equation able to
represent some types of solubility isotherms in glassy polymers [170].

Also the multicomponent version of the DMS model does not explicitly account for the
fact that the polymer matrix can swell when sorbing penetrants, and possible synergistic
effects are thus not represented. Although swelling effects are negligible with respect
to competition ones in many systems, such as the ultra-high free volume polymers of
intrinsic microporosity (PIMs) [39,40,42,53], where the DMS model is expected to reliably
estimate data [51], a detailed analysis of the multicomponent performance of the DMS
model pointed out a fundamental lack of robustness [42,165]. Analysis of mixed CO2/CH4
sorption in high free volume glassy polymers indeed revealed that pure gas solubility can
be represented with the same accuracy by several different DMS parameter sets, which,
however, yield markedly different mixed-gas predictions that are not always accurate.

The Dual-Mode Sorption theory is applied in the development of the Partial Immobi-
lization Dual-Mobility Model for Permeability, which is described in Section 6.1.

4.6. Guggenheim−Anderson−de Boer (GAB) Model

An alternative description for sorption of gases in polymers is provided by the
Guggenheim–Anderson–de Boer (GAB) model [171–173], in which the polymer chains are
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considered as solids surrounded by void pockets, and the penetrant molecules are assumed
to only adsorb on the polymer surfaces. This is an extension of the Brunauer−Emmett−Teller
(BET) approach to multilayer adsorption of small molecules in a solid adsorbent [174,175].
This approach has proven effective for describing solubility isotherms in rubbery phases
and glassy phases [167,176–178].

The GAB model considers a multilayer adsorption mechanism on top of the first
adsorption monolayer with capacity vm. The binding of the first monolayer on the pore
walls is assumed to be stronger than that of the subsequent layers, which is expressed
through a dimensionless factor h. For a single gas, the sorption isotherm has the following
expression [176]:

v =
vmhp∗p

(p∗ − p)(hp∗ + p∗ − p)
(39)

where v is the penetrant sorbed mass ratio, p is the penetrant pressure, and p∗ is a reference
pressure value associated to the penetrant. Therefore, the model contains three adjustable
parameters for each penetrant−polymer pair, namely, vm, h, and p∗, which are obtained
as a best-fit of the experimental sorption isotherms. The dimensionless factor h is consid-
ered independent of temperature, while vm and p∗ are expected to follow a van’t Hoff
temperature dependence.

The GAB model isotherm is more flexible than the DMS one, and it is able to represent
different types of isotherms, both with concavity toward the pressure axis or toward the
concentration axis, as well as S-shaped isotherms in which the initial concavity toward the
pressure axis turns toward the concentration axis at higher pressures. With the addition
of a concentration dependence of the parameter h, it is also possible to represent sorption
isotherms in which initial concavity toward the concentration axis later turns into concavity
to the pressure axis, such as those shown by alcohols in some glassy polymers [179].

To perform mixed-gas sorption calculations, it is assumed that each penetrant can
sorb either on the sorption centers of the polymer or on the sorption centers created by
the molecules of another compound sorbed in the polymer [180]. This leads to isotherm
expressions given by the sum of different contributions, as follows:

vi =
vm,ihi p∗i p(

p∗i − p
)(

hi p∗i + p∗i − p
) + rijvjhij p∗i p(

p∗i − p
)(

hij p∗i + p∗i − p
) (40)

The first term in Equation (40) contains only parameters associated with species i,
which are obtained by the best-fit of the pure component sorption isotherm; however,
the second term contains two parameters related to penetrant−penetrant interactions, rij
and hij. Similarly, for species j, two further parameters are required, rji and hji. These
parameters must be obtained from the best-fit of mixed-gas sorption isotherms.

A comparative study [170] showed that increasing the number of adjustable parame-
ters does not yield significant benefits in terms of accuracy of mixed-gas sorption calcu-
lations, with the important drawback that, unlike the two aforementioned approaches,
it cannot be used predictively. Therefore, in the following section, where an example of
application of modelling tools for mixed-gas sorption is presented, the GAB model is not
considered.

4.7. Fractal Model for Solubility Coefficients

A less-adopted approach to describe solubility coefficients (and diffusivity, see Section 5.2)
leverages fractal theory concepts. Mathematically, fractals are self-similar objects that
show no variations regarding local dilatation. Fractal objects are described through three-
dimensional parameters related to: the dimension of Euclidean space d, which is the
fundamental space of classical geometry; the fractal object dimension d f , which describes
the object density reduction gradient; and the spectral fraction dimension ds, which depicts
the object connectivity [181,182]. It has been suggested that thermodynamically non-
equilibrium solids, such as glassy polymers, can be treated as fractal objects [182,183], and
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solubility coefficients in agreement with experimental results have been calculated using
this theoretical framework [184,185].

In this model, it is assumed that small gas molecules are non-interacting with the
polymer chains, that they are adsorbed on the walls of free volume microvoids, and that
gas–gas molecular interactions can be characterized using the Lennard–Jones potential
ε/kB. In this case, the fractal equation for calculating the solubility coefficient S may be
written as [186]:

S = S0

(
Fe f

g

)D f /2
(

ε

kB

)
(41)

where Fe f
g is the effective cross-sectional area of the sorbed gas molecules averaged over

all possible orientations by considering maximum and minimum diameters of the gas
molecules to estimate its effective diameter [182,184]; D f is the global fractal dimension
parameter, which can be calculated by a series of correlations, as detailed in the follow-
ing [182,183].

S0 corresponds to a minimum solubility of a gas molecule where a gas molecular
interaction does not count. The estimated value of S0 for PVTMS has been reported as
4.0 × 10−8 [184].

The relative fraction of the closely packed segments in clusters (ϕcl) is introduced and
calculated from knowledge of the glass transition temperature of the polymer (Tg) through
the following percolation correlation:

ϕcl = 0.03(1− Xcr)
(
Tg − T

)0.55 (42)

where T is the temperature at which the parameter is measured, e.g., 293 K, and Xcr is the
degree of crystallinity, which, for many glassy polymers, is near zero.

The fractal dimension of the polymer structure, d f , is calculated employing the follow-
ing equation [33]:

d f = 3− 6
(

ϕcl
CS Acr

)1/2
(43)

where Acr is the cross-sectional area of a macromolecule in Å2, and CS is a characteristic
ratio that represents the index of chain flexibility [187,188]. Ways of estimating the values
of Acr and CS have been reported in the literature [186,188,189].

Finally, the global fractal dimension, D f , can be obtained from the flowing equation:

D f = 1 +
1

3− d f
(44)

This method has been applied to calculate the solubility coefficients of hydrogen, nitro-
gen, oxygen, carbon dioxide, methane, ethylene, and propylene in polynorbornenes [184,185],
achieving predictions on average within 30% of the experimental results, except for CO2,
which was underpredicted by approximately a factor of six.

The model has not yet been extended to the mixed-gas case. Moreover, one drawback of
its application to innovative glassy polymer membranes is that it requires knowledge of the Tg
of the polymer, which, for a large number of these materials, is not known experimentally.

4.8. Insight on Mixed-Gas Sorption in Polymers: Experimental Trends and Modeling

The sorption of gas mixtures in polymer membranes has shown that they exhibit rather
marked deviation from ideal pure-gas behavior. Considering, for simplicity, binary mix-
tures, in glassy polymers, due to competitive sorption effects, the solubility of both species
at mixed-gas conditions is generally lower than the corresponding pure-gas solubility at
the same gas fugacity. However, it has been observed that the effect on solubility-selectivity
depends on the relative amounts of the two species absorbed in the polymer. Solubility-
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selectivity can be calculated by making use of the definition of the solubility coefficient S
using the corresponding value of the gas concentrations c at pure- or mixed-gas conditions.

αS
A,B =

SA
SB

=
cA/ fA
cB/ fB

(45)

For instance, in the case of a CO2/CH4 mixture in many glassy polymers, CO2 is
usually the most abundant component in the polymer, and the multicomponent CO2/CH4
solubility-selectivity is higher than the “ideal” value calculated considering the pure-gas
solubility ratio of the two gases at the same fugacity. However, there is a range of conditions
when the gas mixture is extremely rich in CH4 and poor in CO2, in which there are more
CH4 than CO2 molecules sorbed in the polymer. In such cases, it has been observed that
the CO2/CH4 solubility-selectivity is lower than the “ideal” value. Such approximate
correlation of the solubility-selectivity changing with respect to the relative amount of the
sorbed gases [41,190] has been found to hold true for several mixtures in glassy polymers,
collected in Table 2. In Table 2, “Competition” effects associated with sorption indicate that
the solubility of one or both gases is lower than the corresponding pure-gas value at the
same fugacity in the composition range inspected in the tests. This is associated with an
increase in the solubility selectivity and this is the prevalent phenomenon observed for
glassy polymers. The term “Swelling” indicates that the solubility of one or both gases is
higher than the corresponding pure-gas value at the same fugacity, with a detrimental effect
on solubility-selectivity. In rubbery polymers, the swelling effects are usually dominant.

Table 2. Multicomponent effects documented during mixed-gas sorption in polymeric membranes.
Polymer acronyms are defined in Appendix A.

Polymer Mixture (More-Soluble
Component First)

Predominant
Multicomponent Effect

Observed at Fixed Fugacity
Ref.

PDMS (rubbery)
CO2/CH4 Swelling [45]

n-C4H10/CH4 Swelling [47]

XLPEO (rubbery) CO2/C2H6 Swelling [48]

PMMA
CO2/C2H4 Competition

[49–51]
CO2/N2O Competition

PPO CO2/CH4 Competition [46]

CTA CO2/CH4 Competition [52]

PTMSP
CO2/CH4 Competition [53]

n-C4H10/CH4 Competition [54]

6FDA-TADPO CO2/CH4 Competition [27]

6FDA-mPDA CO2/CH4 Competition [38]

HAB-6FDA CO2/CH4 Competition [32]

TR450 CO2/CH4 Competition [32]

PIM-1

CO2/CH4 Competition [39,40]

C2H6/CH4 Competition [41]

C2H6/CO2 Competition [41]

C2H6/CO2/CH4 Competition [41]

TZ-PIM CO2/CH4 Competition [42]

PIM-Trip-TB CO2/CH4 Competition [43]

In all cases, these effects need to be accounted for in the design of the separation
operation, in order to avoid significant errors in membrane performance estimation. Mixed-
gas experiments are very delicate and much more time-consuming than pure-gas tests.
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Therefore, there is the clear need for reliable models that involve a minimum number of
adjustable parameters.

As an example, we show the case of PIM-1: CO2/CH4 mixed-gas sorption has been
characterized thoroughly in this polymer, and the NELF model parameters are available in
the literature. The NELF parameters for PIM-1 were retrieved by analyzing a large dataset
comprising solubility at infinite dilution of light gases and several vapors [33]. Mixed-gas
sorption calculations with the NELF model also require the use of a binary interaction
parameter for the gas couple, which can be optimized by fitting equilibrium data for the
gas mixture with the corresponding equilibrium model (the SL LF EoS). However, the effect
of this parameter on mixed-gas sorption results has been found to be negligible in most
cases [32,41,190].

Modelling Mixed-Gas Sorption of CO2/CH4 Mixture in PIM-1: NELF and DMS
Model Results

Figure 7 reports the experimental sorption data of pure CO2, pure CH4, and CO2/CH4
mixtures (∼10/30/50 mol% CO2) in PIM-1 at 25, 35, and 50 ◦C [39,40], together with the
results of mixed-gas sorption calculations with the NELF model.

In the case of PIM-1, there is good agreement between experimental data and model
predictions for CO2 at all temperatures and gas-phase concentrations, with average devia-
tions below 5%, while for CH4, agreement increases at higher temperatures. For instance,
at 25 ◦C, the highest relative deviation between the model and experiments is 30% in the
case of an equimolar mixture, while it is reduced to 4% at 50 ◦C. The largest deviations for
CO2 are always obtained in the ∼10 mol% CO2 mixture, while for CH4 they are obtained
in the equimolar mixture.

In the case of the DMS model, the same system formed by the CO2/CH4 mixture in
PIM-1 has been analyzed [165]. In particular, sensitivity analysis has been carried out to
analyze the error in predicting mixed-gas solubility while using two different parameter
sets that have the same accuracy in predicting pure-gas sorption behavior. A comprehensive
search of the parameter space was conducted using a grid method in order to identify a
range of DMS model parameter values that provide equally satisfactory representations
of pure-gas data. Once such a range was estimated, it was tested to determine whether
different parameter sets within these confidence intervals could lead to better mixed-
gas predictions than those obtained using best-fit sets. In Figure 8a, the three colored
regions correspond to domains in the parameter space where the relative standard error
RSE < RSEmax (1.5%) for CH4 sorption in PIM-1 at three different temperatures. Each point
in the colored region is a parameter set that satisfies the accuracy criterion. The bundle of
calculated sorption isotherms obtained with all the parameter sets in the colored regions is
reported in Figure 8b and compared to the experimental data. Although there is detectable
variability in the sorption isotherms calculated using either of the parameter sets, it is
always within the experimental error bars.
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Figure 7. Sorption isotherms of (a,c,e) CO2 and (b,d,f) CH4 at 25, 35, and 50 ◦C in PIM-1 in pure-
and mixed-gas conditions: grey squares, pure gas; yellow triangles, ∼10% CO2 mixture; blue
diamonds, ∼30% CO2 mixture; red circles, ∼50% CO2 mixture [39,40]. Solid lines are NELF model
predictions [191].
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Figure 8. (a) Surfaces enclosing the range where DMS parameter sets yield a relative standard error
RSE < RSEmax in the prediction of CH4 sorption in PIM-1 at three different temperatures [191];
(b) CH4 sorption isotherms in PIM-1 at 25, 35, and 50 ◦C (experimental data from [39]) calculated
with all the parameter sets enclosed by the corresponding colored regions in the plot on the left [191].

All the parameter sets that satisfied the condition RSE < RSEmax in the pure-gas
sorption representation were used to calculate mixed-gas sorption isotherms using the best-
fit values for bCO2 . To quantify the accuracy of mixed-gas prediction (RSEmix), the average
RSE of isotherms at three concentrations (10/30/50 mol.% CO2) for each temperature was
used, and then the lowest and the highest results were selected in order to identify the
best and worst predictions, labelled, respectively, Set 1 and Set 2. The parameter sets that
correspond to these two extreme cases and their RSE values are summarized in Table 3. The
calculated sorption isotherms are shown in Figure 9. Allowing also for experimental error,
the two pure-gas representations at each temperature are deemed equivalent, and no reason
for choosing one over the other can be suggested. Therefore, in the absence of mixed-gas
experimental data for validation, confidence in the accuracy of the calculation is weakened.
For CO2 sorption, the uncertainty in the mixed-gas predictions was generally lower and
within the confidence region of the parameters [165]. Due to the form of the DMS model
expression for the concentration, parameters C′H and b are strongly coupled and, therefore,
a deviation of either of them can be compensated for by a corresponding deviation of
the other, yielding a similar overall quality of the fit. In order to improve the accuracy of
the calculation, some authors have chosen to incorporate mixed-gas data into the fitting
procedure used to retrieve the DMS parameters, obtaining different parameter sets from
those retrieved considering only pure-gas data. In those cases [84,192], the representation
of the mixture behavior was superior when multicomponent data were included during
parametrization, but the procedure is clearly no longer predictive.

Table 3. DMS model fugacity-based parameter sets used to calculate mixed-gas sorption of CO2 and
CH4 in PIM-1 reported in Figure 9.

T
(◦C)

kD,CH4(
cm3

STP
cm3

polbar

) C
′

H,CH4(
cm3

STP
cm3

pol

) bCH4

(bar−1)
RSEpure RSEmix

Set 1
25 0.940 66.52 0.174 1.5% 13%
35 0.084 100.6 0.078 1.5% 7%
50 0.317 67.15 0.094 1.5% 13%

Set 2
25 0.428 89.57 0.115 1.5% 27%
35 0.622 73.15 0.108 1.5% 23%
50 0.763 47.05 0.140 1.5% 21%
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Figure 9. Dual-Mode Sorption model mixed-gas predictions of CH4 sorption in PIM-1 at (a) 25 ◦C,
(b) 35 ◦C, and (c) 50 ◦C obtained with the two parameter sets reported in Table 3: solid lines
correspond to Set 1; dashed lines correspond to Set 2 [191]; grey squares, pure gas; yellow triangles,
∼10% CO2 mixture; blue diamonds, ∼30% CO2 mixture; red circles, ∼50% CO2 mixture [39,40].

5. Macroscopic Models for Gas Diffusivity in Polymers
5.1. Free-Volume Theory

The diffusivity, or mutual diffusion coefficient, of a penetrant fluid in a polymer ap-
pears in Fick’s law to correlate the diffusive flux to the concentration gradient, representing
the driving force of the phenomenon. Experimentally, diffusivity can be calculated either
from transient sorption or from permeation tests. Diffusivity values vary with fluid and
polymer nature and span several orders of magnitude, much more than solubility. In partic-
ular, in a fixed polymer, diffusivity decreases with vapor molecular size (molecular volume
at the critical point or kinetic molecular diameter are typically considered as metrics), with
slopes depending on polymer nature and microstructure, e.g., the fractional free volume.
The dependence of diffusivity on penetrant size is weaker for rubbery polymers and high
free-volume glassy polymers, while rigid and compact barrier polymers offer a steeper
decrease of D with molecular dimensions. Diffusion is depicted as a sequence of jumps due
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to thermally activated movements in temporary holes in the polymer matrix. Diffusivity
thus increases with free volume and temperature.

Usually, fluid diffusivity increases, often exponentially, with the concentration of
fluid sorbed in the polymer due to the swelling of the matrix. Such behavior is typically
encountered in rubbery or low free-volume glassy polymers. However, in glassy poly-
mers characterized by a large excess of free volume, swelling is limited, and diffusivity
may remain constant or even decrease with concentration due to saturation of the free
volume [193]. In cases in which the penetrant molecules can self-associate to form clusters
in the polymer, as in water-vapor diffusion in hydrophobic fluorinated ionomers such as
Nafion, diffusivity can show a maximum with concentration [194]. Furthermore, some-
times diffusivity may show different values if measured from transient sorption or from
permeation experiments, especially if the polymer has high free volume. Studies involving
numerical simulations have attributed such phenomena to void-phase anisotropy [195].

Cohen and Turnbull [196] first showed that the self-diffusion rate of a pure fluid Di,sel f
is related to the probability of finding a hole larger than the occupied volume V∗ around the
molecule. Such probability is related exponentially to the average free volume VF, which
became a concept of paramount importance in the diffusion of fluids in polymers [197–200].
For glassy polymers, one has to account for excess volume due to non-equilibrium. The
final expression for the self-diffusion coefficient of a fluid in a polymer is given by:

D1,sel f = D0
1exp

(
−

E0
D

RT

)
exp

{
−γ

ω1V̂∗1 + ξω2V̂∗2
ω1K11

(
K21 − Tg1 + T

)
+ ω2K12

(
K22 − Tg2 + T

)} (46)

where the variables and parameters involved are described in Table 4:

Table 4. Variables and parameters in the self-diffusion coefficient expression given by the Free-Volume
Theory (Equation (46)).

D1,sel f Self-diffusion coefficient of fluid (1) in polymer (2)

D0
1 Pre-exponential factor = diffusion in a fluid with infinite free volume

E0
D Energy required for a jump into an adjacent free volume void

γ
Coefficient accounting for overlap of free volume available to adjacent
molecules (0.5–1).

V∗i Occupied volume

VF Average free volume per jumping unit

ξ ≡ V∗1
V∗2

Ratio between occupied volumes of the fluid (1) and the polymer (2)

K1i, K2i Parameters related to pure component viscosity for component i

The theory provides expressions for the self-diffusion coefficient of a fluid in a polymer,
i.e., the pure mobility. Such a value coincides with the mutual diffusion coefficient required
in Fick’s law only at infinite dilution, where the sorption isotherm is linear and the activity
coefficient is a constant with composition. Explanation of the meanings of the self-diffusion
coefficient D1,sel f , or mobility L1, introduced in Equation (2), the mutual diffusion coefficient
D1, and thermodynamic factor αT

1 is reported in Appendix C. It is now sufficient to mention
that, in general, the free-volume model describes the self-diffusion coefficient, and thus,
the determination of mutual diffusivity requires a thermodynamic approach to estimate
the thermodynamic factor, i.e., the ratio between mutual diffusion and self-diffusion:

D1 = D1,sel f αT
1 (47)

αT
1 =

∂µ1/RT
∂lnω1

(48)
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If we confine our attention to rubbery polymers, we can estimate this thermodynamic
factor using the Flory–Huggins model, so that [106,107]:

D1 = D1,sel f (1− φ1)
2(1− 2χ12φ1) (49)

where φ1 is the equilibrium volume fraction of the penetrant in the polymer at the given
experimental conditions. A more general correlation can be derived using other thermody-
namic models, such as equation-of-state or even in the framework of the NET-GP theory, as
will be shown in the following for the case of glassy polymers.

