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Abstract: The management of brines generated from reverse osmosis operation remains a critical
challenge requiring new approaches and processes to limit the impact of brine discharge onto ecosys-
tems and to enhance both water and valuable resource recovery. The treatment of real seawater
reverse osmosis (SWRO) brines (45,000 ppm TDS) obtained from a local Singaporean desalination
plant with a crystallizer integrated pilot-scale membrane distillation unit (MDC) was studied. Com-
mercial STOMATE® hollow fiber membranes were used in vacuum membrane distillation (VMD)
configuration, leading to an average flux of around 3.7 L/m2-h at a permeate vacuum of 80 kPa
and an average feed temperature of 65 ◦C. Consistent separation operations were achieved for the
treatment of real SWRO brine over a period of 280 h; this led to a water recovery of >95% and to
the collection of salt slurries, containing up to ~10–20 wt% of moisture, from the crystallizer. This
approach demonstrates the potential of MDC systems to achieve zero brine discharge efficiently from
seawater desalination systems, providing an environmentally friendly alternative to manage brines
by increasing water recovery and generating salt slurries of economic value.

Keywords: reverse osmosis; brine management; membrane distillation; zero liquid discharge; water
recovery; selective crystallization

1. Introduction

Although nearly 75% of Earth’s surface is covered with water, over 97% is saline with
only ~2.5% available as freshwater for human activities [1]. Out of this 2.5%, a fraction is,
in fact, readily reachable; moreover, increasing global shortages of freshwater are aggra-
vated by climate change, widespread urbanization and persistent pollution of freshwater
sources [2–4]. Technologies to provide fresh and potable water for daily activities, such
as irrigation, animal and human consumption, are therefore critical; various conventional
desalination technologies have been established commercially to generate freshwater from
seawater [3].

The techno-economical drawbacks of conventional desalination technologies, such as
distillation systems and reverse osmosis (RO), include large energy penalties; these result
in consequent operating costs [5,6]. Distillation systems typically operate at temperatures
close to the boiling point of water; this also increases the risk of scale formation within
the heat exchangers and of corrosion of the systems [6]. The footprint of RO systems, the
current leading technology for seawater desalination, is also relatively large; in addition,
pre-treatment steps must be carried out to ensure the removal of the majority of potential
foulants. This would otherwise lead, over time, to the deterioration and clogging of
membranes; in turn, this would require extensive operational costs towards cleaning and
regeneration operations [7,8].
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RO operations also lead to the production of brines, which must be managed and dis-
carded; thus, this represents a critical environmental challenge to exposed ecosystems [9–11].
RO brines are very saline, at least twice more concentrated than seawater; in addition, they
may contain various dissolved solids, including silica or metal salts [12]. Brines may also
contain chemicals, added during the various pre-treatment stages of RO, such as flocculants,
coagulants and anti-scalants, as well as biological contaminants imported from the original
seawater sourcing [12]. Sensitive marine species may be harmed by subtle changes in salin-
ity, as low as 2–3 parts per thousand, to pH variations and to the presence of toxic dissolved
solids occurring within RO brines [13]. The toxicity of chemicals and ions present within
the brines will negatively impact marine ecosystems and natural balance [12]. Appropriate
brine management is, therefore, a major challenge to be urgently tackled.

RO brines are currently disposed either as surface water discharges or sewer discharge
during deep-well injection or concentrated in evaporation ponds [12]. In the United States,
27% of the plants use sewage disposal [14]; this leads to control challenges to meet sewer
quality standards prior to the final disposal of the water as surface water discharge at sea.
The potential use of brine doped sewage waters for irrigation will also be affected due
to the increased levels of total dissolved solids (TDS); this makes these effluents unfit for
direct agricultural applications [14,15]. Both deep-well and evaporation ponds have less
restrictions on the quality of the discharged waters; however, they require appropriate
land management and represent significant capital costs. Furthermore, the possibility of
leakages often discourages the use of such structures [12]; more effective strategies towards
the reduction and management of RO brines must be developed.

Alternative technologies for RO brines treatment include forward osmosis (FO),
multistage evaporative distillation (MED), multistage flash distillation (MSF) as well as
membrane distillation (MD) coupled with membrane crystallization (MC) [16,17]. MD is
a promising technology due to operating at low operation pressures and temperatures,
when compared to other conventional membrane and thermal methods; moreover, it offers
a 100% theoretical rejection to salts. MD may also be operated on low-grade heat sources
or based upon waste-heat collection systems; in addition, it typically offers a reasonably
smaller footprint than conventional desalination systems. Last but not least, the MD pro-
cess is nearly insensitive to the feed salinity for desalination; this makes it invaluable
for high-salinity effluents management [18–30]. The challenges of MD, however, include
membrane scaling and long-term membrane pore wetting; these require the development
of advanced materials and flow dynamics.

The development of efficient MD membrane materials remains a major bottleneck
towards successful MD process scale-up. The hydrophobicity and surface energy of the
surface of the pores of the membranes, as well as the pore size distribution and thickness
of the active layer involved in the separation, will dictate the long-term performance and
the stability of the operation [25] to prevent wetting and be able to last for a long period
of time [31]. The engineering of appropriate membrane materials is of particular concern
when treating high-salinity solutions or high chemical concentrations such as RO brines;
this is due to the greater risks of membrane fouling or scaling and deterioration [32]. Direct
contact membrane distillation (DCMD) setups involving poly(vinylidene fluoride) (PVDF)
membranes were developed to treat simulated RO brine. Although this approach led to
a water recovery of over 70%, significant scaling occurred upon reaching the concentration
factors: defined as 1/(1-water recovery ratio), beyond 3.3. This scaling resulted in a drop
in thermal performance and serious pore wetting [33], pointing out at the need for novel
membrane materials development.

In this study, the potential of a commercial hollow fiber membrane, STOMATE® mem-
brane from Memsift Innovations Pte Ltd., was evaluated for the concentration of seawater
reverse osmosis (SWRO) brines. The physicochemical properties, as well as the long-term
chemical stability and mechanical properties of the membranes, were firstly characterized;
this occurred prior to evaluating the MD performance with synthetic seawater solutions
and a pilot-scale MD system with SWRO brines collected from a local desalination plant
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in Singapore. The long-term performance, thermal efficiency, scaling tendency and clean-
ability of the membranes were investigated during the pilot study to push the limits of
these novel membranes; this was conducted so as to concentrate the SWRO brines to near
saturation point to collect the salt crystals separately. This approach offers, for the first time,
a unique perspective on the scalability of MD to support large- scale brine treatment and
operation; it also provides the opportunity to have a better understanding of membrane
scaling during extreme salinity operation.

2. Experimental
2.1. Materials

Hollow fiber membranes, STOMATE®, were provided by Memsift Innovations Pte Ltd
from Singapore. The membrane specifications are presented in Table 1. Sodium chloride
(NaCl) was purchased from Sigma Aldrich (Singapore). Sodium hydroxide (NaOH) and
hydrochloric acid (HCl) were purchased from Merck (Singapore). Deionized (DI) water
was produced by the Sartorius water purification system. STOMATE® membranes are
composite hydrophobic membranes containing proprietary additives, yielding extremely
relevant properties for MD [34,35].

Table 1. Membrane specifications of the STOMMATE® hollow fiber.

Parameter Value Unit

Inner diameter 0.9 mm
Outer diameter 1.6 mm

Thickness 0.35 mm
Bubble point ~0.2 MPa

Pore size 0.08 ± 0.02 µm
Porosity 70 ± 5 %

Hydrostatic pressure >0.40 MPa

For the pilot operations, the STOMATE® membranes were assembled into a pilot-scale
testing module with an effective membrane area of 0.2 m2. The modules were supplied
by Memsift Innovations Pte Ltd. Real SWRO brine (45,000 ppm TDS) was collected from
a local seawater desalination plant in Singapore.

2.2. Membrane Characterization Techniques
2.2.1. Scanning Electron Microscopy (SEM)

Scanning electron microscopy (JEOL JSM-IT300, Tokyo, Japan) was used to observe
the surface and cross-section morphologies of hollow fiber membranes. The SEM samples
were prepared by using liquid nitrogen to freeze fracture the membranes; and then being
coated with a thin conductive platinum layer using a JEOL JEC-3000FC ion sputtering
device. The images were acquired under an accelerating voltage of 10 KV and a working
distance of 15–16 mm.