The theory thus contains a total of 10 parameters:
(

K11
γ

)
,
(
K21 − Tg1

)
,
(

K12
γ

)
,
(
K22 − Tg2

)
,

V̂∗1 , V̂∗2 , χ12, D0, E0
D, and ξ. Independent experimental information is required to estimate

these parameters:

• V̂∗1 , V̂∗2 can be approximated with the molar volumes at 0 K and calculated using
group contribution methods [201,202], by knowing the chemical structure of fluid and
polymer, or estimated from molecular methods, such as those based on Kirkwood–Buff
integrals [203,204].

• Viscosity versus temperature data for the fluid and the polymer allow calculation
of Kij.

• Density data for pure fluid→ φ1, φ2.
• Critical volume of pure fluid.
• Glass transition temperature of the polymer, Tg2.

An example of application of the present approach to describe diffusivity in a glassy
polymer can be seen in [205] and is shown in Figure 10.
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Figure 10. Comparison of mutual diffusion coefficients predicted from free-volume theory with
experimental data for toluene/poly(vinyl acetate) systems at 40, 80, and 110 ◦C. Solid lines are based
on the purely predictive techniques of Zielinski and Duda [206]. Dashed lines use data at 40 ◦C to
determine D0. Reprinted with permission from Ref. [23]. Copyright 1996, CRC Press.
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The free-volume theory can be extended to multicomponent diffusion and provides
expressions for the diffusion coefficient in a ternary system where the parameters involved
can be estimated from volumetric, viscosity, and diffusivity data for single-component or
binary systems.

The FV theory is seldom applicable as a purely predictive tool due to its high number
of parameters, which are often difficult to be measured or estimated, and its application
is thus limited to very few well-characterized polymer commodities (e.g., PS, PMMA, or
PVC). Some useful modifications have been proposed in order to overcome such limitations.
In particular, the free-volume theory was coupled to the framework of the lattice fluid
model by Sanchez and Lacombe, correlating some of the parameters of the free-volume
theory to the characteristic parameters of the equation of state, i.e., T∗, p∗, and ρ∗ of the
penetrant molecule and the polymer matrix [207].

Furthermore, the backbone of the free-volume theory can be used effectively as a
correlative tool to extend the diffusion behavior measured experimentally to wider tem-
perature and concentration ranges. Indeed, the basic form of the present theory given by
Equation (46) can be rewritten in correlative terms as follows [68,208–210]:

D = A exp
(
− B

FFV

)
(50)

where all model parameters are replaced by adjustable parameters A and B, and the ratio
between jumping unit volume and hole-free volume are expressed in terms of Fractional
Free Volume, defined as:

FFV =
Vpol −V∗pol

Vpol
(51)

which gives a measure of the free volume available for diffusion in the polymer and it
is usually calculated based on group contribution methods [197]. The rationale for this
simplified free-volume model for diffusivity and for the calculation of occupied polymer
volume and resulting FFV has been recently analyzed and critically reviewed [211].

5.2. Fractal Model for Diffusion Coefficients

A fractal modelling approach, adapted from an analogous framework developed for
porous media, has also been proposed to calculate gas diffusivity in polymers [185,212,213].
The diffusion coefficient D is expressed as:

D = D0 fg

(
dh
dm

)2(D f−ds)/ds

(52)

where D0 is a universal constant equal to 3.8 × 10−7 cm2/s [186,214], fg is the relative
free volume, dh is the diameter of a microvoid of this volume, which can be obtained
from PALS measurements, dm is the diameter of the penetrant gas molecule, D f is the
general fractal dimension of the macromolecular coil representing the polymer chains and
can be calculated using Equation (44), and ds is the polymer chain spectral dimension,
which is ds = 1 for lineal macromolecules, while for branched/crosslinked macromolecules
ds = 1.33 [215].

Concerning fg, the following relation is suggested for its estimation [182,215]:

fg = 0.133(1− ϕcl) (53)

where the relative fraction of the closely packed segments in clusters (ϕcl) can be calculated
using Equation (42).

This method has been applied to calculate the diffusion coefficients of several light
gases and hydrocarbons both in glassy, rubbery, and semicrystalline polymers [184,185,213],
achieving predictions on average within 80% [212], 50% [213], or 20% [185] of the experi-
mental results when applied to different materials.
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5.3. Maxwell–Stefan Model

In the Maxwell–Stefan approach to mass transfer [28], we consider the balance between
the driving force acting on each species present, which is responsible for their relative
motion and expressed by the chemical potential gradient, and the friction between the
species (right end of the following relation). In the case of a binary mixture of components
A and B:

−∇µA =
RT
Ð

xB(vA − vB) (54)

where xB is the mole fraction of component B, vA − vB is the velocity of A relative to B, RT
Ð

has the physical meaning of a drag coefficient, and Ð is called Maxwell–Stefan diffusivity.
Given the definition of the molar flux Ni with respect to a fixed reference frame:

Ni = ntxivi (55)

where nt is total molar concentration of the fluid mixture, Equation (54) can be rearranged
as follows:

− xA
RT
∇µA =

xBNA − xANB
ntÐ

= −
(

1 + xA
∂ ln γA

∂xA

)
∇xA = −Γ∇xA (56)

In the last two members of the equality chain, the activity coefficient γA was introduced
to express mixture non-idealities. Γ is thus a thermodynamic correction factor.

Since JA = NA − xANA, with NA total molar flux with respect to the fixed frame of
reference and considering Equation (56), we obtain:

J1 = −ntÐiΓ∇xA (57)

By comparing this relation to Fick’s law, one can obtain the relationship between Fick’s
Diffusivity and Maxwell–Stefan Diffusivity:

D = ÐΓ (58)

When the thermodynamic correction is 1, such as in ideal mixtures, the two coincide.
Ð is, in principle, independent of composition, and all composition effects are included
in Γ.

In practice, a mild concentration dependence of Ð can be observed, which can be
calculated with the following empirical formula from knowledge of the Maxwell–Stefan
diffusivity values at the limits of the composition range:

Ð =
(
ÐxA→1

)xA
(
ÐxA→0

)1−xA (59)

The mechanistic picture developed for diffusion in a two-component system can be
readily extended to the general multicomponent case by considering the relative drag
between all component pairs present in the mixture and a corresponding number of binary
Maxwell–Stefan diffusivities:

−∇µA = RT
nc

∑
j = 1
j 6=i

yj
(
vA − vj

)
ÐAj

(60)

In a fluid/polymer system, the permeating components are assumed to move in a
fixed polymer reference system, and it is assumed that the membrane does not swell while
diffusion occurs.

Recent examples of its application can be found in [141,216,217].
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6. Explicit Models for Permeability

In the previous sections, we reviewed models able to determine gas solubility and
diffusivity separately. However, these two contributions need be combined using a suitable
transport scheme in the framework of solution–diffusion theory valid for homogenous
amorphous polymers. This leads to the development of permeability models, which, by
directly combining a description of the solubility with a formulation for the diffusion,
provide explicit expressions for the penetrant flux at different temperatures, upstream
pressures, or compositions.

The two main (alternative) transport schemes are Fick’s law, considering either the
concentration gradient or chemical potential gradient as driving force of the process, and
the Maxwell–Stefan approach. Such methods may rely on free-volume theories or other
approaches to predict the value of the diffusion coefficient and require to be coupled to a
suitable model for the description of solubility. Table 5 lists recent examples of the use of
different transport models.

Table 5. Sample of recent gas-transport modelling studies, divided by model category.

Model for Diffusion
Fick’s law ∇c Fick’s law ∇µ Maxwell–Stefan

Dual-Mode Model

Partial Immobilization Model
[218] (Section 6.1)

Moon at al. 2020 [219]
Park et al. 2020 [220]

Balçık et al. 2021 [221]
Miandoab et al. 2021 [222]
Suhaimi et al. 2021 [223]

Lim et al. 2022 [224]

Shoghl et al. 2021 [152]
Ghoreyshi et al. 2015 [225]

Monsalve-Bravo et al. 2019 [226]
Mathias et al. 2021 [227]

M
od

el
fo

r
So

rp
ti

on

Thermodynamic Model
(LF, SAFT, FH . . . )

LF/NELF—Shoghl et al. 2017 [228]
FH—Bounaceur et al. 2017 [229]

Standard Transport Model
[230] (Section 6.2)

NRHB—Baldanza et al. 2022 [159]
NELF—Minelli et al. 2017 [231]

NELF—Toni et al. 2018 [232]
NELF—Shoghl et al. 2021 [152]
NELF—Samei et al. 2022 [233]
PC-SAFT—Liu et al. 2020 [137]

FH—Krishna et al. 2016 [234]
PC-SAFT—Krenn et al. 2020 [141]

FH—Mathias et al. 2021 [227]
PC-SAFT—Marshall et al. 2022 [216]

6.1. Partial Immobilization Dual-Mobility Model

The Partial Immobilization Dual-Mobility Model [218] applies the phenomenological
description of the Dual-Mode Sorption Model (Section 4.5) to the study of gas transport. As
indicated above, the model postulates the presence of two gas populations that are sorbed
in Henry’s and in Langmuir’s modes with different inherent mobilities and expressed
through two distinct diffusion coefficients in Fick’s law:

Ni = −DD,i
∂CD,i

∂x
− DH,i

∂CH,i

∂x
(61)

where Ni is the total diffusive flux, CD,i and CH,i are the penetrant concentrations in the
Henry and Langmuir regions, calculated with Equation (34), DD,i and DH,i are the diffusiv-
ities in the Henry and Langmuir regions, which are assumed to depend on temperature
but not on concentration.

The expression of the permeability Pi of a pure fluid i given by this model is:

Pi = kD,iDD,i

[
1 +

FiKi
(1 + bi pu,i)

]
(62)

Fi = DH,i/DD,i (63)

K = CH,ibi/kD,i (64)

where kD,i and bi are the Dual-Mode Sorption model parameters used in Equation (34),
and pu,i is the upstream pressure of component i, while the downstream pressure pd,i is
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considered to be zero. To derive such expressions, local equilibrium (i.e., equality of the
chemical potentials) between the Henry’s and Langmuir’s populations is assumed.

The extension to the mixed-gas case proposes expressions for the steady-state flux of
each component in the mixture in terms of the various driving forces (partial pressures)
and solubility and mobility coefficients. The derivation is described in detail in [218]. The
final expression for the steady-state permeability of component A in a binary mixture with
component B is:

PA = kD,ADD,A

[
1 +

FAKA
(1 + bA pu,A + bB pu,B)

pu,A

pu,A − pd,A
− FAKA

(1 + bA pd,A + bB pd,B)

pd,A

pu,A − pd,A

]
(65)

In the case of negligible downstream pressure, this simplifies to:

PA = kD,ADD,A

[
1 +

FAKA
(1 + bA pu,A + bB pu,B)

]
(66)

Symmetric expressions are obtained for component B.
If additional components are present, their effect on the permeability of component

A is taken into account through expressions derived for the multicomponent mixed-gas
Dual-Sorption Model.

PA = kD,ADD,A

[
1 +

FAKA(
1 + bA pu,A + ∑i 6=A bi pu,i

)] (67)

Recent examples of application include [219–224].
For multicomponent transport, the use of partial pressure of the various penetrants

may be inadequate, especially at high pressure. Therefore, the gradient of the chemical
potential of each species needs to be considered as the driving force of the process. This
leads to a reformulation in the framework of the Dual-Mode model of the expression for
permeability (Equation (66)) as follows [235,236], basically considering gas fugacities in
place of partial pressures:

PA = k′D,ADD,A

[
1 +

FAK′A(
1 + b′A fu,A + ∑i 6=A b′i fu,i

)] (68)

For consistency, the model sorption parameters kD, K, and b need to be optimized
considering the solubility isotherms on a fugacity basis.

6.2. Standard Transport Model (STM)

In 2013, a transport model was proposed by Minelli and Sarti [230,231,237–239] to
predict permeability using the solution–diffusion framework. In particular, the model
combines a simple correlation for diffusion with the NET-GP theory for sorption in poly-
mers to derive a general framework that can be applied to predict gas permeability versus
pressure for pure and mixed-gases, with the use of a few adjustable parameters. The
model has predicted different trends of permeability observed experimentally, including
the minimum of permeability vs. penetrant pressure that some authors have indicated as
the plasticization threshold.

Let us now recall that the mutual diffusion coefficient used in Fick’s law, and thus
in the solution diffusion theory, has a hybrid nature. It is convenient for modelling to
decompose the penetrant diffusion coefficient Di as the product of a thermodynamic factor
αT

i and mobility coefficient Li:

Di =
∂µNE

i /RT
∂ ln ωi

· Li ≡ αT
i · Li (69)

The NET-GP theory, e.g., the NELF model, provides the expressions to calculate the
thermodynamic factor αT

i . The mobility Li may depend on penetrant concentration in the
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polymer. A simple exponential relation is often sufficient to describe such features, which
are related to swelling and plasticization induced by the penetrant in the polymeric matrix:

Li(ωi) = Li,0 · eβωi (70)

The adjustable parameters Li,0 and β, i.e., the infinite-dilution mobility coefficient
and the plasticization factor, are the only ones entering the model. Their values can be
determined using either permeability or diffusivity data for the fluid–polymer system.

The permeability of the penetrant i can be thus derived under the hypothesis of the
upstream side of the membrane at partial pressure pu,i and negligible downstream pressure
(pd,i ≈ 0):

Pi =
1

Mi pu,i

∫ pu,i

0
ρpol Li,0 exp(βωi)

ωi
pi

Zi dpi (71)

In Equation (71), Mi is the penetrant molecular weight, Zi the penetrant compressibility
factor (pure gas phase), and ρpol the polymer density.

Figure 11 shows an example of modelling CO2 permeability in glassy PPO [240],
showing the trend of the calculated mobility and diffusivity as a function of concentration.
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Figure 11. CO2 permeability in glassy PPO at 35 ◦C. Experimental data from [241]. The inset illustrates
the thermodynamic factor (from NELF model), the mobility coefficient L, and the diffusivity D as
functions of penetrant concentration in the polymer. Reprinted with permission from Ref. [240].
Copyright 2017, Springer.

Such an approach has been found to be suitable to describe any type of permeation
trend with upstream pressure, either decreasing or increasing and even non-monotonous
behaviors [230]. The analysis of a number of different penetrants in various polymers,
including high free-volume membranes, polymer commodities, or semicrystalline systems,
has also allowed for the derivation of general correlations of the model parameters with
the properties of pure polymers and pure penetrants [231]. It has indeed been found that
mobility depends exponentially on the polymer FFV (according to a simplified free-volume
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theory, Equation (51)) and on penetrant molecular size (e.g., molar volume at the critical
point) following an exponential law [19]:

Li,0 =
τ

V$
C,i

(72)

where τ and $ are polymer-dependent parameters. The parameter $, which describes the
size-selectivity of the polymer (i.e., sieving properties), is correlated to the polymer char-
acteristic temperature T∗pol , representing the non-bonded cohesive energy of the material;
exponential behavior has been found appropriate [231]:

$ = $0 exp

(
T∗pol

T

)
(73)

The plasticization factor β is then closely related to the swelling induced in the polymer
upon sorption, so it scales linearly with ksw [231]:

β = Ki
ksw/Si
FFV2 (74)

where Ki a proportionality constant (found to be equal to 0.85 for CO2), and Si is the
solubility coefficient at infinite dilution. Therefore, the model allows the prediction, on the
one hand, of the permeability at infinite dilution (Figure 12a), and its behavior with respect
to upstream pressure (Figure 12b).

The description of multicomponent transport in glassy polymers by the STM approach
coupled with the NELF model was reported by Toni et al. [232], who extended the model
to binary mixture permeation in a stationary phase (the polymer) following a generalized
Fick’s law scheme [242,243]. The diffusive fluxes for gaseous species 1 and 2 thus become:

J1 = −ρL1

(
ω1

∂
∂ω1

( µ1
RT
) ∂ω1

∂x + ω1
∂

∂ω2

( µ1
RT
) ∂ω2

∂x

)
J2 = −ρL2

(
ω2

∂
∂ω1

( µ2
RT
) ∂ω1

∂x + ω2
∂

∂ω2

( µ2
RT
) ∂ω2

∂x

) (75)

in which one can recognize four different thermodynamic factors to be determined, e.g., by
the EoS or NET-GP model, and the mobility coefficients of the two penetrants which are
evaluated as follows:

L1 = L1,0 exp(β1 ω1 + β2 ω2)

L2 = L2,0 exp(β1 ω1 + β2 ω2)
(76)

The Li,0 values at infinite dilution and the plasticization factors β1 and β2 were ob-
tained from pure gas transport. Figure 13 reports the modelling of the transport of a
50/50 CO2/CH4 mixture in glassy Polyarylate using the STM approach [232].

The very same transport scheme was also adopted very recently by Baldanza et al. [159],
who, on the contrary, made use of a different lattice fluid equation of state (NRHB) coupled
to the NET-GP theory for the thermodynamic representation of the polymer and penetrants
mixture. The overall approach was thus very similar to the one discussed above, and it
follows from the same assumptions, but the use of NRHB EoS may allow finer description
of the polymer and penetrants, in which specific interactions may occur. As illustrated in
Figure 14, only minor differences may be detected with respect to the case in which the
NELF model was used.
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Figure 12. (a) Comparison of experimental gas permeability values at 35 ◦C as predicted by the model
(k12 = 0) considering CO2, CH4, and N2 as penetrants in various polymeric systems not considered
in the development of the correlation expressed by Equation (74). (b) Normalized permeability of
CO2 at various upstream pressures in glassy polymer membranes: experimental data and model
calculations fitting plasticization factor in the whole curve or from a priori estimation according to
Equation (74). Reproduced with permission from Ref. [231]. Copyright 2017, Elsevier.
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Figure 13. CO2 and CH4 permeability in glassy polyarylate (PAr) at 35 ◦C: experimental data of
mixed-gas permeability by Barbari et al. [81] together with transport model curves; the corresponding
experimental and model gas permeability calculated for pure CO2 and CH4 are also reported. Curves
calculated using the dual-mode model are also included for comparison. Reproduced with permission
from Ref. [232]. Copyright 2018, Elsevier.
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Figure 14. CO2 and CH4 mixed-gas permeability in polyhydroxyether (PH) at 35 ◦C modelling using
the NE-NRHB or the NELF models within the STM approach. Reproduced with permission from
Ref. [159]. Copyright 2022, American Chemical Society.

Shoghl and coworkers [152] compared the results obtained with the standard transport
model for glassy polymers with those obtained by using an expression for the diffusion
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coefficient derived from the dual-mode sorption relation. In the case of non/swelling agents,
the two approaches yielded comparable results. For CO2, in some cases, the permeability
predicted using NELF to calculate the thermodynamic factors in the diffusivity were
significantly more accurate; in other cases, the distinction between the two approaches was
not so clear. Nonetheless, these permeability predictions were obtained using a modified
version of the NELF model [146], which in some cases struggles to represent the sorption
isotherms of CO2 with the same accuracy of other gases, as reported in the study.

Samei and Raisi [233] incorporated the NELF/STM framework into a process simula-
tion of CH4/N2 separation using five different polymers. The calculations were found to
be in agreement with experimental solubility and permeability data, and the study allowed
comparison of different membrane materials and process configurations, and provided
recommendations in order to optimize product purity, CH4 recovery, total annual cost, and
total capital investment, demonstrating the value of a reliable modelling framework for
material properties to address practical problems.

A scheme of the parametrization procedure for the STM model is reported in Figure 15.

6.3. Transport Models Based on the Maxwell–Stefan Approach

Krenn at al. [141] coupled the PC-SAFT EoS, combined with an elastic term to describe
crosslinking, with the Maxwell–Stefan approach for diffusion in order to describe transient
sorption of liquid mixtures in a highly crosslinked system. They studied the transport
of water, isopropyl alcohol, and heptane through epoxy resin at different temperatures,
finding good agreement with experimentally determined data, even in the case of highly
anomalous sorption kinetics, such as for isopropyl alcohol.

Conversely, Ghoreyshi et al. [225] coupled the DM sorption framework with the
Maxwell–Stefan approach for diffusion. They studied mixed-gas CH4/CO2 and C3H6/C3H8
transport. Their results revealed good agreement between experimental and predicted
selectivities and constituted significant improvement over the Partial Immobilization Dual-
Mobility model.