2.2.2. Tensile Strength

The mechanical properties of the hollow fibers were measured with a tensiometer
(MTS Criterion Series 40 C41.103–100N, Minnesota, USA). In order to evaluate the long-
term mechanical stability of the membranes, the samples were immersed in different pH
solutions of 1, 3, 7 and 10 for a duration of 10 weeks. The testing of the tensile properties
was performed on a weekly basis and the changes in tensile strength were recorded. For
all the measurements, the starting gauge length was 50 mm and the elongation rate was
10 mm/min.

2.2.3. Morphological Stability Tests

Morphological stability tests of the membranes were performed over the course of
10 weeks. The membranes were submerged into solutions at a pH of 1, 3, 7 and 10 to assess
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any morphological changes in length and weight. The dry weight and length of membrane
samples were firstly recorded by using a balance and Vernier calipers, respectively. After
being immersed for 20 days, the first measurement was made. Subsequently, measurements
were performed daily until week 10. Prior to each measurement, the membranes were
taken out from the solutions and dried in a vacuum oven (Binder VDL 53, Tuttlingen,
Germany) at 30 ◦C.

2.2.4. Porosity Test

The porosity of the membranes is described as the volume of the pores divided by the
total volume of the membranes, which is the void volume fraction of the membrane [36].
The Equation (1) shows the calculation of porosity, ε [37]:

ε =

(
m f − mi

)
ρH2O × Vi

× 100 (1)

where mi (kg) is the initial dry mass of the fiber and m f (kg) is the final mass of the fiber
after being soaked in water; the excess water on the surface was wiped away and the fiber
was weighed again to determine m f . Vi stands for volume of the fiber in m3 and ρH2O is
1000 kg/m3.

2.3. Membrane Distillation

Lab-scale experiments were conducted with a small lab module assembled from
4 hollow fiber membranes under the DCMD mode, which had an effective membrane area
of 20 cm2. Solutions composed of 3.5, 10 and 15 wt% NaCl were used as feed solutions to
perform the experiments at 50, 60, 70 and 80 ◦C, respectively. DI water was used as the
permeate solution, wherein the temperature was controlled at 15 ◦C. The feed solution was
circulated through the lumen side of the hollow fiber, while DI water was circulated across
the shell side using peristaltic pumps (Masterflex L/S). Both the feed and permeate flow
rate was kept at 0.1 L/min. The Reynolds number (Re) can be calculated using the formula:

Re =
ρVD

µ

where ρ is solution density (kg/m3), V is the flow velocity (m/s), D is the diameter of the
fiber (m) and µ is the viscosity (N.s/m2). The Re value of the feed was estimated to be 1030.
This is still in the laminar flow region.

The conductivity and weight changes of the permeate solution were closely monitored
with a conductivity meter and a balance (Mettler Toledo). Measurements were made at
10 min intervals and salt rejection was calculated using Equation (2) [36,37]:

β =

(
1 −

Cp

C f

)
× 100% (2)

where Cp and C f are the NaCl concentrations in permeate and feed solutions, respectively.
The permeate concentration was calculated from Equation (3) based on the dilution effect:

Cp =
C1m1 − C0m0

m1 − m0
(3)

where m1 and m0 are the final and initial masses of permeate. C1 and C0 are the final and
initial salt concentrations of permeate, which could be determined from the conductivity.

The flux was calculated by using the sample weight collected at 10 min intervals
divided by the area of membrane and converted to L/m2-h [36,37]:

Flux =
m

A × t
(4)
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where m is the mass (kg) of the permeate sample collected over time t (h) and A is the
effective membrane area in m2.

During the pilot-scale studies, the real SWRO brine collected from a local desalination
plant in Singapore was used as the feed solution using Memsift’s VSG-WD-0050L mem-
brane distillation lab-pilot unit; this was further integrated with a salt separator/crystallizer.
Figure 1a shows the process flow diagram of the entire zero liquid discharge system;
Figure 1b shows the flow schematics around the membrane module; and Figure 1c shows
the actual image of the system. The RO brine was heated to 65 ± 2 ◦C using an electrical
heater; the hot feed was then pumped into the lumen side of the membrane module with
a velocity of 0.42 m/s, which gave a Re number of 1376. The water vapor was drawn
upon application of vacuum, at a pressure of 80 kPa on the permeate side upstream from
a condenser operated with cooling water at a temperature of 27 ± 3 ◦C; the condensed
permeate was collected in the permeate collection container. The concentrated brine was
pumped to a crystallizer at a temperature of 13 ± 2 ◦C and at a flow rate of 0.2 L/min;
here, the saturated brine was crystalized and separated by gravity with minimal circu-
lation while the supernatant was heated up and recirculated back into the MD system.
The TDS of the permeate was measured continuously to determine the efficiency of the
membrane separation process, and the calculation of salt rejection and flux were performed.
The experiment was run during the daytime, 8 h/day, and stopped overnight for safety
reasons. The membrane module was taken out from the system and rinsed with tap wa-
ter (TDS < 500 ppm) for about 10 min every day after the experiment to prevent surface
crystallization and let the membrane dry overnight. The experiments were continued for
a period of around ~280 h to fully evaluate the long-term performance of the system.