Marshall et al. [216] developed a model that applies DGRPT (dry glass reference
perturbation theory) [147] to calculate the solubility and the thermodynamic aspects of
diffusion. Pure diffusion was obtained through the Maxwell–Stefan equations, and mixture
diffusion was then calculated using a simple averaging scheme on the pure fluid result. The
model was applied to analyze complex liquid mixtures (e.g., alcohols, hydrocarbons, and
other organic solvents) in glassy polyimide membranes for organic solvent nanofiltration
applications and accurately predicted binary and complex mixture separations in glassy
polymer membranes using only pure-component solubility and diffusivity as inputs.
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7. Molecular Modelling of Gas Solubility and Diffusivity in Polymers

Since the 1980s, molecular modelling techniques have been increasingly employed to
predict a wide range of properties of dense amorphous polymers, such as the thermody-
namic and transport properties relevant for membrane separation [244–247]. In particular,
molecular modelling studies have been instrumental in highlighting the microscopic mech-
anisms that are responsible for penetrant diffusion in dense rubbery and glassy polymers
in terms of elementary jumps between neighboring sites of accessible volume. To calculate
these properties, only models with atomistic detail are suitable because realistic represen-
tation of bonded geometry and interaction energy is required. With the development of
more accurate molecular models to describe the energetic interactions of systems, new
algorithms to generate amorphous polymeric structures, efficient equilibration protocols,
and enhanced computational power, the reliability of predictions provided by atomistic
techniques has drastically improved over the years.

7.1. Generation of Atomistic Models of Amorphous Polymers

In molecular models, the system is depicted as a set of particles, or interaction sites,
where the action of the forces is applied and where partial point charges are located. The
model may be fully atomistic (or all-atoms, (AA)), where each interaction site corresponds
to an atom of the molecule; united atoms (UA), in which hydrogen atoms are considered in
a single interaction site together with the atom they are bonded to; or coarse-grained (CG),
in which multiple atoms are grouped together to form a single, larger interaction site.

The expression of the potential energy used to compute the forces acting on each
interaction site is called a force field. The force field contains the contributions from bonded
interactions (deviations of chemical bond lengths and bond angles as well as dihedral
angles and improper torsions from their equilibrium values) and electrostatic and van der
Waals interactions resulting from the interactions of electronic clouds. Parametrization
of the potential energy expression is carried out from quantomechanical calculations of
low-molecular-weight oligomers of the molecule (bottom-up approach), or from fitting
experimental structural and/or thermodynamic properties of the material (top-down
approach), [248–250].

Several strategies have been developed to generate dense amorphous polymer mod-
els [251–255]. In the recoil growth algorithm, for instance, a three-dimensional model of
amorphous polymer chains is constructed to adhere to the random-coil hypothesis by
Flory [256]. The initial guess configurations are generated through bond-by-bond growth
of the chains under periodic boundary conditions, following the rotational isomeric state
model for unperturbed chains as modified by Theodorou and Suter [257] to avoid inter-
and intramolecular volume overlaps. The initial structure always undergoes molecular
mechanics simulation, i.e., static minimization of the potential energy of the system, at
constant volume, not considering thermal motion, to relax close contacts present in the ini-
tial guess configuration that result in unrealistically high potential energy. The minimized
configurations are a good starting point for equilibration through Molecular Dynamics or
Monte Carlo simulations.

An important difference also exists in molecular modelling between polymer melts
and glasses: polymer melts (and rubbers) are equilibrium structures, and the probability
that the system will assume a specific configuration is related to the associated potential
energy V, proportional to the Boltzmann factor: exp(−V/kBT). Therefore, the generation
of a realistic polymer melt configuration is a well-defined problem. Polymer glasses, on
the other hand, are non-equilibrium structures trapped in local energy minima dependent
on their formation history. The energy barrier separating two minima are very high, and
relaxation phenomena that allow the glass to transition between minimum energy configu-
rations occur over characteristic times that are usually greater than typical simulation times.
Within a minimum-energy well, the probability distribution of configurations still follows
a Boltzmann distribution; therefore, the same simulation techniques for the calculation of
solubility and diffusivity can, in principle, be applied both to polymer melts and polymer
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glasses. However, to obtain realistic results for a glass, one should average the config-
urations that sample different local minima of the potential energy surface. Generating
microscopic configurations that incorporate the effects of formation and thermal history of
a glass in a well-defined fashion, and being able to assign a probability distribution to the
different minimum-energy pockets is still an open research area.

7.2. Molecular Dynamics (MD) Simulations

Molecular Dynamics (MD) simulations [258–260] consist of tracking the temporal
evolution of a system through numerical integration of the equations of motion for all the
interaction sites present in the system. Thermodynamic and dynamical properties of the
system are computed as averages over its trajectory.

The computational cost of this technique is very high, and typical simulation times are
on the order of hundreds of nanoseconds, which allows direct simulation only for processes
whose dynamics are fast enough to be displayed over such a temporal interval. Even
though domain decomposition techniques allow splitting of the calculations over several
processors working in parallel, the aforementioned limitations persist. In this respect,
challenges are posed for the equilibration of high-molecular-weight polymeric systems in
general and glassy polymers in particular because their characteristic relaxation times are
orders of magnitude greater than simulation times; therefore, it is necessary to start MD
simulations with already-equilibrated structures.

7.3. Monte Carlo Simulations

In Monte Carlo (MC) simulations [258,259] a series of microscopic configurations of the
system is generated conforming to the probability distribution associated with the statistical
ensemble in which the simulation is carried out. At each step, starting from the previous
configurations, a random perturbation is attempted. This perturbation attempt consists of
an elementary move among a set of predefined possibilities, such as atom displacements,
rotations, insertions, deletions of particles, and others. Monte Carlo methods can also
be applied in ensembles where the number of particles can fluctuate, thus allowing the
calculation of phase equilibria and, in particular, gas sorption.

The attempted perturbation is accepted or rejected according to the energy change that
it entails and an acceptance criterion that ensures that the obtained sequence of microstates
asymptotically samples the probability distribution of the ensemble [261] following the
principle of microscopic reversibility in the generation of the Markov chain series of
configurations. The properties of interest are then calculated as averages over the collection
of microstates generated.

For polymeric systems, sophisticated moves have been devised that enable the over-
coming of great energy barriers and allow effectively equilibration of high-molecular-
weight polymeric chains of realistic experimental values, unlike MD. These moves include:

• Reptation, which consists of excising one chain end and appending it on the other side
of the chain with a random torsion angle;

• Configurational bias algorithms [262,263] cut the terminal part of a chain and regrow
it by avoiding the regions where volume overlaps would occur, taking this bias into
account in the selection criterion;

• Concerted rotations [264] occur around seven consecutive skeletal bonds to modify
change conformation without affecting bond lengths and angles;

• In addition, other connectivity-altering moves [265] have been devised, such as end-
bridging [266,267], in which a trimer located in the middle of a chain is excised on one
side and rotated to be attached to the end of another chain; and double-bridging [268],
where two trimers are simultaneously excised from two chains and used to connect
each section of the first chain with one section of the other chain.

Equilibrated polymer melt configurations obtained with this method can be used as
starting points to generate glassy structures through cooling. A disadvantage of these
methods is that crafting the “right” moves is a system-specific process, and they are not
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straightforwardly applicable to complex molecular geometries. Moreover, MC simulations
do not have physical time in them, and as such, do not yield any dynamical information,
such as relaxation times or diffusion constants.

7.4. Hierarchical Modelling Approaches

In the case of high-molecular-weight polymers with rigid backbones and complex
chemical makeup, simulations at the atomistic level of description are necessary to extract
the relevant properties, but they are often inadequate to equilibrate the system to obtain a
realistic configuration of the polymer. In such cases, systematic hierarchical approaches are
required [269–273], in which the system is mapped from an atomistic to a coarse-grained
level of representation by substituting a group of atoms with a single interaction site, as
shown in Figure 16.
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Carrying out equilibration at the coarse-grained level is more efficient for several
reasons. In a CG representation, there are fewer degrees of freedom to track; therefore,
longer simulations can be run with the same computational effort. The characteristic
times in which the coarse-grained features change are higher compared to those at the
atomistic level. For example, a coarse-grained bond length fluctuates more slowly than
an atomistic bond length, which is the limiting factor dictating the choice of time-step
in the integration of the equations of motion. In CG simulations, a higher time-step can
be used, and therefore, longer simulation times can be achieved, allowing the system to
explore a greater sample of the configuration space. A CG representation is geometrically
simpler than the starting molecule; therefore, it can be equilibrated, for example, with
connectivity-altering MC simulations, taking advantage of their superior effectiveness
in relaxing high-molecular-weight polymers compared to MD. Nonetheless, performing
CG simulations adds challenges related to the limited availability of accurate CG models
for polymers and the complexity associated with deriving them. Speed and increased
system size are traded off with fine-level accuracy, whose loss might be acceptable or not
depending on the simulation objectives.

Once the equilibration has been carried out, the system is back-mapped to its original
atomistic representation, reconstructing the underlying geometry [274,275]. In Adaptive
Resolution methods (represented schematically in Figure 17) [276], two spatial domains
modeled at two different scales are brought together in a concurrent hybrid simulation by
defining a hybrid region where particles can switch representation from coarse-grained to
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more-detailed and vice versa [277], depending only on a single parameter that controls the
reverse mapping process and is independent of atomistic and coarse-grained force-fields.
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There is not a unique way to map a system to a CG representation, and the appropriate
level of coarse-graining depends on the purpose of the simulation. Recently, a Variational
Autoencoder approach [278,279] was presented to automate the mapping choice (the Encoder
section of the model) and the reconstruction of the atomistic detail (the Decoder section of
the model).

In addition to a suitable structural representation, an energetic one must be derived as
well. Effective CG potentials can be parameterized by reproducing macroscopic proper-
ties [280] or matching properties of the underlying microscopic representation [281,282].
Approaches used to this aim include Iterative Boltzmann Inversion [282], in which the fitting
procedure targets the reproduction of pair correlation functions of the center-of-mass of
groups of atoms corresponding to CG beads obtained from all-atom simulations. Force
matching [283], based on fitting the potential to ab initio atomic forces of many atomic
configurations, can also be used. The reverse Monte Carlo approach [284] consists of the
iterative adjustment of the interaction potential to known Radial Distribution Functions
that describe how the probability of finding a certain type of particle varies as a function of
distance from a reference particle using a Monte Carlo simulation technique. Relative entropy
methods [285,286] also provide a rigorous framework for multiscale simulations and offer
numerical techniques for linking models at different scales. Different approaches have also
been proposed, such as hybrid particle-field methods, using Molecular Dynamics simulations
employing soft potentials derived from self-consistent field theory [287], which obtained
well-relaxed all-atom polymer configurations without the need to back-map the system
when changing the resolution of the representation. Ideally, CG effective potential should
be transferable to thermodynamic points different from the ones used in parametriza-
tion [288,289]. In recent years, the application of machine-learning methods in force-field
parametrization has yielded encouraging successes for the possibility of transferring the
accuracy of first-principle methods to higher scales, thus enabling even more accurate
simulations with larger sizes and time scales [290–293].

Multiscale modelling strategies can also be implemented, including continuum models.
An example of coupling strategies at different resolution levels to parametrize continuum
models is given by Kanellopoulos and coworkers [294], who employed molecular dynamics
to calculate the Sanchez–Lacombe equation-of-state parameters of polyolefins, which
they then used to perform equilibrium solubility calculations using the EoS. Another
example is the hybrid atomistic–thermodynamic scheme to calculate gas solubility in glassy
polymers [295,296]. Atomistic simulation results of the polymeric structure at conditions
that are inaccessible experimentally are used to parametrize a non-equilibrium equation of
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state, which, in turn, is used to compute gas sorption at pure and mixed-gas conditions
with negligible computational effort.

7.5. Simulation of Solubility

Solubility depends on the shape and distribution of free-volume elements that can
accommodate the sorbing molecules; therefore, being able to provide a realistic representa-
tion of the microstructure of the polymer in terms of macroscopic density and local density,
quantified, for example, through radial distribution functions, is a prerequisite. Moreover, it
is necessary to have a good model to represent the energetic interactions and reproduce the
relative strength in the interactions among penetrant molecules, among polymer molecules,
and between penetrant and polymer molecules, and how they change as a function of
penetrant concentration.

Calculation of the solubility is a phase-equilibrium calculation, with one component,
the polymer, present only in one phase. There are several methods rooted in statistical
mechanics principles to predict the phase equilibrium between a polymer and a multicom-
ponent fluid mixture.

Grand Canonical Monte Carlo (GCMC) simulations [297] are performed at constant
chemical potential, volume, and temperature: µVT. A bulk polymer system is simulated
under periodic boundary conditions and is considered to be in contact with a gas reservoir
with which it can exchange particles and energy at the specified conditions. Therefore,
the number of gas particles changes during the simulation, finally fluctuating around an
equilibrium value that gives the solubility. Heuchel et al. [298] proposed an application of
the CGMC method to high-pressure systems by combining linearly the solubility values
calculated via GCMC simulations in densely packed and pre-swollen polymer models.

The Gibbs Ensemble Monte Carlo method [299] can also be used to predict phase equilib-
ria. In this method, two simulation boxes at the same temperature, each one representing
one of the phases in equilibrium, are considered simultaneously. Therefore, unlike GCMC
simulations, the sorbing species is modelled explicitly. Each box is built under periodic
boundary conditions surrounded by replicas of itself, with no interfaces between the two
systems. The total number of particles contained in both boxes and the temperature and
total volume of the two boxes are kept constant, reminiscent of NVT simulation. Since the
two boxes are at equilibrium, the algorithm ensures that the pressure and the chemical
potential of each species in the two boxes, representative of the two phases, is the same.
An MC simulation is performed, allowing for particle displacements, redistribution of the
volume, and molecule exchanges between the boxes. During the course of the simulations,
the number of atoms in each box and the volume of each box changes until reaching the
values corresponding to the two coexisting phases at equilibrium. In the case of mixtures,
phase equilibrium can also be simulated with MC Gibbs simulations in the NPT ensemble,
i.e., allowing the volume of the two boxes to fluctuate but keeping the pressure constant.
When dealing with dense polymer matrices or larger penetrant molecules, the acceptance
probability of inserting a molecule is drastically lower, and techniques relying on these
moves yield unreliable results.

Monte Carlo simulations in the Semigrand Canonical Ensemble can also be performed to
calculate phase equilibria [300]. In these simulations, identity-exchange trial moves among
the various species are considered, i.e., moves in which two particles of different species are
not displaced, but their identity is swapped. This method is effective in equilibrating the
concentration of solutions for which the various species have comparable sizes; therefore,
it is not suitable for gas-polymer systems.

Hybrid Monte Carlo simulations [301] include performing a short MD trajectory as
one of the possible moves. This is advantageous to sample local conformational changes,
especially in the case of complex systems where traditional MC moves have low accep-
tance probability. Hybrid Monte Carlo simulations performed in the osmotic ensemble
(NpolfgasPT) [302–306] also account for swelling effects [307]. However, at high pressure,
where pronounced dilation is typically observed, a sequence of separate CGMC and MD
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simulations is often preferred to iteratively relax the polymer density [308]. The discussion
of the simulation of gas-induced swelling is expanded in Section 7.7.

In Grand Canonical Molecular Dynamics [309,310], phase equilibrium is computed from
two different simulations performed for the pure condensed phase (NPT) and for a system
in which the number of polymer chains is kept fixed but fractional penetrant gas molecules
are exchanged between the system and a reservoir. A fractional molecule is a molecule
whose potential energy of interaction with the rest of the system is scaled by a coupling
parameter, λ, ranging between zero and one. The solution of the appropriate equations
of motion for this ensemble [310] that governs the exchange of molecules between the
system and the material reservoir yields the final value of the coupling parameter as 0 or 1,
meaning deletion or full insertion of the gas particle into the system. Continuous Fractional
Component Monte Carlo follows a similar strategy, improving the efficiency of the rescaling
of λ with the introduction of an adaptive bias potential [311].

One widely used technique to obtain infinite dilution solubility coefficients is the
Widom test particle insertion method [312]. A “ghost” penetrant particle is positioned in the
polymer matrix at random positions and orientations, and its interaction energy with the
other particles present in the system is computed. From that, the excess chemical potential
of the penetrant inside the polymer, µex

i , can be determined. In turn, from the expression for
µex

i , one can obtain the solubility coefficient straightforwardly, according to Equation (78):
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where kB is the Boltzmann constant, T is the temperature, and ∆Uinter
test is the change in the

intermolecular energy of the system brought by the insertion of the additional molecule
(i.e., the potential energy of interaction between the test molecule and the other molecules
of the system). The polymer is not allowed to relax its configuration as a consequence of
the insertions. This method can be applied by post-processing a sequence of microstates
originating in the course of an MD or MC simulation, by performing several ghost insertions
in each configuration. Excluded-volume map sampling [313,314] and grid search methods [315]
can be implemented for dense systems in order to increase the sampling efficiency by
avoiding inserting particles in densely packed regions. However, as the system becomes
denser and the solute molecules become bigger, the probability of a successful insertion
without overlap with existing molecules drops dramatically, and, therefore, the estimate of
the solubility through Widom insertions becomes less reliable.

Strategies proposed to mitigate this issue include the use of configurationally biased [316]
bond-by-bond insertions of the penetrant molecules, or the use of particle deletion moves
instead of particle insertions (Staged Particle Deletion [317], Direct Particle Deletion [318]).

Alternatively, the free-energy perturbation method can be applied, where a coupling
parameter is introduced between the solute–matrix interactions, and solubility is obtained
by thermodynamic integration [319] over a series of simulations conducted at different
values of the coupling parameter. The expanded ensemble scheme [320] can be implemented
to calculate free-energy differences between thermodynamic states and can be considered
as an application of the free-energy perturbation method but within a single simulation.

Another technique is extended ensemble MD [321], where the coupling of the solute with
the rest of the system dynamically changes, allowing the solute to escape from low-energy
pockets and sample the phase space more efficiently. A minimum-to-minimum mapping
method [322] takes into account local configurational changes to accommodate an inserted
molecule to lower superpositions and excluded volume effects. Another approach suitable
for sorption of large molecules in dense matrices is the fast-growth thermodynamic integration
method [323], which allows efficient determination of chemical potential from several
independent thermodynamic integration runs.



Membranes 2022, 12, 857 44 of 71

Sorption isotherms up to high pressure can be calculated through a series of Monte
Carlo simulations performed in the osmotic ensemble [302–306] (constant number of poly-
mer particles, temperature, and pressure, and constant fugacity of the penetrant fgas, which
can be preemptively calculated with an equation of state). This method allows direct simu-
lation of polymer swelling, since volume changes are admissible moves. This technique
also has the advantage of not explicitly simulating the gas phase. Alternatively, an iterative
scheme can be implemented [119,324], performing NPT MD simulations of the polymer–
penetrant system with a fixed number of polymer chains Npol and gas molecules Ngas,
i.e., at fixed composition and at a guessed pressure value. After the NPT MD simulation,
the trajectory is post-processed to evaluate the excess chemical potential, for example by
performing Widom insertions. The excess chemical potential is then related to penetrant
fugacity and to the pressure of the system. The obtained value is used to carry out a new
NPT MD simulation at the same composition and at the new pressure. The procedure is
repeated until a coexistence point with consistent pressure and composition is obtained, as
schematically displayed in Figure 18.
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7.6. Simulation of Diffusivity

Molecular simulations have provided useful insight into the mechanism of diffusion in
polymeric materials. Computer simulations have revealed that the transition from a pore-
flow regime, typical of microporous membrane materials, to a molecular diffusion regime,
typical of dense systems, occurs at pore dimensions of 5–10 Å, comparable to polymer chain
spacing [325]. Below this value, permeation is no longer a pressure-driven flow through tiny
pores, but a diffusive process controlled by the motion of the polymer chains. Two distinct
mechanisms have been identified [325]. In the case of melts [326,327], the thermal motion
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of the polymer chains randomly opens and closes “gaps” capable of accommodating the
penetrant molecules very rapidly, and a dissolved penetrant molecule will be displaced into
these neighboring cavities, diffusing with a characteristic time dictated by the frequency
of density fluctuations of the order of the penetrant size. On the other hand, in the glassy
state, the cavities are more permanent over time [328], and a molecule will be trapped
moving back and forth into a void until an opening of sufficient size is created by thermal
fluctuations of the polymer (Figure 19). Therefore, for a glass, the diffusivity depends on
the distribution of cavities located at a distance that can be travelled by the penetrant when
a connecting path is opened and on the frequency of this event.
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Figure 19. Displacement of an O2 molecule in a glassy polyimide during an MD simulation: the
molecule jumps back and forth between two adjacent cavities and fluctuates within a cavity in-
between jumps. Reprinted with permission from Ref. [329]. Copyright 2000, Elsevier.

Accurately capturing both structure and mobility of the polymer is thus necessary to
obtain reliable diffusion constants. Actually, this infrequent jump process is not confined
to diffusion in polymers below Tg. It has also been shown in melts and rubbery polymers
when the temperature is sufficiently low for the distribution of accessible volume regions
to remain relatively unchanged over the time scale of a penetrant jump [325,327,330].

Self-diffusivity Di,sel f measures the displacement of a molecule as a result of random
thermal motion, and it is proportional to the mean squared displacement (MSD) of the
molecule [331], averaged over all molecules.

Di,sel f = lim
t→∞

〈(ri(t)− ri(0))
2〉

6t
(79)

where (ri(t)− ri(0)) is the distance travelled by a molecule from the initial time to time
t. Self-diffusivity corresponds to the penetrant mobility defined in Equation (2). Binary
diffusivity coincides with self-diffusivity in the limit of low concentration (infinite-dilution
regime). It represents the same physical property defined in the formulation of the free-
volume theory in Section 5.1. Operatively, at finite time conditions, the calculation of
self-diffusivity through Equation (79) requires identification of the portion of the simulation
for which diffusion follows the Fickian or normal regime [23] (slope of the MSD equal to
1 in a logarithmic plot of MSD vs. time, as exemplified in Figure 20). The slope of the
best-fit line to the Fickian portion of the MSD curve divided by 6 (in 3-dimensional space)
yields the value of the diffusion coefficient.
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Figure 20. Black: example of MSD vs. time for gas diffusion in a molten polymer. Red: the dashed
line with slope = 1 and the two arrows mark the region of Fickian diffusion.

Under the assumptions that the velocity correlations between different molecules are
negligible and the self-diffusivity of the polymer is much smaller than that of the penetrant,
one obtains the relation between self-diffusivity, or mobility, and mutual diffusivity Di [303]
reported in Equation (4).

For small-molecular-weight penetrants in polymer melts, diffusivities are usually high
enough that they can be captured within the timespan accessible to an MD simulation by
tracking the mean squared displacement of the penetrant molecules (Figure 21).
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Figure 21. Simulated CO2 diffusion coefficients in atactic polystyrene as a function of concentration
at different temperatures and Mw: circles, 450 K; diamonds, 500 K; orange, Mw of 2100 g/mol; red,
5200 g/mol; brown, 31,000 g/mol. Comparison with experimental data (squares [332], triangles [333],
stars [334]; blue 473 K, green 423 K, purple 438 K). Figure reproduced from Ref. [119] under CC-BY
license terms.
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At realistic application conditions, the diffusion of gases occurs with the presence of
a concentration gradient within the polymer. With Non-Equilibrium Molecular Dynamics
(NEMD) [258,335], an external driving force is imposed on the system, so that it is kept out-
of-equilibrium and the penetrants move inside the matrix under the action of the driving
force. For small external forces, the system remains in the linear response regime, and the
transport properties at steady state can be computed from the ratio of the flux to the acting
driving force. In the case of gas transport in polymers, Müller-Plathe et al. [336] compared
MD and NEMD results for diffusion of He, H2, and O2 in amorphous poly(isobutylene),
but did not detect a substantial computational gain. On the other hand, NEMD was found
more efficient than equilibrium MD to obtain the diffusivity of penetrants in liquids and
microporous sorbents [337].

When the temperature of the system is below the glass-transition temperature of the
polymer, gas diffusivity very often becomes too slow to be predicted by MD. Indeed, this is
a consequence of the mechanism of diffusion in these conditions, since the motion of the
gas that is being tracked consists mostly of rattling back and forth inside a specific free-
volume microvoid, whereas displacement into a neighboring void, which truly contributes
to diffusion, occurs very rarely. Therefore, it is impossible to obtain statistically significant
information about these jumps by performing brute-force MD simulations. In these cases,
Transition State Theory of infrequent events (TST) can be adopted [338–340]. Implementing
TST to calculate penetrant diffusivity in a polymer matrix involves the identification of
transition states between free-volume elements and how that system can evolve from
one state to another. In the potential energy surface of the system, the transition state
is a saddle-point that can be crossed, moving from one state to another, both identified
as local minima separated by a high-energy barrier. TST enables the calculation of rate
constants for the transition between states based on the probability of the system to be
in the transition state between two states compared to the probability of being in its
initial state. This method was first applied by Gusev and Suter [341] in the case of a
rigid polymer and subsequently extended to also account for elastic vibrations of polymer
atoms [342]. It was further generalized by Greenfield and Theodorou [343] by the inclusion
of polymer degrees of freedom into calculation of transition states and diffusion pathways,
therefore taking into account the local chain motions that accompany the formation of a
passage between neighboring free-volume elements. Further extensions of the method
allow handling of complex shapes and chemical constitutions both for the penetrant and
the polymer [344]. Once the network of possible states and connecting pathways and
the rate constants of transitions between states have been determined, the diffusivity can
be obtained considering a Poisson process of successive uncorrelated penetrant jumps
between states. A Kinetic Monte Carlo (KMC) simulation can be performed to solve the
master equation representing the time evolution of the probability that the system is in a
particular state [345].

Additionally, for simulated diffusion coefficients, it is important to be mindful of
finite-size effects [346]. Indeed, it has been shown that the diffusion coefficients computed
with MD simulations scale linearly with the inverse of the simulation box length Λ [347],
and the following analytic finite-size correction was developed, which goes by the name of
Yeh–Hummer correction [348]:

D∞
i,sel f = DMD

i,sel f +
kBTΞ
6πηΛ

(80)

where DMD
i,sel f is the finite self-diffusion coefficient computed in the MD simulations, kB is

the Boltzmann constant, T is the absolute temperature, η is the shear viscosity computed
in MD simulations, and Ξ is a dimensionless constant equal to 2.837298 for periodic
(cubic) lattices [349]. In addition to LJ fluids and water, the validity and applicability of
the Yeh–Hummer correction has been demonstrated for a variety of systems, including
Lennard-Jones fluids, water, carbon dioxide, n-alkanes, and deep eutectic solvents [346].
Recently, Jamali et al. also derived a generalized form for finite-size corrections of diffusion
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for multicomponent mixtures [350]. Each system is affected by finite-sized effects differently,
and the magnitude of the effect further depends on the thermodynamic point [351,352].
Unless short polymer chains are considered, or conditions that significantly decrease system
viscosity, such as very high temperatures or very high gas concentrations, the Yeh–Hummer
correction is expected to be negligible for the diffusivity of gases in polymers. Indeed,
Moultos et al. [352] observed that the magnitude of the correction decreased at increasing
molecular weight for short oligomers.

7.7. Gas-Induced Swelling

The dilation induced by the gases upon sorption inside polymer matrices influences
both the thermodynamic and the transport properties of the system; therefore, it is impor-
tant to account for such effects during the simulation of materials, especially in far from
infinite dilution conditions. Some of the methodologies presented to simulate solubility
allow the direct inclusion of these effects in the calculation, e.g., Hybrid Monte Carlo simu-
lations performed in the osmotic ensemble [303], Continuous Fractional Component Monte
Carlo simulations performed in the osmotic ensemble [353], iterative NPT MD–Widom
insertion steps [119,324], and iterative NPT MD–GCMC steps [308]. These methods can be
applied to obtain equilibrated gas–polymer systems also suitable for the simulation of gas
diffusion at high pressure. In the case of the linear combination of results from dense and
pre-swollen systems proposed by Heuchel et al. [298], while for solubility, the agreement
with experimental data was satisfactory, for diffusivity, it was only qualitative. Indeed, an
accurate representation of the structural properties of the material, thus a direct, rather
than indirect, inclusion of swelling effects in the simulation, seems to be a necessity for the
accurate prediction of gas diffusivity [119].

7.8. Atomistic Simulation of Gas-Separation Membranes

In recent years, atomistic molecular modelling techniques have proven very useful
to investigate the structure and dynamics of dense, amorphous membrane polymers and
transport processes in these materials [244–246,354]. Gas transport in rubbery and glassy
polymers has been studied with a variety of approaches, both for pure- and mixed-gas
conditions.

The first simulation studies of gas sorption and transport in polymers were performed
on materials with a simpler chemical makeup than those showing competitive gas separa-
tion performance nowadays; however, they served as benchmarks for the development
of methods and algorithms that were subsequently also applied to innovative polymeric
materials of interest for these applications.

7.8.1. Bulk Systems Simulations

Detailed molecular analyses of the solubility and diffusivity of small gases has been
reported in the literature for glassy polyamides [355], poly(amide imide)s [355–357] and
polyimides [355,357–361], polysulfones [298,362], polyurethanes [363] high free-volume
polyacetylenes [364,365], and rubbery materials [355,357,366–368], often using the GCMC
method to evaluate solubility and the TST method or the analysis of MSD of the gas
molecules to evaluate diffusivity, with good agreement with experimental measurements.
Thermally Rearranged (TR) polybenzoxazoles are among the best-performing materials
for gas separation, and for this class of polymers also, the use of molecular simulations
has provided useful insight, in particular regarding the free-volume size distribution and
topology following the thermal rearrangement process, and how this is correlated to the
enhanced permeability shown by these materials [361,369–371] (Figure 22). Indeed, analy-
sis of the size distribution of free-volume elements and comparison with measurements
of positron annihilation lifetime spectroscopy (PALS) allowed the rationalization of cor-
relations between polymer chemistry, microstructure, and gas transport properties. For
materials whose permeability is dominated by diffusion rather than sorption effects, molec-
ular simulations have shown the effect of pore-size distribution for materials with similar
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fractional free volume [372]. Moreover, important differences in the diffusion mechanisms
of rubbery and glassy polymers concerning the lifetime of channels between free-volume
elements allowing for molecular jumps and the average residence time of gas molecules in
each free-volume element have been highlighted [355].
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Molecular modelling has also been employed to obtain insight on the molecular origin
of the structural features of amorphous polymers measured by wide-angle x-ray scatter-
ing [373,374] and d-spacing [375], as well as to establish structure–property correlations for
more-rational material design [346,376–378].

Heuchel et al. were the first to apply TST to the study of gas transport in PIM-1,
simulating He, H2, Ar, O2, N2, CH4, CO2, and Xe sorption and diffusion [379]. Solubility
tended to be overestimated in the simulations by a factor 2 to 3 (5 for CO2), with the
exception of He and H2, for which good agreement with experimental data was found.
Simulated diffusivities were overestimated by a factor 2 for the light gases, while they were
closer to experimental values for the other gases, with the exception of CO2, which was one
order of magnitude lower than the experimental value. This is ascribed to the fact that the
spherical representation used for all gas molecules is unrealistic in the case of CO2, which
is a markedly linear molecule. Different methods and molecular representations have
obtained more-accurate results for this system. For example, Fang et al. [380,381] applied
the Widom Insertion method to predict CO2 solubility in PIM-1, obtaining close agreement
with experimental data. Recently, Kupgan et al. [382] employed a scheme combining Grand
Canonical Monte Carlo and Molecular Dynamics simulations devised by Hölck et al. [308]
to simulate CO2 sorption in PIM-1 up to 50 bar and analyze its effect on the pore-size
distribution of the polymer (Figure 23).
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Lanchet et al. [307] used hybrid MC simulations in the osmotic ensemble to study the
sorption of CH4, CO2, H2S, H2, N2, O2, and H2O in PVDF at infinite dilution at 493 K. No
experimental data were available for validation, but trends were consistent with those in
other works. Chen et al. combined ab initio calculation, Molecular Dynamics, and Monte
Carlo simulations to investigate the structural characteristics and transport behavior of
CO2, CH4, O2, and N2 in PIM-Trip-TB and KAUST-PI-1 membranes [383], showing the
capability of atomistic techniques to also correctly represent the properties of rigid poly-
meric structures of complex chemical constitution [384,385]. Heuchel et al. analyzed glassy
polysulfone and poly(ether sulfone) with CO2 gas pressures up to 50 bar at 308 K [298].
Pre-swollen packing systems were prepared based on experimental dilation data, and
sorption was determined using GCMC. Sorption isotherms with satisfactory accuracy were
determined by combining the solubilities obtained for swollen and unswollen systems.
Gas diffusivity was also determined using TST; in this case, the results obtained for the
preswollen systems were only qualitatively consistent. A similar strategy was employed to
study swelling during nitrogen adsorption isotherms at 77 K for five PIM variants [386]
by pre-swelling the simulation boxes up to 15%, finding that the size of the free-volume
elements increased with the simulated swelling percentage, while the closely packed poly-
mer chains remained tightly associated. Neyertz et al. [387] performed extensive molecular
dynamics simulations of several fluorinated polyimides with CO2 weight percentages up
to 30%. Diffusion coefficients were estimated from a trajectory-extending kinetic Monte
Carlo method. Diffusivity values and activation energies were found to be in good agree-
ment with experimental data. Swelling effects, together with hysteresis effects related to
sorption–desorption cycles, which affected CO2 diffusivity as well, were quantified during
the simulation.

In order to obtain plasticization-resistant membranes, crosslinking is often employed
to tighten the material and to prevent significant swelling upon sorption. Strategies to build
molecular models of highly crosslinked polymer networks have been developed [388–394]
and validated against measurements of apparent Brunauer–Emmet–Teller (BET) specific
surface areas, crosslinking degrees, porosity, and sorption measurements. Moreover, simu-
lations have shown the evolution of porosity throughout the crosslinking process [388] and
the formation process of membranes prepared through interfacial polymerization [395].

7.8.2. Gas–Polymer Interface Simulations

Interface simulations are less common that bulk system simulations, but are nonethe-
less of great importance because they yield unique insight into the molecular interfacial
mechanisms of sorption and transport. Anderson et al. [396] employed NEMD to examine
transport of methane and n-butane molecules in the bulk and interface regions of polyethy-
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lene, poly(4-methyl-2-pentyne), and polydimethylsiloxane (PDMS), developing correlations
to calculate penetrant diffusivity and permeability from the accessible cavity fraction and
average amplitude of chain oscillations of the polymers. Frentrup et al. [397] performed
NEMD simulations for the direct simulation of He and CO2 permeability through a thin
membrane of PIM-1 with good qualitative agreement with experimental data (Figure 24).
Additional interface studies [398,399] are discussed in the next section.
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Figure 24. Simulation of CO2/CH4 mixture permeation through a thin membrane layer. (a) Mem-
brane with a thin layer position-restrained along the z-axis; (b) system for permeation of the CO2/CH4

mixture; (c) system for sorption of the CO2/CH4 mixture; (d) number of sorbed and permeated gas
molecules during permeation; (e) number of sorbed gas molecules during sorption. Reproduced with
permission from Ref. [399]. Copyright 2019, American Chemical Society.

7.8.3. Mixed-Gas Simulations

Fewer modelling studies have analyzed mixed-gas sorption effects. Recently,
Rizzuto et al. [400] coupled GCMC atomistic simulations and Ideal Adsorbed Solution
Theory (IAST) [401] to investigate the mixed-gas permeation properties of CO2/N2 mix-
tures in thermally rearranged polymers. Pure-gas sorption of both gases was underesti-
mated by the simulations. However, competitive effects between the components in the
mixture, expected in the case of glassy polymers, were displayed and found to greatly
affect the solubility of the less-condensable gas of the mixture. Neyertz and Brown [398]
performed large-scale MD simulations of air separation with an ultra-thin polyimide mem-
brane surrounded by an explicit gas reservoir. In this work, they determined gas solubility,
diffusivity, and O2/N2 selectivity at multicomponent conditions, comparing favorably with
experimental results. Multicomponent solubility-selectivity was found to be comparable to
the ideal one. Tanis et al. [402] studied CH4/N2 separation with several polyimide mem-
branes using atomistic simulations. Solubility coefficients obtained from excluded-volume
map sampling test-particle insertions were combined with diffusion coefficients calculated
with a variant of the kinetic Monte Carlo approach. Iterative procedures allowed account-
ing for swelling effects upon sorption, both in pure- and mixed-gas cases. Their results
highlighted non-ideal behavior in the multicomponent case, affecting both the predicted
permeability and selectivity of the membrane material. Furthermore, competitive sorption
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effects in CH4/N2 and CH4/N2/CO2 in a polyimide were simulated using three different
iterative techniques [403], which were compared in terms of accuracy and computational
efficiency. Competitive sorption effects can be observed in the simulation results (Figure 25),
and the authors obtained correlations between exclusion effects and sorbed concentration
that are consistent with experimental evidence [41].
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Figure 25. Simulated pure- and mixed-gas sorption (4:32:64 CO2/N2/CH4) in 6FDA-6FpDA. Results
from Neyertz and Brown [403].

Liu et al. [399] investigated the separation performance of a thin membrane of a
branched PIM-1 architecture for CO2/CH4 mixtures. They performed a large-scale direct
simulation of permeability incorporating both polymer flexibility and membrane plasticiza-
tion during gas permeation. Hart et al. studied a hypothetical functionalized polymer of
intrinsic microporosity with an ionic backbone (carboxylate) and extra-framework counteri-
ons (Na+) for CO2 gas storage and separation applications [404]. They evaluated CO2/CH4
and CO2/N2 mixed-gas separation performance with GCMC simulations, finding very
appealing performance under several industrially relevant conditions.

Molecular modelling is mature enough to go hand-in-hand with the experimentation
process to synthesize new materials, making it more informed and rational [378,405,406].
A wealth of detailed and reliable information about the microscopic characteristics and
macroscopic behavior of a system can be extracted by the implementation of molecular
simulation strategies. Finally, one of the most appealing applications of molecular mod-
elling is the preliminary large scale screening of different molecular structures for a specific
application even before the hypothetical structures are synthesized, and several studies
of this kind have been performed on a smaller scale for polymeric gas separation materi-
als [376,377,407–410]. Predictive simulation of the change in structural features associated
with variation in the chemical constitution and calculation of the corresponding gas trans-
port properties highlights structural property correlations and provides guidelines for the
future design of new chemical structures with the desired properties.

8. Conclusions

Membrane technology can enable sustainability in an expanding array of processes,
and thus it is at the forefront of many environmental challenges that are being addressed
worldwide. Efficient membrane materials design is a necessary prerequisite for the develop-
ment of better-performing green-alternative separations. In this regard, material modelling
and simulations play a key role in enabling disruptive innovation and helping to compact
the lab-to-market cycle as much as possible.
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In this work, macroscopic and molecular modelling approaches for the study of gas
sorption and transport in polymeric membranes have been reviewed.

The solution–diffusion mechanism allows membrane performance (permeability and
selectivity) to be calculated from its solubility and diffusivity contributions, which can be
obtained separately, with uncorrelated methods.

This was the prevailing approach in the field of macroscopic modeling of membranes
in the past, and many sophisticated models were proposed, the most notable being the
NET-GP approach for solubility and the free-volume theory for diffusion. Such a method-
ology began being replaced in the last decade with more comprehensive approaches in
which permeability is estimated explicitly by considering a suitable combination of mod-
els or correlations for solubility and diffusivity components. A good example of this
new conceptual development is the Standard Transport Model. Macroscopic methods are
computationally efficient, although robust algorithms are needed when multicomponent
mixtures are considered and when complex models such as the SAFT Equation of State for
solubility are used. The accuracy of such methods in predicting membrane permeability
and selectivity is satisfactory with a relatively small number of binary parameters, e.g.,
two for the simulation of light-gas permeability in rubbery membranes and four for the
simulation of swelling gases, such as CO2 in a glassy membrane. No additional binary
parameters are required for multicomponent mixtures.

On the other hand, since its early days, molecular modelling has been a powerful tool
for phenomenological analysis, and has been instrumental in elucidating the bulk transport
mechanisms of small molecules in both rubbery and glassy polymers and in establishing
structure–property relationships in a fully predictive fashion. The quantitative accuracy of
molecular simulations continually increases as more sophisticated simulation algorithms
are introduced, better force fields are developed, and higher available computational power
enables the simulation of larger systems and longer time spans.

Most approaches focus, as above, on separate simulations of fluid solubility and
diffusivity in the bulk amorphous structure. However, direct simulations of permeation
and simulations of interface phenomena are also increasingly of interest, to shed light on
additional features related to membrane separation that cannot be easily probed with other
techniques. Nevertheless, atomistic simulation of membrane separation performance is still
hindered by the high computational effort required to equilibrate solid polymeric phases,
especially glassy ones and molecular weights closer to the experimental conditions. There-
fore, the development of more-generalized multiscale or hierarchical molecular modelling
paradigms that leverage coarse-grained representations is of paramount importance to
streamline the simulation of more-realistic polymeric systems and to fulfill the ambition of
a computationally driven membrane materials discovery pipeline.