Figure 1. Cont.
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Figure 1. (a) Process flow diagram, (b) schematic around the membrane module and (c) actual image
of the zero liquid discharge system.

3. Results and Discussion

In this section, the physicochemical properties of the membranes are firstly discussed.
Then, the MD performance of the membranes is systematically investigated, using synthetic
seawater with various salt concentrations. With the understanding of membrane stability
and MD performance, the membranes are tested in a pilot-scale MD system with real
SWRO brine. Furthermore, the SWRO brine is concentrated to near saturation; in addition,
a crystallizer is coupled with the pilot system to separate the formed salt crystals. This
demonstrates the potential of MDC systems to achieve zero brine discharge and to recover
valuable resources from the brine.

3.1. Membrane Characterization
3.1.1. Morphology of the Membrane Materials

Figure 2a,b show the surface images of the STOMATE® hollow fiber membrane. Both
the inner and outer surfaces have macroporous structures with visible pores observed.
These macroporous morphologies are desirable for MD applications as they promote
vapor transportation. The mean pore size data is provided by the company, which is
0.08 ± 0.02 µm. This value is at the lower end of the typical pore size ranges (0.1–0.6 µm)
recommended for MD processes [36,38]. The smaller pore size would help to prevent
membrane wetting under different operation conditions, especially when there is a high
salt concentration such as in RO brine [39]. Figure 2c displays the cross-section mor-
phology and Figure 2d shows a photographic image of the fiber. The membrane has
a porous cross-section and is macrovoid-free. This macrovoid-free structure could help to
increase membrane wetting resistance and membrane mechanical properties as compared
to macrovoid structures. Moreover, this structure may provide better performance stability
during long-term operations. Despite the macrovoid-free structure, the hollow fiber still
possesses a good porosity of 65.5%; this is suitable for MD applications [36].
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Figure 2. The SEM images of (a) the inner surface, (b) outer surface, (c) cross-section and (d) picture
of the STOMATE® membrane.

3.1.2. Stability of the Membrane Materials

The stability of the membranes at different pH conditions was tested over a course
of 10 weeks. Figure 3a shows the change of fiber length versus immersion time. The
fluctuation of all the curves is due to measurement errors; yet, the overall trend on the
variation of fiber length can be clearly seen. Generally, there is a slight decreasing trend
(1–2% decrease) until about 50 days; then, the fiber length remains quite constant. The
slight decrease of fiber length is because of pore shrinkage and polymer relaxation, which
may also be referred to as membrane aging [40,41]. Similar observations were made by
Ravereau [40], where the pore size and length of their membranes tended to undergo
shrinkages when being submerged in different pH solutions [40]. This is a common
phenomenon for polymeric membranes. Aging happens to dry membranes as well as wet
membranes. When it happens, the membrane pore size gets smaller and membrane flux
will decrease. Therefore, the degree of change in fiber length becomes important. The
larger the change, the larger the effect on membrane performance and stability. For the
current membranes, the changes are all small. For example, the change in fiber length is
about 1.3% for the pH 1 condition; the change is about 1.4% for the pH 10 condition. The
smaller variation under different pH conditions indicates a good stability of the membranes.
In addition, the fiber length remains constant after about 50 days; this shows that the
membranes are stabilized and a stable membrane performance during long-term operation
can be expected.
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Figure 3. The variation of fiber (a) length, (b) mass and (c) tensile strength after been immersed in
the different pH solutions.

Figure 3b displays the change in fiber weight as a function of immersion time. The
mass of fibers under pH 1, 4, 7 and 10 conditions are quite constant, which indicates the
good stability of membranes under these conditions.