With the increasing popularization of data-driven methods in the natural sciences and
engineering domains, it can be expected that this third branch of computational analysis
will receive more investigation efforts and will complement and intertwine with existing
empirical and physics-based methods to provide valuable new insights to the membrane
research community, and will assist in the rational design of tailored materials for old as
well as new membrane separations.
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Appendix A. Acronyms List

PDMS Poly(dimethyl siloxane)
XLPEO Crosslinked Poly(ethylene oxide)
PMMA Poly (methyl methacrylate)
PVDF Polyvinylidene fluoride
PPO Poly(2,6-dimethyl-1,4-phenylene oxide)
CTA Cellulose triacetate
PTMSP Poly(1-trimethylsilyl-1-propyne)
6FDA-TADPO Hexafluoro dianhydride–3,3,4,4-tetraaminodiphenyl oxide polypyrrolone
6FDA-mPDA 4,4′-(hexafluoro isopropylidene) diphtalic dianhydride-m-phenylenediamine

HAB-6FDA
3,3′-dihydroxy-4,4′-diamino-biphenyl 2,2′-bis-(3,4-dicarboxyphenyl)
hexafluoropropane dianhydride

TR450 Thermally rearranged derivative of HAB-6FDA
PIM-1 Polybenzodioxane
TZ-PIM Tetrazole-modified PIM-1
PIM-Trip-TB Ladder polymer of intrinsic microporosity including a triptycene group

RSE Relative Standard Error
EoS Equation of State
LF Lattice Fluid
NET-GP Non-Equilibrium Thermodynamics for Glassy Polymers
NELF Non-Equilibrium Lattice Fluid
SAFT Statistical Associating Fluid Theory
NRHB Non-random Hydrogen Bonding
DMS Dual-Mode Sorption
GAB Guggenheim−Anderson−de Boer
STM Standard Transport Model
LJ Lennard-Jones
BET Brunauer–Emmet–Teller
MD Molecular Dynamics
NEMD Non-Equilibrium Molecular Dynamics
IAST Ideal Adsorbed Solution Theory
MC Monte Carlo
GCMC Grand Canonical Monte Carlo

Appendix B. Other Symbols and Variables
Generalities

Ji Molar flux of component i (gaseous species diffusing across the solid membrane)

Pi
Permeability (coefficient) of component i (gaseous species diffusing across the solid
membrane)

pi Partial pressure of component i in the gas mixture
fi Fugacity of component i in the gas mixture
l Membrane thickness
ci Penetrant molar concentration in the membrane phase

cu,i , cd,i
Molar concentration (moles of gas/membrane volume) in the membrane phase on
the upstream and downstream sides, respectively

Di Local diffusivity or diffusion coefficient of species i in the membrane
z Coordinate indicating the position along the membrane thickness
Li Mobility (or self-diffusion diffusivity) of species i in the membrane
µi Chemical potential of species i
Si Solubility coefficient of species i in the membrane Si = ∆ci

∆pi
Di Concentration-averaged diffusivity of species i in the membrane
ωi Mass fraction of the fluid in the membrane
αi,j Selectivity of component i versus component j in the membrane
αS

i,j Solubility-Selectivity of component i versus component j in the membrane
αD

i,j Diffusivity-Selectivity of component i versus component j in the membrane
S0 Pre-exponential factor for solubility coefficient
∆Hs Heat of sorption
D0 Pre-exponential factor for diffusion coefficient
ED Activation energy of diffusion
P0 Pre-exponential factor for permeability coefficient
EP Activation energy of permeation
∆Hc Heat of condensation of the fluid species
∆Hm Heat of mixing of the fluid species in the membrane
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Robeson’s upper bound
βi,j Gas couple-dependent parameter (position of the upper bound)
λi,j Gas couple-dependent parameter (slope of the upper bound)
dk,j Kinetic diameter of the larger molecule
dk,i Kinetic diameter of the smaller molecule
a Parameter used in the correlation for βi,j and λi,j
b Parameter used in the correlation for βi,j and λi,j
f Parameter used in the correlation for βi,j and λi,j

Activity coefficient models for solubility
γi Activity coefficient (of the fluid in the membrane)
ni Number of moles of component i in a mixture
Gex Excess Gibbs free energy of a mixture
Gex

i Partial molar excess Gibbs free energy for a component i in a mixture
LF EoS

G Gibbs free energy
N Total number of molecules
kB Boltzmann’s constant
nc Number of components (gases + polymer)
Mi Molar mass of component i
ρi Density of component i
v∗i Molar volume of a lattice cell of component i
r0

i Number of lattice cells occupied by a molecule of pure component i
εi Non-bonded interaction energy between two lattice cells occupied by component i
T∗i Characteristic temperature of component i T∗i = εi

kb
p∗i Characteristic pressure of component i p∗i = εi

v∗i
ρ∗i Characteristic density of component i ρ∗i = Mi

riv∗i
T̃i Reduced temperature of component i T̃i = T

T∗i
p̃i Reduced pressure of component i p̃i = p

p∗i
ρ̃i Reduced density of component i ρ̃i = ρi

ρ∗i
ρ Density of the mixture
T̃ Reduced temperature T̃ = T/T∗

p̃ Reduced pressure p̃ = p/p∗

ρ̃ Reduced density ρ̃ = ρ/ρ∗

kij Binary interaction parameter between i and j
ωi Mass fraction of component i
φi Volume fraction of component i in close-packed conditions φi =

ωi/ρ∗i
∑N

i ωi/ρ∗i
ρ∗ Characteristic density of the mixture 1

ρ∗ = ∑nc
i

ωi
ρ∗i

p∗
Characteristic pressure of the mixture
p∗ = ∑nc

i φi p∗i −∑nc−1
i ∑nc

j>i φiφj∆p∗ij
∆p∗ij = p∗i + p∗j − 2

(
1− kij

)√
p∗i ·p∗j

T∗ Characteristic temperature of the mixture T∗ = p∗

∑N
i

p∗i φi
T∗i

v∗ Average close-packed molar volume in the mixture v∗ = T∗R
p∗

ri Number of lattice cells occupied by a molecule in mixture ri =
r0
i v∗i
v∗

NRHB EoS
ε∗i Characteristic energy in the LF model and in the NRHB model
ε∗i,h Enthalpic contribution to the characteristic energy
ε∗i,s Entropic contribution to the characteristic energy
E0

αβ Association energy between group α and a functional group β

S0
αβ Association entropy between a functional group α and a functional group β

SAFT EoS
Ares Residual Helmholtz free energy (at fixed temperature and volume)
Ahs Hard-sphere term of residual Helmholtz free energy
Adisp Dispersion term of residual Helmholtz free energy
Achain Chain term of residual Helmholtz free energy
Aassoc Association term of residual Helmholtz free energy
µIG

i Chemical potential of species i in the ideal gas state
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NET-GP model for solubility
µNE

i Non-equilibrium chemical potential of species i
µ

Eq
i Equilibrium chemical potential of species i

ρpol Non-equilibrium density of the glassy polymer

µ
NE(pol)
i

Non-equilibrium chemical potential of species i in the polymer phase

µ
Eq(gas)
i

Equilibrium chemical potential of species i in the gas phase
ω Composition vector in the polymer phase
y Composition vector in the gas phase
ρ0

pol Non-equilibrium density of the dry glassy polymer

ksw,i
Swelling coefficient correlating the glassy polymer density to the gas i
partial pressure

DMS model for solubility
kD,i Henry’s law constant
C′H,i Langmuir capacity constant
bi Langmuir affinity constant
kD0 Pre-exponential factor for temperature-dependence of kD
b0 Pre-exponential factor for temperature-dependence of b
∆HD Enthalpy of sorption for Henry’s mode of sorption
∆Hb Enthalpy of sorption for Langmuir’s mode of sorption

GAB model for solubility
v Penetrant adsorbed mass ratio
p Adsorbate pressure
p∗ Reference pressure value associated with the adsorbate
vm Capacity of the 1st adsorption monolayer
h Dimensionless binding parameter
rij Parameter related to sorbate–sorbate interactions in multicomponent GAB
hij Parameter related to sorbate–sorbate interactions in multicomponent GAB

Fractal model for solubility coefficient
Fe f

g Effective cross-sectional area of the sorbed gas molecules
D f Global fractal dimension parameter
S0 Minimum solubility of a gas molecule
ϕcl Relative fraction of the closely packed segments in clusters
Tg Polymer glass transition temperature
Xcr Degree of crystallinity
d f Fractal dimension of the polymer structure
Acr Cross-sectional area of a macromolecule
CS Characteristic ratio representing the index of chain flexibility

Free-volume theory for diffusion coefficient
D1,sel f Self-diffusion coefficient of fluid 1 in polymer 2
D0

1 Pre-exponential factor = diffusion in a fluid with infinite free volume
E0

D Energy required for a jump into an adjacent free-volume void
γ Coefficient accounting for overlaps of free volume available to adjacent molecules
V∗i Occupied volume
VF Average free volume per jumping unit

ξ ≡ V∗1
V∗2

Ratio of occupied volumes

K1i , K2i Parameters for component i related to pure component viscosity
α1 Thermodynamic factor of mutual diffusivity
FFV Fractional free volume
A, B Adjustable parameters for correlation between diffusivity and FFV
Vpol Polymer-specific volume
V∗pol Polymer-occupied volume

Fractal model for diffusion coefficient
D0 Universal constant of the model, equal to 3.8 × 10−7 cm2/s
fg Relative free volume
dh Diameter of a microvoid
dm Diameter of the penetrant gas molecule
ds Polymer chain spectral dimension

Maxwell–Stefan model for diffusion coefficient
Ð Maxwell–Stefan diffusivity
vA − vB Velocity of species A relative to species B
Γ Thermodynamic correction factor
Ni Total molar flux of species i (with respect to a fixed reference frame)
nt Total molar concentration of the fluid mixture
xi Mole fraction of component i in the mixture



Membranes 2022, 12, 857 57 of 71

Partial Immobilization Dual-Mobility Model for Permeability
Ni Total molar flux of component i
CD,i Penetrant concentrations in the Henry’s region
CH,i Penetrant concentration in the Langmuir’s region
DD,i Diffusivity in the Henry region
DH,i Diffusivity in the Langmuir region
Fi Ratio between diffusivity in Henry’s region and Langmuir’s regions
Ki Ratio between Dual-Sorption Mode Model parameters
pu,i Upstream partial pressure of component i
pd,i Downstream partial pressure of component i

Standard Transport Model for Permeability
Li Mobility coefficient of component i
Li,0 Infinite dilution mobility coefficient of component i
β Plasticization factor
Mi Penetrant molecular weight
Zi Penetrant compressibility factor
ρpol Polymer density
$ Size selectivity of the polymer

τ
Polymer-dependent parameter in the empirical correlation between penetrant
mobility and critical volume

$0 Pre-exponential factor for parameter η
Vc Critical volume of penetrant

Widom insertion method
µex

i Excess chemical potential of penetrant i inside the polymer
∆Uinter

test Potential energy of interaction between the test molecule and the other molecules
Simulation of diffusivity

〈(ri(t)− ri(0))
2〉 Mean squared displacement (MSD) averaged over all molecules

t Time
DMD

i,sel f Self-diffusion coefficient computed in the MD simulations
η Shear viscosity computed in MD simulations
Ξ Dimensionless constant equal to 2.837298 for periodic (cubic) lattices
Λ Simulation box length

Appendix C. Self-Diffusion Coefficient (Mobility), Mutual-Diffusion Coefficient, and
Thermodynamic Factor

The diffusive flux Ji, which is the actual driving force for diffusion, can be expressed
either in terms of concentration gradient∇ωi or penetrant chemical potential gradient∇µi:

Ji = −Diρ∇ωi = −Li
ωiρ

RT
∇µi (A1)

In the first expression, the mutual diffusion coefficient Di appears, while in the second
one, the mobility, Li, or self-diffusion coefficient, is used. Mobility has a purely kinetic
meaning and is related to the resistance of molecular motion in the solid mixture [92–95]. As
a consequence of this equivalence, the mutual diffusion coefficient Di can be rewritten as:

Di =
Li
RT

∂µi
∂ ln ωi

(A2)

The chemical potential of i can be related to the respective reference state value, µi,re f ,
and ultimately to the activity ai as follows:

µi = µi,re f + RT ln
(

fi

/
fi,re f

)
= µi,re f + RT ln(ai) (A3)

Thus, the relation between the mutual diffusion coefficient and mobility can be rewrit-
ten as:

Di = Li
∂ ln αT

i
∂ ln ωi

(A4)

where the term multiplying the mobility is defined as αT , the thermodynamic factor, as it is
entirely thermodynamic in nature:
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αT
i ≡

∂ ln µi
∂ ln ωi

(A5)

Based on the above equations, mutual diffusivity can be decomposed into this purely
thermodynamic factor and the purely kinetic mobility term as follows:

Di = Liα
T
i (A6)

Calculating the thermodynamic factor is possible either by using a thermodynamic
model able to predict the gas solubility isotherm in the polymer membrane, or by taking
experimental solubility isotherms for the specific fluid–polymer system. In the above
equations, the activity coefficient ai can be replaced by the component fugacity fi if it is a
real gas, or by its partial pressure pi if it is an ideal gas.
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178. Vopička, O.; Lanč, M.; Friess, K. Phenomenology of vapour sorption in polymers of intrinsic microporosity PIM-1 and PIM-EA-TB:
Envelopment of sorption isotherms. Curr. Opin. Chem. Eng. 2022, 35, 100786. [CrossRef]
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180. Vopička, O.; Radotínský, D.; Friess, K. Sorption of vapour mixtures of methanol and dimethyl carbonate in PDMS: Experimental
study. Eur. Polym. J. 2015, 73, 480–486. [CrossRef]

181. Mandelbrot B The Fractal Geometry of Nature; Free-man & Company: New York, NY, USA, 1983.
182. Kozlov; Zaikov, G. The Structural Stabilization of Polymers: Fractal Models; CRC Press: Boca Raton, FL, USA, 2018;

ISBN 9789047418252.
183. Novikov, V.U.; Kozlov, G.V. Fractal analysis of macromolecules. Russ. Chem. Rev. 2000, 69, 378–399. [CrossRef]
184. Kozlov, G.V.; Cruz-Morales, J.A.; Vargas, J.; Tlenkopatchev, M.A. The Solubility of Hydrocarbon Gases in Glassy Polymers: Fractal

Modeling. Int. J. Polym. Sci. 2013, 2013, 529021. [CrossRef]
185. Cruz-Morales, J.A.; Vargas, J.; Santiago, A.A.; Burelo, M.; Gutiérrez, S. Application of the fractal model to estimate the diffusion and

solubility of gases in non-porous membranes based on aromatic polynorbornene dicarboximides. J. Polym. Res. 2021, 28, 248. [CrossRef]
186. Kozlov, G.V.; Zaikov, G.E.; Mikitaev, A.K. The Fractal Analysis of Gas Transport in Polymers: The Theory and Practical Applications;

Nova Science Publishers: Hauppauge, NY, USA, 2009.
187. Aharoni, S.M. On entanglements of flexible and rodlike polymers. Macromolecules 1983, 16, 1722–1728. [CrossRef]
188. Haselwander, T.F.A.; Heitz, W.; Krügel, S.A.; Wendorff, J.H. Rigid Random Coils: Rotationally Confined Chain Molecules.

Macromolecules 1997, 30, 5345–5351. [CrossRef]
189. Wu, S. Chain structure and entanglement. J. Polym. Sci. Part B Polym. Phys. 1989, 27, 723–741. [CrossRef]
190. Minelli, M.; De Angelis, M.G.; Baschetti, M.G.; Doghieri, F.; Sarti, G.C.; Ribeiro, C.P.; Freeman, B.D. Equation of State Modeling of

the Solubility of CO2/C2H6 Mixtures in Cross-Linked Poly(ethylene oxide). Ind. Eng. Chem. Res. 2015, 54, 1142–1152. [CrossRef]
191. Ricci, E. Thermodynamic and Molecular Simulation of Pure and Mixed Gas Sorption in Polymeric Membranes. Ph.D. Thesis,

Alma Mater Studiorum Università di Bologna, Bologna, Italy, 2020.
192. Raharjo, R.D.; Freeman, B.D.; Sanders, E.S. Pure and mixed gas CH4 and n-C4H10 sorption and dilation in poly(1-trimethylsilyl-

1-propyne). Polymer 2007, 48, 6097–6114. [CrossRef]
193. Doghieri, F.; Sarti, G.C. Solubility, diffusivity, and mobility ofn-pentane and ethanol in poly(1-trimethylsilyl-1-propyne). J. Polym.

Sci. Part B Polym. Phys. 1997, 35, 2245–2258. [CrossRef]
194. De Angelis, M.G.; Lodge, S.; Giacinti Baschetti, M.; Sarti, G.C.; Doghieri, F.; Sanguineti, A.; Fossati, P. Water sorption and

diffusion in a short-side-chain perfluorosulfonic acid ionomer membrane for PEMFCS: Effect of temperature and pre-treatment.
Desalination 2006, 193, 398–404. [CrossRef]

195. Giacinti Baschetti, M.; Doghieri, F.; Freeman, B.; Sarti, G.C. Transient and steady-state effective diffusivity in high free volume
glassy polymers. J. Membr. Sci. 2009, 344, 144–154. [CrossRef]

196. Cohen, M.H.; Turnbull, D. Molecular transport in liquids and glasses. J. Chem. Phys. 1959, 31, 1164–1169. [CrossRef]
197. Park, J.Y.; Paul, D.R. Correlation and prediction of gas permeability in glassy polymer membrane materials via a modified free

volume based group contribution method. J. Membr. Sci. 1997, 125, 23–39. [CrossRef]
198. Fujita, H. Diffusion in polymer-diluent systems. Fortschr. Hochpolym. 1961, 3, 1–47. [CrossRef]
199. Vrentas, J.S.; Duda, J.L. Diffusion in Polymer—Solvent Systems-I. Reexamination of the Free-Volume Theory. J. Polym. Sci. Polym.

Phys. Ed. 1977, 15, 403–416. [CrossRef]
200. Vrentas, J.S.; Duda, J.L. Diffusion in polymer–solvent systems. II. A predictive theory for the dependence of diffusion coefficients

on temperature, concentration, and molecular weight. J. Polym. Sci. Polym. Phys. Ed. 1977, 15, 417–439. [CrossRef]
201. Van Krevelen, D.W.; Te Nijenhuis, K. Volumetric Properties. In Properties of Polymers; Elsevier: Amsterdam, The Netherlands,

2009; pp. 71–108, ISBN 9780080548197.
202. Bicerano, J. Prediction of Polymer Properties; CRC Press: Boca Raton, FL, USA, 2002; ISBN 9780429222283.
203. Calero-Rubio, C.; Strab, C.; Barnett, G.V.; Roberts, C.J. Protein Partial Molar Volumes in Multicomponent Solutions from the

Perspective of Inverse Kirkwood–Buff Theory. J. Phys. Chem. B 2017, 121, 5897–5907. [CrossRef]
204. Kirkwood, J.G.; Buff, F.P. The Statistical Mechanical Theory of Solutions. I. J. Chem. Phys. 1951, 19, 774–777. [CrossRef]
205. Duda, J.L.; Zielinski, J.M. Free-Volume Theory. Diffus. Polym. 1996, 32, 143–171.
206. Zielinski, J.M.; Duda, J.L. Predicting polymer/solvent diffusion coefficients using free-volume theory. AIChE J. 1992, 38,

405–415. [CrossRef]
207. Costa, L.I.; Storti, G. Self-diffusion of small molecules into rubbery polymers: A lattice free-volume theory. J. Polym. Sci. Part B

Polym. Phys. 2010, 48, 529–540. [CrossRef]
208. Hirayama, Y.; Yoshinaga, T.; Kusuki, Y.; Ninomiya, K.; Sakakibara, T.; Tamari, T. Relation of gas permeability with structure of

aromatic polyimides II. J. Membr. Sci. 1996, 111, 183–192. [CrossRef]
209. Shantarovich, V.P.; Kevdina, I.B.; Yampolskii, Y.P.; Alentiev, A.Y. Positron annihilation lifetime study of high and low free volume glassy

polymers: Effects of free volume sizes on the permeability and permselectivity. Macromolecules 2000, 33, 7453–7466. [CrossRef]
210. Fujita, H. Free-volume model of diffusion in polymer solutions. Adv. Polym. Sci. 1961, 3, 1–47.
211. Horn, N.R. A critical review of free volume and occupied volume calculation methods. J. Membr. Sci. 2016, 518, 289–294. [CrossRef]

http://doi.org/10.1016/j.coche.2021.100786
http://doi.org/10.1002/polb.23945
http://doi.org/10.1016/j.eurpolymj.2015.11.005
http://doi.org/10.1070/RC2000v069n04ABEH000523
http://doi.org/10.1155/2013/529021
http://doi.org/10.1007/s10965-021-02601-2
http://doi.org/10.1021/ma00245a008
http://doi.org/10.1021/ma970306z
http://doi.org/10.1002/polb.1989.090270401
http://doi.org/10.1021/ie5038215
http://doi.org/10.1016/j.polymer.2007.07.057
http://doi.org/10.1002/(SICI)1099-0488(199710)35:14&lt;2245::AID-POLB5&gt;3.0.CO;2-V
http://doi.org/10.1016/j.desal.2005.06.070
http://doi.org/10.1016/j.memsci.2009.07.045
http://doi.org/10.1063/1.1730566
http://doi.org/10.1016/S0376-7388(96)00061-0
http://doi.org/10.1007/BF02189382
http://doi.org/10.1002/pol.1977.180150302
http://doi.org/10.1002/pol.1977.180150303
http://doi.org/10.1021/acs.jpcb.7b02553
http://doi.org/10.1063/1.1748352
http://doi.org/10.1002/aic.690380309
http://doi.org/10.1002/polb.21918
http://doi.org/10.1016/0376-7388(95)00173-5
http://doi.org/10.1021/ma000551+
http://doi.org/10.1016/j.memsci.2016.07.014


Membranes 2022, 12, 857 65 of 71

212. Kozlov, G.V.; Nafadzokova, L.K.; Zaikov, G.E. Fractal model of the free volume of vitreous poly(vinyltrimethylsilane) from data
on gas diffusion. Glas. Phys. Chem. 2007, 33, 481–485. [CrossRef]

213. Khalikov, R.M.; Kozlov, G.V. Multifractal model of gas diffusion in polymers. Polym. Sci. Ser. B 2006, 48, 84–87. [CrossRef]
214. Berens, A.R.; Hopfenberg, H.B. Diffusion of organic vapors at low concentrations in glassy PVC, polystyrene, and PMMA.