3.1.3. Mechanical Properties

Figure 3c presents the 10-weeks’ variation of tensile strength to further investigate
the mechanical stability of the membrane in different pH solutions. The original hollow
fiber shows a good tensile strength of 3.0 MPa. This trend is owing to its macrovoid-free
structure. After being immersed in different pH solutions, the tensile strength is relatively
stable throughout. After 10 weeks, the tensile strength remains in the range of 2.8 to
3.2 MPa. This further confirms the structural stability of the membrane materials and their
applicability to the MD process.
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3.2. Lab-Scale Membrane Distillation

A lab DCMD system was used to perform desalination testing for STOMATE® mem-
branes to understand their basic performance properties. A high rejection value of more
than 99.9% is achieved for all the testing. Figure 4 shows the permeate fluxes at different
temperatures with different NaCl concentrations. As expected, when the temperature gets
higher, the MD flux increases as well. This is because of the increased vapor pressure at
a higher feed temperature. The concentration of NaCl increases, while the permeate flux
decreases slightly. This is due to the reduction of vapor pressure of the feed under a higher
salt concentration [42]. At a feed temperature of 80 ◦C, a flux of 10 L/m2-h is obtained for
3.5 wt% NaCl; 8.8 L/m2-h is obtained for 10 wt% NaCl. These results demonstrate that the
membrane is capable of treating solutions with high salt concentrations under different
operation conditions.

Figure 4. (a) DCMD flux under different feed temperatures and concentrations, and (b) VMD flux at
different temperatures with a 3.5 wt% NaCl feed.

3.3. Pilot-Scale Membrane Distillation

The 10-week stability testing showed that the membranes offer long-term structural
and mechanical stability. The lab-scale MD experiment indicated that the membrane could
withstand different salt concentrations. Therefore, it displayed great potential for pilot-scale
testing using real SWRO brine for an extended duration. The experiments with a pilot-scale
setup were carried out using vacuum membrane distillation (VMD) with a partial permeate
vacuum of 80 kPa. Figure 4b shows the VMD flux of the membrane at different feed
temperatures with a 3.5 wt% NaCl feed concentration. Acceptable permeate fluxes are
obtained at this low permeate vacuum of 80 kPa. The membrane was then evaluated in the
pilot system for its long-term performance.

Figure 5a presents the long-term performance of the membrane in treating actual
SWRO brine for a period of about ~280 h. The daily fluctuation of membrane flux can
be seen. This is probably due to the surface fouling of membranes during continuous
operation. Fouling occurs when there are undesired materials on the membrane surface
by the adsorption or deposition of foulants [43]. At the end of each day, simple rinsing of
the membrane was performed to prevent fouling accumulation and surface crystallization.
Then, a higher flux was obtained at the start of the next day. Overall, there is neither large
fluctuation nor a sudden change in the membrane flux; thus, this indicates the stability of
the membrane in concentrating RO brine. An average flux of 3.7 L/m2-h is obtained. It is
worth noting that membrane wetting did not happen during the entire operation period.
As shown in Figure 5b, the TDS amount in product water remains at around 4.5 ppm. This
low TDS value implies a high salt rejection throughout the long-term operation and no
membrane wetting occurred. The product water met the salinity standard (500 ppm) of
drinkable water set by the World Health Organization (WHO). It shows that more fresh
water can be drawn from RO brine with the MD system.
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Figure 5. (a) The permeate flux for the pilot-scale testing; (b) the total dissolved solids (TDS) amount
in the product water; (c) the theoretical flux calculated for the pilot-scale testing; and (d) the GOR of
the system with heat recovery from the condenser.

3.4. Modelling Performance Data

The theoretical flux of the pilot testing is calculated based on the inlet and outlet
temperatures of the module. It assumes 100% energy efficiency where the temperature
drop of the feed solution is due to water evaporation. This helps to elucidate the thermal
efficiency of the pilot-scale MD system. The theoretical flux can be calculated based on
Equation (5) below:

J =
Q

Asystem
=

mcp∆T
∆Hvaporization

/Asystem (5)

where J is flux (L/m2-h), Q (L/h) is the permeate flow, m is the mass flow rate (kg/s), cp is
the heat capacity (kJ/kg·◦C), ∆T is the temperature difference between the feed inlet and
outlet (◦C), ∆Hvaporization is the latent heat of vaporization, and Asystem (m2) is the surface
area of the membrane system.