J. Membr. Sci. 1982, 10, 283–303. [CrossRef]
215. Alexander, S.; Orbach, R. Density of states on fractals: «fractons». J. Phys. Lett. 1982, 43, 625–631. [CrossRef]
216. Marshall, B.D.; Allen, J.W.; Lively, R.P. A model for the separation of complex liquid mixtures with glassy polymer membranes: A

thermodynamic perspective. J. Membr. Sci. 2022, 647, 120316. [CrossRef]
217. Ebneyamini, A.; Azimi, H.; Thibault, J.; Tezel, F.H. Description of butanol aqueous solution transport through commercial PDMS

pervaporation membrane using extended Maxwell–Stefan model. Sep. Sci. Technol. 2018, 53, 1611–1627. [CrossRef]
218. Koros, W.J.; Chern, R.T.; Stannett, V.; Hopfenberg, H.B. A model for permeation of mixed gases and vapors in glassy polymers.

J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 1513–1530. [CrossRef]
219. Moon, J.D.; Galizia, M.; Borjigin, H.; Liu, R.; Riffle, J.S.; Freeman, B.D.; Paul, D.R. Modeling water diffusion in polybenzimidazole

membranes using partial immobilization and free volume theory. Polymer 2020, 189, 122170. [CrossRef]
220. Park, J.; Yoon, H.W.; Paul, D.R.; Freeman, B.D. Gas transport properties of PDMS-coated reverse osmosis membranes. J. Membr.

Sci. 2020, 604, 118009. [CrossRef]
221. Balçık, M.; Tantekin-Ersolmaz, S.B.; Pinnau, I.; Ahunbay, M.G. CO2/CH4 mixed-gas separation in PIM-1 at high pressures:

Bridging atomistic simulations with process modeling. J. Membr. Sci. 2021, 640, 119838. [CrossRef]
222. Miandoab, E.S.; Kentish, S.E.; Scholes, C.A. Modelling competitive sorption and plasticization of glassy polymeric membranes

used in biogas upgrading. J. Membr. Sci. 2021, 617, 118643. [CrossRef]
223. Suhaimi, N.H.; Yeong, Y.F.; Jusoh, N.; Chew, T.L.; Bustam, M.A.; Mubashir, M. Altering sorption and diffusion coefficients of

gases in 6FDA-based membrane via addition of functionalized Ti-based fillers. Polym. Compos. 2022, 43, 440–453. [CrossRef]
224. Lim, Y.-G.; Bak, C.; Kim, Y.-D. Comprehensive experimental and theoretical insights into the performance of polysulfone

hollow-fiber membrane modules in biogas purification process. Chem. Eng. J. 2022, 433, 134616. [CrossRef]
225. Ghoreyshi, A.A.; Asadi, H.; Pirzadeh, K. A generic transport model for separation of gas mixtures by glassy polymer membranes

based on Maxwell–Stefan formulation. RSC Adv. 2015, 5, 48207–48216. [CrossRef]
226. Monsalve-Bravo, G.M.; Smart, S.; Bhatia, S.K. Simulation of Multicomponent Gas Transport through Mixed-Matrix Membranes.

J. Membr. Sci. 2019, 577, 219–234. [CrossRef]
227. Mathias, R.; Weber, D.J.; Thompson, K.A.; Marshall, B.D.; Finn, M.G.; Scott, J.K.; Lively, R.P. Framework for predicting the

fractionation of complex liquid feeds via polymer membranes. J. Membr. Sci. 2021, 640, 119767. [CrossRef]
228. Shoghl, S.N.; Raisi, A.; Aroujalian, A. Modeling of gas solubility and permeability in glassy and rubbery membranes using lattice

fluid theory. Polymer 2017, 115, 184–196. [CrossRef]
229. Bounaceur, R.; Berger, E.; Pfister, M.; Ramirez Santos, A.A.; Favre, E. Rigorous variable permeability modelling and process simulation

for the design of polymeric membrane gas separation units: MEMSIC simulation tool. J. Membr. Sci. 2017, 523, 77–91. [CrossRef]
230. Minelli, M.; Sarti, G.C. Permeability and diffusivity of CO2 in glassy polymers with and without plasticization. J. Membr. Sci.

2013, 435, 176–185. [CrossRef]
231. Minelli, M.; Sarti, G.C. Elementary prediction of gas permeability in glassy polymers. J. Membr. Sci. 2017, 521, 73–83. [CrossRef]
232. Toni, E.; Minelli, M.; Sarti, G.C. A predictive model for the permeability of gas mixtures in glassy polymers. Fluid Phase Equilib.

2018, 455, 54–62. [CrossRef]
233. Samei, M.; Raisi, A. Multi-stage gas separation process for separation of carbon dioxide from methane: Modeling, simulation,

and economic analysis. Chem. Eng. Process. Process Intensif. 2022, 170, 108676. [CrossRef]
234. Krishna, R. Describing mixture permeation across polymeric membranes by a combination of Maxwell-Stefan and Flory-Huggins

models. Polymer 2016, 103, 124–131. [CrossRef]
235. Petropoulos, J.H. Formulation of dual-mode mixed gas transport in glassy polymers. J. Membr. Sci. 1990, 48, 79–90. [CrossRef]
236. Petropoulos, J.H. Plasticization effects on the gas permeability and permselectivity of polymer membranes. J. Membr. Sci. 1992,

75, 47–59. [CrossRef]
237. Minelli, M.; Sarti, G.C.; Civile, I.; Studiorum, A.M. Thermodynamic Model for the Permeability of Light Gases in Glassy Polymers.

AIChE J. 2015, 61, 2776–2788. [CrossRef]
238. Minelli, M.; Sarti, G.C. Thermodynamic basis for vapor permeability in Ethyl Cellulose. J. Membr. Sci. 2015, 473, 137–145. [CrossRef]
239. Minelli, M.; Sarti, G.C. Gas permeability in glassy polymers: A thermodynamic approach. Fluid Phase Equilib. 2015, 424, 44–51. [CrossRef]
240. Minelli, M.; De Angelis, M.G.; Sarti, G.C. Predictive calculations of gas solubility and permeability in glassy polymeric membranes:

An overview. Front. Chem. Sci. Eng. 2017, 11, 405–413. [CrossRef]
241. Toi, K.; Morel, G.; Paul, D.R. Gas sorption and transport in poly(phenylene oxide) and comparisons with other glassy polymers.

J. Appl. Polym. Sci. 1982, 27, 2997–3005. [CrossRef]
242. Bird, R.B.; Klingenberg, D.J. Multicomponent diffusion-A brief review. Adv. Water Resour. 2013, 62, 238–242. [CrossRef]
243. Byron Bird, R.; Klingenberg, D.J. Corrigendum to “Multicomponent diffusion-A brief review” [Adv. Water Res. 62PB (2013)

238–242]. Adv. Water Resour. 2014, 73, 254. [CrossRef]
244. Kupgan, G.; Abbott, L.J.; Hart, K.E.; Colina, C.M. Modeling Amorphous Microporous Polymers for CO2 Capture and Separations.

Chem. Rev. 2018, 118, 5488–5538. [CrossRef]

http://doi.org/10.1134/S1087659607050094
http://doi.org/10.1134/S1560090406030079
http://doi.org/10.1016/S0376-7388(00)81415-5
http://doi.org/10.1051/jphyslet:019820043017062500
http://doi.org/10.1016/j.memsci.2022.120316
http://doi.org/10.1080/01496395.2018.1441303
http://doi.org/10.1002/pol.1981.180191004
http://doi.org/10.1016/j.polymer.2020.122170
http://doi.org/10.1016/j.memsci.2020.118009
http://doi.org/10.1016/j.memsci.2021.119838
http://doi.org/10.1016/j.memsci.2020.118643
http://doi.org/10.1002/pc.26389
http://doi.org/10.1016/j.cej.2022.134616
http://doi.org/10.1039/C5RA05686A
http://doi.org/10.1016/j.memsci.2019.02.013
http://doi.org/10.1016/j.memsci.2021.119767
http://doi.org/10.1016/j.polymer.2017.03.032
http://doi.org/10.1016/j.memsci.2016.09.011
http://doi.org/10.1016/j.memsci.2013.02.013
http://doi.org/10.1016/j.memsci.2016.09.001
http://doi.org/10.1016/j.fluid.2017.09.025
http://doi.org/10.1016/j.cep.2021.108676
http://doi.org/10.1016/j.polymer.2016.09.051
http://doi.org/10.1016/S0376-7388(00)80797-8
http://doi.org/10.1016/0376-7388(92)80005-5
http://doi.org/10.1002/aic.14858
http://doi.org/10.1016/j.memsci.2014.09.008
http://doi.org/10.1016/j.fluid.2015.09.027
http://doi.org/10.1007/s11705-017-1615-5
http://doi.org/10.1002/app.1982.070270823
http://doi.org/10.1016/j.advwatres.2013.05.010
http://doi.org/10.1016/j.advwatres.2014.07.008
http://doi.org/10.1021/acs.chemrev.7b00691


Membranes 2022, 12, 857 66 of 71

245. Theodorou, D.N. Principles of Molecular Simulation of Gas Transport in Polymers. In Materials Science of Membranes for Gas and
Vapor Separation; John Wiley & Sons: Hoboken, NJ, USA, 2006; ISBN 047085345X.

246. Vergadou, N.; Theodorou, D.N. Molecular modeling investigations of sorption and diffusion of small molecules in Glassy
polymers. Membranes 2019, 9, 98. [CrossRef]

247. Fried, J.R. Molecular Simulation of Gas and Vapor Transport in Highly Permeable Polymers. In Materials Science of Membranes for
Gas and Vapor Separation; Freeman, B.D., Yampolskii, Y., Pinnau, I., Eds.; Wiley: Hoboken, NJ, USA, 2006; pp. 95–136.

248. Monticelli, L.; Tieleman, D.P. Force Fields for Classical Molecular Dynamics. Biomol. Simul. 2013, 924, 197–213.
249. Schmidt, J.R.; Yu, K.; McDaniel, J.G. Transferable Next-Generation Force Fields from Simple Liquids to Complex Materials. Acc.

Chem. Res. 2015, 48, 548–556. [CrossRef]
250. Riniker, S. Fixed-Charge Atomistic Force Fields for Molecular Dynamics Simulations in the Condensed Phase: An Overview.

J. Chem. Inf. Model. 2018, 58, 565–578. [CrossRef]
251. Brown, D.; Clarke, J.H.R.; Okuda, M.; Yamazaki, T. The preparation of polymer melt samples for computer simulation studies.

J. Chem. Phys. 1994, 100, 6011–6018. [CrossRef]
252. Martínez, L.; Andrade, R.; Birgin, E.G.; Martínez, J.M. PACKMOL: A package for building initial configurations for molecular

dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. [CrossRef]
253. Sliozberg, Y.R.; Kröger, M.; Chantawansri, T.L. Fast equilibration protocol for million atom systems of highly entangled linear

polyethylene chains. J. Chem. Phys. 2016, 144, 154901. [CrossRef]
254. Kröger, M. Efficient hybrid algorithm for the dynamic creation of wormlike chains in solutions, brushes, melts and glasses.

Comput. Phys. Commun. 2019, 241, 178–179. [CrossRef]
255. Gao, J. An efficient method of generating dense polymer model melts by computer simulation. J. Chem. Phys. 1995, 102,

1074–1077. [CrossRef]
256. Flory, P.J. Statistical Mechanics of Chain Molecules; Interscience: New York, NY, USA, 1969.
257. Theodorou, D.N.; Suter, U.W. Detailed Molecular Structure of a Vinyl Polymer Glass. Macromolecules 1985, 18, 1467–1478. [CrossRef]
258. Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms to Applications; Elsevier: Amsterdam, The Netherlands, 2001.
259. Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids; Clarendon Press: Wotton-under-Edge, UK, 1989; ISBN 9780198556459.
260. Rapaport, D.C. The Art of Molecular Dynamics Simulation; Cambridge University Press: New York, NY, USA, 2002.
261. Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of State Calculations by Fast Computing

Machines. J. Chem. Phys. 1953, 21, 1087–1092. [CrossRef]
262. Siepmann, J.I.; Frenkel, D. Configurational bias Monte Carlo: A new sampling scheme for flexible chains. Mol. Phys. 1992, 75,

59–70. [CrossRef]
263. Rosenbluth, M.N.; Rosenbluth, A.W. Monte Carlo Calculation of the Average Extension of Molecular Chains. J. Chem. Phys. 1955,

23, 356–359. [CrossRef]
264. Dodd, L.R.; Boone, T.D.; Theodorou, D.N. A concerted rotation algorithm for atomistic Monte Carlo simulation of polymer melts

and glasses. Mol. Phys. 1993, 78, 961–996. [CrossRef]
265. Theodorou, D.N. Variable-Connectivity Monte Carlo Algorithms for the Atomistic Simulation of Long-Chain Polymer Systems.

In Bridging Time Scales: Molecular Simulations for the Next Decade; Springer: Berlin/Heidelberg, Germany, 2002; pp. 67–127.
266. Pant, P.V.K.; Theodorou, D.N. Variable connectivity method for the atomistic Monte Carlo simulation of polydisperse polymer

melts. Macromolecules 1995, 28, 7224–7234. [CrossRef]
267. Mavrantzas, V.G.; Boone, T.D.; Zervopoulou, E.; Theodorou, D.N. End-bridging Monte Carlo: A fast algorithm for atomistic

simulation of condensed phases of long polymer chains. Macromolecules 1999, 32, 5072–5096. [CrossRef]
268. Karayiannis, N.C.; Giannousaki, A.E.; Mavrantzas, V.G.; Theodorou, D.N. Atomistic Monte Carlo simulation of strictly monodis-

perse long polyethylene melts through a generalized chain bridging algorithm. J. Chem. Phys. 2002, 117, 5465–5479. [CrossRef]
269. Theodorou, D.N. Equilibration and Coarse-Graining Methods for Polymers. In Computer Simulations in Condensed Matter Systems:

From Materials to Chemical Biology Volume 2; Ferrario, M., Ciccotti, G., Binder, K., Eds.; Springer: Berlin-Heidelberg, Germany, 2006;
pp. 419–448.

270. Gooneie, A.; Schuschnigg, S.; Holzer, C. A Review of Multiscale Computational Methods in Polymeric Materials. Polymers 2017,
9, 16. [CrossRef]

271. Theodorou, D.N. Hierarchical modelling of polymeric materials. Chem. Eng. Sci. 2007, 62, 5697–5714. [CrossRef]
272. Grotendorst, J.; Sutmann, G.; Gompper, G.; Marx, D. Hierarchical Methods for Dynamics in Complex Molecular Systems: Lecture Notes;

Forschungszentrum Jülich: Jülich, Germant, 2012; ISBN 9783893367689.
273. Müller-Plathe, F.; Florian, M.; Müller-Plathe, F. Coarse-graining in polymer simulation: From the atomistic to the mesoscopic

scale and back. ChemPhysChem 2002, 3, 754–769. [CrossRef]
274. Krajniak, J.; Zhang, Z.; Pandiyan, S.; Nies, E.; Samaey, G. Reverse mapping method for complex polymer systems. J. Comput.

Chem. 2018, 39, 648–664. [CrossRef]
275. Santangelo, G.; Di Matteo, A.; Müller-Plathe, F.; Milano, G. From mesoscale back to atomistic models: A fast reverse-mapping

procedure for vinyl polymer chains. J. Phys. Chem. B 2007, 111, 2765–2773. [CrossRef]
276. Krajniak, J.; Pandiyan, S.; Nies, E.; Samaey, G. Generic Adaptive Resolution Method for Reverse Mapping of Polymers from

Coarse-Grained to Atomistic Descriptions. J. Chem. Theory Comput. 2016, 12, 5549–5562. [CrossRef]
277. Potestio, R.; Peter, C.; Kremer, K. Computer Simulations of Soft Matter: Linking the Scales. Entropy 2014, 16, 4199–4245. [CrossRef]

http://doi.org/10.3390/membranes9080098
http://doi.org/10.1021/ar500272n
http://doi.org/10.1021/acs.jcim.8b00042
http://doi.org/10.1063/1.467111
http://doi.org/10.1002/jcc.21224
http://doi.org/10.1063/1.4946802
http://doi.org/10.1016/j.cpc.2019.03.009
http://doi.org/10.1063/1.469455
http://doi.org/10.1021/ma00149a018
http://doi.org/10.1063/1.1699114
http://doi.org/10.1080/00268979200100061
http://doi.org/10.1063/1.1741967
http://doi.org/10.1080/00268979300100641
http://doi.org/10.1021/ma00125a027
http://doi.org/10.1021/ma981745g
http://doi.org/10.1063/1.1499480
http://doi.org/10.3390/polym9010016
http://doi.org/10.1016/j.ces.2007.04.048
http://doi.org/10.1002/1439-7641(20020916)3:9&lt;754::AID-CPHC754&gt;3.0.CO;2-U
http://doi.org/10.1002/jcc.25129
http://doi.org/10.1021/jp066212l
http://doi.org/10.1021/acs.jctc.6b00595
http://doi.org/10.3390/e16084199


Membranes 2022, 12, 857 67 of 71

278. Wang, W.; Gómez-Bombarelli, R. Coarse-graining auto-encoders for molecular dynamics. Npj Comput. Mater. 2019, 5, 125. [CrossRef]
279. Ruza, J.; Wang, W.; Schwalbe-Koda, D.; Axelrod, S.; Harris, W.H.; Gómez-Bombarelli, R. Temperature-transferable coarse-graining

of ionic liquids with dual graph convolutional neural networks. J. Chem. Phys. 2020, 153, 164501. [CrossRef] [PubMed]
280. Marrink, S.J.; Risselada, H.J.; Yefimov, S.; Tieleman, D.P.; De Vries, A.H. The MARTINI Force Field: Coarse Grained Model for

Biomolecular Simulations. J. Phys. Chem. B 2007, 111, 7812–7824. [CrossRef]
281. Brini, E.; Algaer, E.A.; Ganguly, P.; Li, C.; Rodríguez-Ropero, F.; van der Vegt, N.F.A. Systematic coarse-graining methods for soft

matter simulations—A review. Soft Matter 2013, 9, 2108–2119. [CrossRef]
282. Reith, D.; Puetz, M.; Mueller-Plathe, F. Deriving effective mesoscale potentials from atomistic simulations. J. Comput. Chem. 2003,

24, 1624–1636. [CrossRef]
283. Ercolessi, F.; Adams, J.B. Interatomic Potentials from First-Principles Calculations: The Force-Matching Method. Europhys. Lett.

1994, 26, 583–588. [CrossRef]
284. Lyubartsev, A.P.; Laaksonen, A. Calculation of effective interaction potentials from radial distribution functions: A reverse Monte

Carlo approach. Phys. Rev. E 1995, 52, 3730–3737. [CrossRef]
285. Chaimovich, A.; Shell, M.S. Coarse-graining errors and numerical optimization using a relative entropy framework. J. Chem.

Phys. 2011, 134, 094112. [CrossRef] [PubMed]
286. Shell, M.S. The relative entropy is fundamental to multiscale and inverse thermodynamic problems. J. Chem. Phys. 2008,

129, 144108. [CrossRef]
287. De Nicola, A.; Kawakatsu, T.; Milano, G. Generation of well-relaxed all-atom models of large molecular weight polymer melts: A

hybrid particle-continuum approach based on particle-field molecular dynamics simulations. J. Chem. Theory Comput. 2014, 10,
5651–5667. [CrossRef] [PubMed]

288. Huang, H.; Wu, L.; Xiong, H.; Sun, H. A Transferrable Coarse-Grained Force Field for Simulations of Polyethers and Polyether
Blends. Macromolecules 2019, 52, 249–261. [CrossRef]

289. Kuo, A.-T.; Okazaki, S.; Shinoda, W. Transferable coarse-grained model for perfluorosulfonic acid polymer membranes. J. Chem.
Phys. 2017, 147, 094904. [CrossRef]

290. Noé, F.; Tkatchenko, A.; Müller, K.-R.; Clementi, C. Machine Learning for Molecular Simulation. Annu. Rev. Phys. Chem. 2020, 71,
361–390. [CrossRef]

291. Ye, H.; Xian, W.; Li, Y. Machine Learning of Coarse-Grained Models for Organic Molecules and Polymers: Progress, Opportunities,
and Challenges. ACS Omega 2021, 6, 1758–1772. [CrossRef]

292. Bartók, A.P.; Payne, M.C.; Kondor, R.; Csányi, G. Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics,
without the Electrons. Phys. Rev. Lett. 2010, 104, 136403. [CrossRef]

293. Gkeka, P.; Stoltz, G.; Barati Farimani, A.; Belkacemi, Z.; Ceriotti, M.; Chodera, J.D.; Dinner, A.R.; Ferguson, A.L.; Maillet, J.-B.;
Minoux, H.; et al. Machine learning force fields and coarse-grained variables in molecular dynamics: Application to materials
and biological systems. J. Chem. Theory Comput. 2020, 16, 4757–4775. [CrossRef]

294. Kanellopoulos, V.; Mouratides, D.; Pladis, P.; Kiparissides, C. Prediction of Solubility of α-Olefins in Polyolefins Using a Combined
Equation of State Molecular Dynamics Approach. Ind. Eng. Chem. Res. 2006, 45, 5870–5878. [CrossRef]

295. Minelli, M.; De Angelis, M.G.; Hofmann, D. A novel multiscale method for the prediction of the volumetric and gas solubility
behavior of high-T g polyimides. Fluid Phase Equilib. 2012, 333, 87–96. [CrossRef]

296. Ricci, E.; Minelli, M.; De Angelis, M.G. A multiscale approach to predict the mixed gas separation performance of glassy polymeric
membranes for CO2 capture: The case of CO2/CH4 mixture in Matrimid®. J. Membr. Sci. 2017, 539, 88–100. [CrossRef]

297. Tylianakis, E.; Froudakis, G.E. Grand canonical Monte Carlo method for gas adsorption and separation. J. Comput. Theor. Nanosci.
2009, 6, 335–348. [CrossRef]

298. Heuchel, M.; Böhning, M.; Hölck, O.; Siegert, M.R.; Hofmann, D. Atomistic packing models for experimentally investigated
swelling states induced by CO2 in glassy polysulfone and poly(ether sulfone). J. Polym. Sci. Part B Polym. Phys. 2006, 44,
1874–1897. [CrossRef]

299. Panagiotopoulos, A.Z. Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new
ensemble. Mol. Phys. 1987, 61, 813–826. [CrossRef]

300. Kofke, D.A.; Glandt, E.D. Monte Carlo simulation of multicomponent equilibria in a semigrand canonical ensemble. Mol. Phys.
1988, 64, 1105–1131. [CrossRef]

301. Duane, S.; Kennedy, A.D.; Pendleton, B.J.; Roweth, D. Hybrid Monte Carlo. Phys. Lett. B 1987, 195, 216–222. [CrossRef]
302. Mehta, M.; Kofke, D.A. Coexistence diagrams of mixtures by molecular simulation. Chem. Eng. Sci. 1994, 49, 2633–2645. [CrossRef]
303. Theodorou, D.N. Molecular Simulations of Sorption and Diffusion in Amorphous Polymers. In Diffusion in Polymers; Neogi, P.,

Ed.; Marcel Dekker: New York, NY, USA; Basel, Switzerland; Honk Kong, China, 1996; pp. 67–142.
304. Spyriouni, T.; Economou, I.G.; Theodorou, D.N. Phase Equilibria of Mixtures Containing Chain Molecules Predicted through a

Novel Simulation Scheme. Phys. Rev. Lett. 1998, 80, 4466–4469. [CrossRef]
305. Escobedo, F.A. Novel pseudoensembles for simulation of multicomponent phase equilibria. J. Chem. Phys. 1998, 108,

8761–8772. [CrossRef]
306. Brennan, J.K.; Madden, W.G. Phase Coexistence Curves for Off-Lattice Polymer−Solvent Mixtures: Gibbs-Ensemble Simulations.

Macromolecules 2002, 35, 2827–2834. [CrossRef]

http://doi.org/10.1038/s41524-019-0261-5
http://doi.org/10.1063/5.0022431
http://www.ncbi.nlm.nih.gov/pubmed/33138411
http://doi.org/10.1021/jp071097f
http://doi.org/10.1039/C2SM27201F
http://doi.org/10.1002/jcc.10307
http://doi.org/10.1209/0295-5075/26/8/005
http://doi.org/10.1103/PhysRevE.52.3730
http://doi.org/10.1063/1.3557038
http://www.ncbi.nlm.nih.gov/pubmed/21384955
http://doi.org/10.1063/1.2992060
http://doi.org/10.1021/ct500492h
http://www.ncbi.nlm.nih.gov/pubmed/26583248
http://doi.org/10.1021/acs.macromol.8b01802
http://doi.org/10.1063/1.4986287
http://doi.org/10.1146/annurev-physchem-042018-052331
http://doi.org/10.1021/acsomega.0c05321
http://doi.org/10.1103/PhysRevLett.104.136403
http://doi.org/10.1021/acs.jctc.0c00355
http://doi.org/10.1021/ie060137j
http://doi.org/10.1016/j.fluid.2012.07.012
http://doi.org/10.1016/j.memsci.2017.05.068
http://doi.org/10.1166/jctn.2009.1040
http://doi.org/10.1002/polb.20844
http://doi.org/10.1080/00268978700101491
http://doi.org/10.1080/00268978800100743
http://doi.org/10.1016/0370-2693(87)91197-X
http://doi.org/10.1016/0009-2509(94)E0078-5
http://doi.org/10.1103/PhysRevLett.80.4466
http://doi.org/10.1063/1.475396
http://doi.org/10.1021/ma0112321


Membranes 2022, 12, 857 68 of 71

307. Lachet, V.; Teuler, J.-M.M.; Rousseau, B. Classical force field for hydrofluorocarbon molecular simulations. Application to the
study of gas solubility in poly(vinylidene fluoride). J. Phys. Chem. A 2015, 119, 140–151. [CrossRef]

308. Hölck, O.; Böhning, M.; Heuchel, M.; Siegert, M.R.; Hofmann, D. Gas sorption isotherms in swelling glassy polymers—Detailed
atomistic simulations. J. Membr. Sci. 2013, 428, 523–532. [CrossRef]

309. Vrabec, J.; Hasse, H. Grand equilibrium: Vapour-liquid equilibria by a new molecular simulation method. Mol. Phys. 2002, 100,
3375–3383. [CrossRef]

310. Eslami, H.; Mu, F.; Muller-Plathe, F. Molecular Dynamics Simulation in the Grand Canonical Ensemble. J. Comput. Chem. 2007, 28,
1763–1773. [CrossRef]

311. Shi, W.; Maginn, E.J. Continuous Fractional Component Monte Carlo: An Adaptive Biasing Method for Open System Atomistic
Simulations. J. Chem. Theory Comput. 2007, 3, 1451–1463. [CrossRef]

312. Widom, B. Some Topics in the Theory of Fluids. J. Chem. Phys. 1963, 39, 2808–2812. [CrossRef]
313. Cuthbert, T.; Wagner, N.; Paulaitis, M. Molecular simulation of glassy polystyrene: Size effects on gas solubilities. Macromolecules

1997, 30, 3058–3065. [CrossRef]
314. Dömötör, G.; Hentschke, R. Efficient molecular simulation of chemical potentials. J. Chem. Phys. 1989, 90, 2370–2385. [CrossRef]
315. Dömötör, G.; Hentschke, R. Atomistically Modeling the Chemical Potential of Small Molecules in Dense Systems. J. Phys. Chem. B

2004, 108, 2413–2417. [CrossRef]
316. Zervopoulou, E.; Mavrantzas, V.G.; Theodorou, D.N. A new Monte Carlo simulation approach for the prediction of sorption equilibria

of oligomers in polymer melts: Solubility of long alkanes in linear polyethylene. J. Chem. Phys. 2001, 115, 2860–2875. [CrossRef]
317. Boulougouris, G.C.; Economou, I.G.; Theodorou, D.N. On the calculation of the chemical potential using the particle deletion

scheme. Mol. Phys. 1999, 96, 905–913. [CrossRef]
318. Siegert, M.R.; Heuchel, M.; Hofmann, D. A generalized direct-particle-deletion scheme for the calculation of chemical potential and

solubilities of small- and medium-sized molecules in amorphous polymers. J. Comput. Chem. 2007, 28, 877–889. [CrossRef] [PubMed]
319. Knopp, B.; Suter, U.W.; Gusev, A.A. Atomistically Modeling the Chemical Potential of Small Molecules in Dense Polymer

Microstructures. 1. Method. Macromolecules 1997, 30, 6107–6113. [CrossRef]
320. Lyubartsev, A.P.; Martsinovski, A.A.; Shevkunov, S.V.; Vorontsov-Velyaminov, P.N. New approach to Monte Carlo calculation of

the free energy: Method of expanded ensembles. J. Chem. Phys. 1992, 96, 1776–1783. [CrossRef]
321. Van der Vegt, N.F.A.; Briels, W.J. Efficient sampling of solvent free energies in polymers. J. Chem. Phys. 1998, 109, 7578–7582. [CrossRef]
322. Theodorou, D.N. A reversible minimum-to-minimum mapping method for the calculation of free-energy differences. J. Chem.

Phys. 2006, 124, 034109. [CrossRef] [PubMed]
323. Hess, B.; Peter, C.; Ozal, T.; Van Der Vegt, N.F.A. Fast-growth thermodynamic integration: Calculating excess chemical potentials

of additive molecules in polymer microstructures. Macromolecules 2008, 41, 2283–2289. [CrossRef]
324. Spyriouni, T.; Boulougouris, G.C.; Theodorou, D.N. Prediction of sorption of CO2 in glassy atactic polystyrene at elevated

pressures through a new computational scheme. Macromolecules 2009, 42, 1759–1769. [CrossRef]
325. Pant, P.V.K.; Boyd, R.H. Molecular-dynamics simulation of diffusion of small penetrants in polymers. Macromolecules 1993, 26,

679–686. [CrossRef]
326. Muller-Plathe, F. Calculation of the Free Energy for Gas Absorption in Amorphous Polypropylene. Macromolecules 1991, 24,

6475–6479. [CrossRef]
327. Sok, R.M.; Berendsen, H.J.C.; van Gunsteren, W.F. Molecular dynamics simulation of the transport of small molecules across a

polymer membrane. J. Chem. Phys. 1992, 96, 4699–4704. [CrossRef]
328. Takeuchi, H. A jump motion of small molecules in glassy polymers: A molecular dynamics simulation. J. Chem. Phys. 1990, 93,

2062–2067. [CrossRef]
329. Hofmann, D.; Fritz, L.; Ulbrich, J.; Paul, D. Molecular simulation of small molecule diffusion and solution in dense amorphous

polysiloxanes and polyimides. Comput. Theor. Polym. Sci. 2000, 10, 419–436. [CrossRef]
330. Müller-Plathe, F. Molecular dynamics simulation of gas transport in amorphous polypropylene. J. Chem. Phys. 1992, 96,

3200–3205. [CrossRef]
331. Einstein, A. On the Motion of Small Particles Suspended in a Stationary Liquid, as Required by the Molecular Kinetic Theory of

Heat. Ann. Phys. 1905, 322, 549–560. [CrossRef]
332. Sato, Y.; Takikawa, T.; Takishima, S.; Masuoka, H. Solubilities and diffusion coefficients of carbon dioxide in poly(vinyl acetate)

and polystyrene. J. Supercrit. Fluids 2001, 19, 187–198. [CrossRef]
333. Areerat, S.; Funami, E.; Hayata, Y.; Nakagawa, D.; Ohshima, M. Measurement and prediction of diffusion coefficients of

supercritical CO2 in molten polymers. Polym. Eng. Sci. 2004, 44, 1915–1924. [CrossRef]
334. Perez-blanco, M.; Hammons, J.R.; Danner, R.P. Measurement of the Solubility and Diffusivity of Blowing Agents in Polystyrene.

J. Appl. Polym. Sci. 2010, 116, 2359–2365. [CrossRef]
335. Hoover, W.G.; Hoover, C.G. Nonequilibrium molecular dynamics. Condens. Matter Phys. 2005, 8, 247–260. [CrossRef]
336. Müller-Plathe, F.; Rogers, S.C.; van Gunsteren, W.F. Gas sorption and transport in polyisobutylene: Equilibrium and nonequilib-

rium molecular dynamics simulations. J. Chem. Phys. 1993, 98, 9895–9904. [CrossRef]
337. Maginn, E.J.; Bell, A.T.; Theodorou, D.N. Transport diffusivity of methane in silicalite from equilibrium and nonequilibrium

simulations. J. Phys. Chem. 1993, 97, 4173–4181. [CrossRef]

http://doi.org/10.1021/jp506895p
http://doi.org/10.1016/j.memsci.2012.10.023
http://doi.org/10.1080/00268970210153772
http://doi.org/10.1002/jcc.20689
http://doi.org/10.1021/ct7000039
http://doi.org/10.1063/1.1734110
http://doi.org/10.1021/ma960776d
http://doi.org/10.1063/1.455979
http://doi.org/10.1021/jp0367427
http://doi.org/10.1063/1.1383050
http://doi.org/10.1080/00268979909483030
http://doi.org/10.1002/jcc.20594
http://www.ncbi.nlm.nih.gov/pubmed/17238170
http://doi.org/10.1021/ma970383u
http://doi.org/10.1063/1.462133
http://doi.org/10.1063/1.477379
http://doi.org/10.1063/1.2138701
http://www.ncbi.nlm.nih.gov/pubmed/16438569
http://doi.org/10.1021/ma702070n
http://doi.org/10.1021/ma8015294
http://doi.org/10.1021/ma00056a019
http://doi.org/10.1021/ma00024a017
http://doi.org/10.1063/1.462806
http://doi.org/10.1063/1.459083
http://doi.org/10.1016/S1089-3156(00)00007-6
http://doi.org/10.1063/1.461963
http://doi.org/10.1002/andp.19053220806
http://doi.org/10.1016/S0896-8446(00)00092-9
http://doi.org/10.1002/pen.20194
http://doi.org/10.1002/app.31740
http://doi.org/10.5488/CMP.8.2.247
http://doi.org/10.1063/1.464369
http://doi.org/10.1021/j100118a038


Membranes 2022, 12, 857 69 of 71

338. Glasstone, S.; Laidler, K.J.; Eyring, H. The Theory of Rate Processes; The Kinetics of Chemical Reactions, Viscosity, Diffusion and
Electrochemical Phenomena; McGraw-Hill: New York, NY, USA, 1941.

339. Voter, A.F.; Doll, J.D. Dynamical corrections to transition state theory for multistate systems: Surface self-diffusion in the rare-event
regime. J. Chem. Phys. 1985, 82, 80–92. [CrossRef]

340. Karayiannis, N.C.; Mavrantzas, V.G.; Theodorou, D.N. Detailed Atomistic Simulation of the Segmental Dynamics and Barrier Properties
of Amorphous Poly(ethylene terephthalate) and Poly(ethylene isophthalate). Macromolecules 2004, 37, 2978–2995. [CrossRef]

341. Gusev, A.A.; Suter, U.W. Dynamics of small molecules in dense polymers subject to thermal motion. J. Chern. Phys. 1993, 99,
2228–2234. [CrossRef]

342. Gusev, A.A.; Arizzi, S.; Suter, U.W.; Moll, D.J. Dynamics of light gases in rigid matrices of dense polymers. J. Chem. Phys. 1993, 99,
2221–2227. [CrossRef]

343. Greenfield, M.L.; Theodorou, D.N. Geometric Analysis of Diffusion Pathways in Glassy and Melt Atactic Polypropylene.
Macromolecules 1993, 26, 5461–5472. [CrossRef]

344. Vergadou, N. Prediction of Gas Permeability of Inflexible Amorphous Polymers via Molecular Simulation; University of Athens: Athens,
Greece, 2006.

345. Fichthorn, K.A.; Weinberg, W.H. Theoretical foundations of dynamical Monte Carlo simulations. J. Chem. Phys. 1991, 95,
1090–1096. [CrossRef]

346. Celebi, A.T.; Jamali, S.H.; Bardow, A.; Vlugt, T.J.H.; Moultos, O.A. Finite-size effects of diffusion coefficients computed from
molecular dynamics: A review of what we have learned so far. Mol. Simul. 2021, 47, 831–845. [CrossRef]

347. Dünweg, B.; Kremer, K. Molecular dynamics simulation of a polymer chain in solution. J. Chem. Phys. 1993, 99, 6983–6997. [CrossRef]
348. Yeh, I.-C.; Hummer, G. System-Size Dependence of Diffusion Coefficients and Viscosities from Molecular Dynamics Simulations

with Periodic Boundary Conditions. J. Phys. Chem. B 2004, 108, 15873–15879. [CrossRef]
349. Kikugawa, G.; Ando, S.; Suzuki, J.; Naruke, Y.; Nakano, T.; Ohara, T. Effect of the computational domain size and shape on the

self-diffusion coefficient in a Lennard-Jones liquid. J. Chem. Phys. 2015, 142, 024503. [CrossRef]
350. Jamali, S.H.; Bardow, A.; Vlugt, T.J.H.; Moultos, O.A. Generalized Form for Finite-Size Corrections in Mutual Diffusion Coefficients

of Multicomponent Mixtures Obtained from Equilibrium Molecular Dynamics Simulation. J. Chem. Theory Comput. 2020, 16,
3799–3806. [CrossRef] [PubMed]

351. Jamali, S.H.; Wolff, L.; Becker, T.M.; Bardow, A.; Vlugt, T.J.H.; Moultos, O.A. Finite-Size Effects of Binary Mutual Diffusion
Coefficients from Molecular Dynamics. J. Chem. Theory Comput. 2018, 14, 2667–2677. [CrossRef] [PubMed]

352. Moultos, O.A.; Zhang, Y.; Tsimpanogiannis, I.N.; Economou, I.G.; Maginn, E.J. System-size corrections for self-diffusion
coefficients calculated from molecular dynamics simulations: The case of CO2, n-alkanes, and poly(ethylene glycol) dimethyl
ethers. J. Chem. Phys. 2016, 145, 074109. [CrossRef] [PubMed]

353. Deng, X.; Han, Y.; Lin, L.-C.; Ho, W.S.W. Computational Prediction of Water Sorption in Facilitated Transport Membranes. J. Phys.
Chem. C 2022, 126, 3661–3670. [CrossRef]

354. Mollahosseini, A.; Abdelrasoul, A. Molecular dynamics simulation for membrane separation and porous materials: A current
state of art review. J. Mol. Graph. Model. 2021, 107, 107947. [CrossRef]

355. Hofmann, D.; Fritz, L.; Ulbrich, J.; Schepers, C.; Bhning, M. Detailed-atomistic molecular modeling of small molecule diffusion
and solution processes in polymeric membrane materials. Macromol. Theory Simul. 2000, 9, 293–327. [CrossRef]

356. Chen, Y.; Liu, Q.L.; Zhu, A.M.; Zhang, Q.G.; Wu, J.Y. Molecular simulation of CO2/CH4 permeabilities in polyamide–imide
isomers. J. Membr. Sci. 2010, 348, 204–212. [CrossRef]