Figure 5c presents the calculated theoretical flux versus operation time. The theoretical
flux is always higher than the actual flux. This is anticipated because the system cannot
achieve 100% energy efficiency. There is heat loss to the surroundings and conductive
heat loss. The energy efficiency can be simply calculated as the ratio of actual flux over
the theoretical flux. By presenting the theoretical flux, the energy efficiency as well as its
change over time can be seen clearly. It can be calculated that the energy efficiency is in
the range of 55–70% over the course of operation, with an average of 62%. This is within
the typical energy efficiency values for systems without heat recovery. According to Fane,
due to transmembrane conduction of heat, roughly 20–50% of heat can be lost for their
MD processes [44]. According to another study conducted by Bui, where simulation work
for MD was performed using a wide range of operating conditions, the highest energy
efficiency achieved was 49.9% [45]. Another noteworthy point is that when the actual flux
reduces, the energy efficiency also drops. This reveals the importance of membrane stability
again. If the membrane does not have a stable performance, the energy efficiency of the
system is also sacrificed. Therefore, the stability of the STOMATE® membrane makes it
suitable for practical applications.
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In addition, the energy efficiency of the system can be further improved by reducing
the heat loss or integrating heat recovery designs in the actual process. For example, if
the heat is recovered from vapor condensation, the required energy input can be largely
reduced and the energy efficiency can be improved. As a demonstration, the gain output
ration (GOR) is estimated by subtracting the heat recovered from the condenser from the
original heat input to the system. Figure 5d shows that an average GOR of 1.59 can be
achieved with heat recovery designs.

3.5. Crystallization Operations

During the long-term operation, the salt concentration of the RO brine increased from
4.5% to near saturation point. The temperature of the near-saturated brine was reduced
by using the chiller to form solid crystals and the solid crystals were separated in the
crystallizer by the gravity deposition method. Figure 6a shows the saturated salt crystals
on the side view glass of the crystallizer.

Figure 6. (a) Formation of salt crystals in the crystallizer, and (b) sea salt recovered from
the crystallizer.

Figure 6b shows the sea salt recovered from the crystallizer. The recovered salt has
a moisture content range from 10–20%. The recovered salts could be treated and sold or
used for other purposes. Even though SWRO brine is highly saline, the MD membrane
copes well in terms of performance. During the entire course of pilot operation, about
19 kg of wet-salt was collected from around 400 L of SWRO brine. The MDC system can
continuously remove salt from SWRO brine to generate revenue as well as promote water
recovery of up to 99%, considering the minor water lost as moisture in the salt crystals.
This provides a more environmentally friendly alternative to RO brine disposal with the
advantage of salt recovery and possible zero liquid discharge.

4. Conclusions and Prospects

In this study, novel STOMATE® hollow fiber membranes were employed to treat
actual SWRO brine at a pilot scale. The physicochemical properties, long-term structural
and mechanical stability, as well as the MD performance of the membranes, were investi-
gated. The long-term performance, thermal efficiency, scaling tendency and cleanability
of the membranes were explored during the pilot study to push the limits of these novel
membranes in order to concentrate SWRO brine to near saturation point to collect salt
crystals separately. The following conclusions can be drawn from this study: STOMATE®

membranes exhibit macrovoid-free structures with macroporous inner and outer surfaces.
They possess an appropriate pore size of 0.08 ± 0.02 µm, porosity of 65.5% and a high
wetting resistance. These membranes also show good mechanical properties and stability
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in acid and alkaline environments up to pH 10. These membranes display good stability
in synthetic seawater solutions with various salt concentrations. They also have a stable
long-term performance in treating actual SWRO brine under a pilot-scale MD system.
A simple washing protocol is developed to rinse the membrane module, which successfully
maintains the membrane performance during long-term operation. This demonstrates the
feasibility of the MD membrane in actual application and addresses the potential opera-
tional issues. A crystallizer is coupled with the pilot-scale MD system to crystallize and
separate salt crystals. Salt crystals are successfully recovered in the system. This pushes the
limit of the MD system to possibly achieve zero liquid discharge for RO brine, as well as to
recover valuable resources from the brine.
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