357. Nagel, C.; Schmidtke, E.; Günther-Schade, K.; Hofmann, D.; Fritsch, D.; Strunskus, T.; Faupel, F. Free volume distributions in glassy
polymer membranes: Comparison between molecular modeling and experiments. Macromolecules 2000, 33, 2242–2248. [CrossRef]

358. Chang, K.S.; Tung, C.C.; Wang, K.S.; Tung, K.L. Free volume analysis and gas transport mechanisms of aromatic polyimide
membranes: A molecular simulation study. J. Phys. Chem. B 2009, 113, 9821–9830. [CrossRef]

359. Kruse, J.; Kanzow, J.; Rätzke, K.; Faupel, F.; Heuchel, M.; Frahn, J.; Hofmann, D. Free volume in polyimides: Positron annihilation
experiments and molecular modeling. Macromolecules 2005, 38, 9638–9643. [CrossRef]

360. Heuchel, M.; Hofmann, D.; Pullumbi, P. Molecular modeling of small-molecule permeation in polyimides and its correlation to
free-volume distributions. Macromolecules 2004, 37, 201–214. [CrossRef]

361. Park, C.H.; Tocci, E.; Kim, S.; Kumar, A.; Lee, Y.M.; Drioli, E. A simulation study on OH-containing polyimide (HPI) and thermally
rearranged polybenzoxazoles (TR-PBO): Relationship between gas transport properties and free volume morphology. J. Phys.
Chem. B 2014, 118, 2746–2757. [CrossRef]

362. Golzar, K.; Amjad-Iranagh, S.; Amani, M.; Modarress, H. Molecular simulation study of penetrant gas transport properties into
the pure and nanosized silica particles filled polysulfone membranes. J. Membr. Sci. 2014, 451, 117–134. [CrossRef]

363. Azizi, M.; Mousavi, S.A. CO2/H2 separation using a highly permeable polyurethane membrane: Molecular dynamics simulation.
J. Mol. Struct. 2015, 1100, 401–414. [CrossRef]

364. Hofmann, D.; Heuchel, M.; Yampolskii, Y.; Khotimskii, V.; Shantarovich, V. Free Volume Distributions in Ultrahigh and Lower
Free Volume Polymers: Comparison between Molecular Modeling and Positron Lifetime Studies. Macromolecules 2002, 35,
2129–2140. [CrossRef]

http://doi.org/10.1063/1.448739
http://doi.org/10.1021/ma0352577
http://doi.org/10.1063/1.466198
http://doi.org/10.1063/1.465283
http://doi.org/10.1021/ma00072a026
http://doi.org/10.1063/1.461138
http://doi.org/10.1080/08927022.2020.1810685
http://doi.org/10.1063/1.465445
http://doi.org/10.1021/jp0477147
http://doi.org/10.1063/1.4905545
http://doi.org/10.1021/acs.jctc.0c00268
http://www.ncbi.nlm.nih.gov/pubmed/32338889
http://doi.org/10.1021/acs.jctc.8b00170
http://www.ncbi.nlm.nih.gov/pubmed/29664633
http://doi.org/10.1063/1.4960776
http://www.ncbi.nlm.nih.gov/pubmed/27544089
http://doi.org/10.1021/acs.jpcc.1c09259
http://doi.org/10.1016/j.jmgm.2021.107947
http://doi.org/10.1002/1521-3919(20000701)9:6&lt;293::AID-MATS293&gt;3.0.CO;2-1
http://doi.org/10.1016/j.memsci.2009.11.002
http://doi.org/10.1021/ma990760y
http://doi.org/10.1021/jp903551h
http://doi.org/10.1021/ma0473521
http://doi.org/10.1021/ma035360w
http://doi.org/10.1021/jp411612g
http://doi.org/10.1016/j.memsci.2013.09.056
http://doi.org/10.1016/j.molstruc.2015.07.029
http://doi.org/10.1021/ma011360p


Membranes 2022, 12, 857 70 of 71

365. Wang, X.Y.; Raharjo, R.D.; Lee, H.J.; Lu, Y.; Freeman, B.D.; Sanchez, I.C. Molecular simulation and experimental study of
substituted polyacetylenes: Fractional free volume, cavity size distributions and diffusion coefficients. J. Phys. Chem. B 2006, 110,
12666–12672. [CrossRef]

366. Economou, I.G.; Raptis, V.E.; Melissas, V.S.; Theodorou, D.N.; Petrou, J.; Petropoulos, J.H. Molecular simulation of structure,
thermodynamic and transport properties of polymeric membrane materials for hydrocarbon separation. Fluid Phase Equilib. 2005,
228–229, 15–20. [CrossRef]

367. De Lorenzo, L.; Tocci, E.; Gugliuzza, A.; Drioli, E. Pure and modified Co-poly(amide-12-b-ethylene oxide) membranes for gas
separation studied by molecular investigations. Membranes 2012, 2, 346–366. [CrossRef]

368. Tocci, E.; Gugliuzza, A.; De Lorenzo, L.; Macchione, M.; De Luca, G.; Drioli, E. Transport properties of a co-poly(amide-12-b-
ethylene oxide) membrane: A comparative study between experimental and molecular modelling results. J. Membr. Sci. 2008, 323,
316–327. [CrossRef]

369. Jiang, Y.; Willmore, F.T.; Sanders, D.; Smith, Z.P.; Ribeiro, C.P.; Doherty, C.M.; Thornton, A.; Hill, A.J.; Freeman, B.D.; Sanchez, I.C.
Cavity size, sorption and transport characteristics of thermally rearranged (TR) polymers. Polymer 2011, 52, 2244–2254. [CrossRef]

370. Chang, K.-S.; Wu, Z.-C.; Kim, S.; Tung, K.-L.; Lee, Y.M.; Lin, Y.-F.; Lai, J.-Y. Molecular modeling of poly(benzoxazole-co-imide)
membranes: A structure characterization and performance investigation. J. Membr. Sci. 2014, 454, 1–11. [CrossRef]

371. Tanis, I.; Brown, D.; Neyertz, S.; Vaidya, M.; Ballaguet, J.P.; Duval, S.; Bahamdan, A. Single-gas and mixed-gas permeation of
N2/CH4 in thermally-rearranged TR-PBO membranes and their 6FDA-bisAPAF polyimide precursor studied by molecular
dynamics simulations. Phys. Chem. Chem. Phys. 2022, 24, 18667–18683. [CrossRef]

372. Wang, X.Y.; Lee, K.M.; Lu, Y.; Stone, M.T.; Sanchez, I.C.; Freeman, B.D. Cavity size distributions in high free volume glassy
polymers by molecular simulation. Polymer 2004, 45, 3907–3912. [CrossRef]

373. McDermott, A.G.; Larsen, G.S.; Budd, P.M.; Colina, C.M.; Runt, J. Structural characterization of a polymer of intrinsic microporosity:
X-ray scattering with interpretation enhanced by molecular dynamics simulations. Macromolecules 2011, 44, 14–16. [CrossRef]

374. Ayyagari, C.; Bedrov, D.; Smith, G.D. Structure of Atactic Polystyrene: A Molecular Dynamics Simulation Study. Macromolecules
2000, 33, 6194–6199. [CrossRef]

375. Shimazu, A.; Miyazaki, T.; Ikeda, K. Interpretation of d-spacing determined by wide angle X-ray scattering in 6FDA-based
polyimide by molecular modeling. J. Membr. Sci. 2000, 166, 113–118. [CrossRef]

376. Hart, K.E.; Abbott, L.J.; McKeown, N.B.; Colina, C.M. Toward effective CO2/CH4 separations by sulfur-containing PIMs via
predictive molecular simulations. Macromolecules 2013, 46, 5371–5380. [CrossRef]

377. Larsen, G.S.; Lin, P.; Hart, K.E.; Colina, C.M. Molecular simulations of PIM-1-like polymers of intrinsic microporosity. Macro-
molecules 2011, 44, 6944–6951. [CrossRef]

378. Xiao, Y.; Zhang, L.; Xu, L.; Chung, T.S. Molecular design of Tröger’s base-based polymers with intrinsic microporosity for gas
separation. J. Membr. Sci. 2017, 521, 65–72. [CrossRef]

379. Heuchel, M.; Fritsch, D.; Budd, P.M.; McKeown, N.B.; Hofmann, D. Atomistic packing model and free volume distribution of a
polymer with intrinsic microporosity (PIM-1). J. Membr. Sci. 2008, 318, 84–99. [CrossRef]

380. Fang, W.; Zhang, L.; Jiang, J. Polymers of intrinsic microporosity for gas permeation: A molecular simulation study. Mol. Simul.
2010, 36, 992–1003. [CrossRef]

381. Fang, W.; Zhang, L.; Jiang, J. Gas Permeation and Separation in Functionalized Polymers of Intrinsic Microporosity: A Combina-
tion of Molecular Simulations and Ab Initio Calculations. J. Phys. Chem. C 2011, 115, 14123–14130. [CrossRef]

382. Kupgan, G.; Demidov, A.G.; Colina, C.M. Plasticization behavior in polymers of intrinsic microporosity (PIM-1): A simulation
study from combined Monte Carlo and molecular dynamics. J. Membr. Sci. 2018, 565, 95–103. [CrossRef]

383. Chen, Y.-R.; Chen, L.-H.; Chang, K.-S.; Chen, T.-H.; Lin, Y.-F.; Tung, K.-L. Structural characteristics and transport behavior of
triptycene-based PIMs membranes: A combination study using ab initio calculation and molecular simulations. J. Membr. Sci.
2016, 514, 114–124. [CrossRef]

384. Zhou, J.; Zhu, X.; Hu, J.; Liu, H.; Hu, Y.; Jiang, J. Mechanistic insight into highly efficient gas permeation and separation in a
shape-persistent ladder polymer membrane. Phys. Chem. Chem. Phys. 2014, 16, 6075. [CrossRef]

385. Chang, K.-S.; Tung, K.-L.; Lin, Y.-F.; Lin, H.-Y. Molecular modelling of polyimides with intrinsic microporosity: From structural
characteristics to transport behaviour. RSC Adv. 2013, 3, 10403–10413. [CrossRef]

386. Hart, K.E.; Springmeier, J.M.; McKeown, N.B.; Colina, C.M. Simulated swelling during low-temperature N2 adsorption in
polymers of intrinsic microporosity. Phys. Chem. Chem. Phys. 2013, 15, 20161–20169. [CrossRef]

387. Neyertz, S.; Brown, D.; Pandiyan, S.; Van Der Vegt, N.F.A. Carbon dioxide diffusion and plasticization in fluorinated polyimides.
Macromolecules 2010, 43, 7813–7827. [CrossRef]

388. Abbott, L.J.; Colina, C.M. Formation of microporosity in hyper-cross-linked polymers. Macromolecules 2014, 47, 5409–5415. [CrossRef]
389. Kupgan, G.; Liyana-Arachchi, T.P.; Colina, C.M. Pore size tuning of poly(styrene-co-vinylbenzyl chloride-co-divinylbenzene)

hypercrosslinked polymers: Insights from molecular simulations. Polymer 2016, 99, 173–184. [CrossRef]
390. Jiang, J.X.; Trewin, A.; Su, F.; Wood, C.D.; Niu, H.; Jones, J.T.A.; Khimyak, Y.Z.; Cooper, A.I. Microporous poly(tri(4-ethynylphenyl)amine)

networks: Synthesis, properties, and atomistic simulation. Macromolecules 2009, 42, 2658–2666. [CrossRef]
391. Abbott, L.J.; Colina, C.M. Atomistic structure generation and gas adsorption simulations of microporous polymer networks.

Macromolecules 2011, 44, 4511–4519. [CrossRef]

http://doi.org/10.1021/jp060234q
http://doi.org/10.1016/j.fluid.2004.08.026
http://doi.org/10.3390/membranes2030346
http://doi.org/10.1016/j.memsci.2008.06.031
http://doi.org/10.1016/j.polymer.2011.02.035
http://doi.org/10.1016/j.memsci.2013.11.047
http://doi.org/10.1039/D1CP05511A
http://doi.org/10.1016/j.polymer.2004.01.080
http://doi.org/10.1021/ma1024945
http://doi.org/10.1021/ma0003553
http://doi.org/10.1016/S0376-7388(99)00254-9
http://doi.org/10.1021/ma400334b
http://doi.org/10.1021/ma200345v
http://doi.org/10.1016/j.memsci.2016.08.052
http://doi.org/10.1016/j.memsci.2008.02.038
http://doi.org/10.1080/08927022.2010.498828
http://doi.org/10.1021/jp204193g
http://doi.org/10.1016/j.memsci.2018.08.004
http://doi.org/10.1016/j.memsci.2016.04.063
http://doi.org/10.1039/c3cp55498h
http://doi.org/10.1039/c3ra40196k
http://doi.org/10.1039/C3CP53402B
http://doi.org/10.1021/ma1010205
http://doi.org/10.1021/ma500579x
http://doi.org/10.1016/j.polymer.2016.07.002
http://doi.org/10.1021/ma802625d
http://doi.org/10.1021/ma200303p


Membranes 2022, 12, 857 71 of 71

392. Doherty, D.C. Polymerization molecular dynamics simulations. I.Cross-linked atomistic models for poly(methacrylate) networks.
Comput. Theor. Polym. Sci. 1998, 8, 169–178. [CrossRef]

393. Yarovsky, I.; Evans, E. Computer simulation of structure and properties of crosslinked polymers: Application to epoxy resins.
Polymer 2001, 43, 963–969. [CrossRef]

394. Trewin, A.; Willock, D.J.; Cooper, A.I. Atomistic simulation of micropore structure, surface area, and gas sorption properties for
amorphous microporous polymer networks. J. Phys. Chem. C 2008, 112, 20549–20559. [CrossRef]

395. Muscatello, J.; Müller, E.A.; Mostofi, A.A.; Sutton, A.P. Multiscale molecular simulations of the formation and structure of
polyamide membranes created by interfacial polymerization. J. Membr. Sci. 2017, 527, 180–190. [CrossRef]

396. Anderson, L.R.; Yang, Q.; Ediger, A.M. Comparing gas transport in three polymers via molecular dynamics simulation. Phys.
Chem. Chem. Phys. 2018, 20, 22123–22133. [CrossRef] [PubMed]

397. Frentrup, H.; Hart, K.E.; Colina, C.M.; Müller, E.A. In silico determination of gas permeabilities by non-equilibrium molecular
dynamics: CO2 and He through PIM-1. Membranes 2015, 5, 99–119. [CrossRef]

398. Neyertz, S.; Brown, D. Air Sorption and Separation by Polymer Films at the Molecular Level. Macromolecules 2018, 51,
7077–7092. [CrossRef]

399. Liu, J.; Jiang, J. Molecular Design of Microporous Polymer Membranes for the Upgrading of Natural Gas. J. Phys. Chem. C 2019,
123, 6607–6615. [CrossRef]

400. Rizzuto, C.; Caravella, A.; Brunetti, A.; Park, C.H.; Lee, Y.M.; Drioli, E.; Barbieri, G.; Tocci, E. Sorption and Diffusion of CO2/N2 in gas
mixture in thermally-rearranged polymeric membranes: A molecular investigation. J. Membr. Sci. 2017, 528, 135–146. [CrossRef]

401. Myers, A.L.; Prausnitz, J.M. Thermodynamics of mixed-gas adsorption. AIChE J. 1965, 11, 121–127. [CrossRef]
402. Tanis, I.; Brown, D.; Neyertz, S.; Heck, R.; Mercier, R.; Vaidya, M.; Ballaguet, J.-P. A comparison of pure and mixed-gas permeation

of nitrogen and methane in 6FDA-based polyimides as studied by molecular dynamics simulations. Comput. Mater. Sci. 2018, 141,
243–253. [CrossRef]

403. Neyertz, S.; Brown, D. Single- and mixed-gas sorption in large-scale molecular models of glassy bulk polymers. Competitive sorption of
a binary CH4/N2 and a ternary CH4/N2/CO2 mixture in a polyimide membrane. J. Membr. Sci. 2020, 614, 118478. [CrossRef]

404. Hart, K.E.; Colina, C.M. Ionomers of Intrinsic Microporosity: In Silico Development of Ionic-Functionalized Gas-Separation
Membranes. Langmuir 2014, 30, 12039–12048. [CrossRef]

405. Rose, I.; Bezzu, C.G.; Carta, M.; Comesaña-Gándara, B.; Lasseuguette, E.; Ferrari, M.C.; Bernardo, P.; Clarizia, G.; Fuoco, A.;
Jansen, J.C.; et al. Polymer ultrapermeability from the inefficient packing of 2D chains. Nat. Mater. 2017, 16, 932–937. [CrossRef]

406. Salestan, S.K.; Rahimpour, A.; Abedini, R. Experimental and theoretical studies of biopolymers on the efficient CO2/CH4
separation of thin-film Pebax®1657 membrane. Chem. Eng. Process. Process Intensif. 2021, 163, 108366. [CrossRef]

407. Abbott, L.J.; McDermott, A.G.; Del Regno, A.; Taylor, R.G.D.; Bezzu, C.G.; Msayib, K.J.; McKeown, N.B.; Siperstein, F.R.; Runt, J.;
Colina, C.M. Characterizing the structure of organic molecules of intrinsic microporosity by molecular simulations and X-ray
scattering. J. Phys. Chem. B 2013, 117, 355–364. [CrossRef]

408. Abbott, L.J.; McKeown, N.B.; Colina, C.M. Design principles for microporous organic solids from predictive computational
screening. J. Mater. Chem. A 2013, 1, 11950. [CrossRef]

409. Hart, K.E.; Colina, C.M. Estimating gas permeability and permselectivity of microporous polymers. J. Membr. Sci. 2014, 468,
259–268. [CrossRef]

410. Larsen, G.S.; Hart, K.E.; Colina, C.M. Predictive simulations of the structural and adsorptive properties for PIM-1 variations. Mol.
Simul. 2014, 40, 599–609. [CrossRef]

http://doi.org/10.1016/S1089-3156(98)00030-0
http://doi.org/10.1016/S0032-3861(01)00634-6
http://doi.org/10.1021/jp806397f
http://doi.org/10.1016/j.memsci.2016.11.024
http://doi.org/10.1039/C8CP02829J
http://www.ncbi.nlm.nih.gov/pubmed/30113613
http://doi.org/10.3390/membranes5010099
http://doi.org/10.1021/acs.macromol.8b01423
http://doi.org/10.1021/acs.jpcc.8b12422
http://doi.org/10.1016/j.memsci.2017.01.025
http://doi.org/10.1002/aic.690110125
http://doi.org/10.1016/j.commatsci.2017.09.028
http://doi.org/10.1016/j.memsci.2020.118478
http://doi.org/10.1021/la5027202
http://doi.org/10.1038/nmat4939
http://doi.org/10.1016/j.cep.2021.108366
http://doi.org/10.1021/jp308798u
http://doi.org/10.1039/c3ta12442h
http://doi.org/10.1016/j.memsci.2014.06.017
http://doi.org/10.1080/08927022.2013.829222

	Introduction 
	Modelling Fluid Transport in Dense, Homogenous Polymeric Membranes: The Solution–Diffusion Model 
	Modelling the Upper Bound of Gas Separation Membranes 
	Macroscopic Models for Gas Solubility in Polymers 
	Activity Coefficient Models 
	EoS Models: Lattice Fluid Equations of State 
	EoS Models: Statistical Associating Fluid Theory (SAFT) 
	Non-Equilibrium Thermodynamics for Glassy Polymers (NET-GP) 
	Dual-Mode Sorption (DMS) Model for Glassy Polymers 
	Guggenheim-Anderson-de Boer (GAB) Model 
	Fractal Model for Solubility Coefficients 
	Insight on Mixed-Gas Sorption in Polymers: Experimental Trends and Modeling 

	Macroscopic Models for Gas Diffusivity in Polymers 
	Free-Volume Theory 
	Fractal Model for Diffusion Coefficients 
	Maxwell–Stefan Model 

	Explicit Models for Permeability 
	Partial Immobilization Dual-Mobility Model 
	Standard Transport Model (STM) 
	Transport Models Based on the Maxwell–Stefan Approach 

	Molecular Modelling of Gas Solubility and Diffusivity in Polymers 
	Generation of Atomistic Models of Amorphous Polymers 
	Molecular Dynamics (MD) Simulations 
	Monte Carlo Simulations 
	Hierarchical Modelling Approaches 
	Simulation of Solubility 
	Simulation of Diffusivity 
	Gas-Induced Swelling 
	Atomistic Simulation of Gas-Separation Membranes 
	Bulk Systems Simulations 
	Gas–Polymer Interface Simulations 
	Mixed-Gas Simulations 


	Conclusions 
	Appendix A
	Appendix B
	Appendix C
	References

