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Abstract: Technological progress has made chemistry assume a role of primary importance in our
daily life. However, the worsening of the level of environmental pollution is increasingly leading
to the realization of more eco-friendly chemical processes due to the advent of green chemistry.
The challenge of green chemistry is to produce more and better while consuming and rejecting less.
It represents a profitable approach to address environmental problems and the new demands of
industrial competitiveness. The concept of green chemistry finds application in several material
syntheses such as organic, inorganic, and coordination materials and nanomaterials. One of the
different goals pursued in the field of materials science is the application of GC for producing
sustainable green polymers and membranes. In this context, extremely relevant is the application of
green chemistry in the production of imprinted materials by means of its combination with molecular
imprinting technology. Referring to this issue, in the present review, the application of the concept of
green chemistry in the production of polymeric materials is discussed. In addition, the principles
of green molecular imprinting as well as their application in developing greenificated, imprinted
polymers and membranes are presented. In particular, green actions (e.g., the use of harmless
chemicals, natural polymers, ultrasound-assisted synthesis and extraction, supercritical CO2, etc.)
characterizing the imprinting and the post-imprinting process for producing green molecularly
imprinted membranes are highlighted.

Keywords: green chemistry; green molecular imprinting; natural materials; molecularly
imprinted membranes

1. Introduction

Chemistry is at the heart of technological progress that stimulates the production
of new essentials of modern life. Due to its presence in all areas of our life, such as
the materials and the objects that surround us and that we use every day, (food, drugs,
fertilizers), chemistry affects all people. In this context, owing to the development and
expansion of chemical industries, large amounts of non-degradable chemicals are present
in the environment, leading to pollution and toxicity hazard for human, fauna and flora
health. Currently, chemistry is strengthened by the emergence of the green chemistry (GC)
concept, which is based on producing more and better, but also by bringing the degree
of pollution to the lowest level to ensure both environmental protection and health safety.
Moreover, green synthesis in chemistry is today one of the essential aspects to be taken into
consideration in the development of new products. For achieving these results, GC concept
deals with the efficient use of raw materials, the removal of wastes and the avoidance of
using toxic and/or hazardous reagents and solvents in the manufacture and application of
chemical products [1–5].
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As Kharissova et al. reviewed [1], green chemistry finds application in several material
syntheses such as organic, inorganic, and coordination materials and nanomaterials. Based
on its 12 principles, it is oriented toward many innovative fields of research. Among them,
extremely important is the application of green chemistry in the production of imprinted
materials by means of its combination with molecular imprinting technology (MIT).

The latter is a powerful advanced strategic approach leading to the production of
polymeric materials endowing specific recognition sites able to selectively interact with
targeted analytes called “template molecules” [6–10]. These kinds of interactions imitate
the molecular recognition mechanisms typical of living systems such as the interactions of
receptor–ligand, antigen–antibody and enzyme–substrate, thus conferring to the imprinted
materials’ biomimetic features [6,7,11]. Over the last decade, the growing demand for
highly selective separation systems has led to a rapid development of molecular imprint-
ing technology due to the high selective recognition, retention and transport properties
exhibited by printed materials. Currently, they find a wide variety of application, such as
affinity separation, recovery of bioactive compounds and critical raw materials, sensing of
substances in clinical and environmental field, water decontamination, and so on [2,7,9–13].
Molecularly imprinted materials are produced in the form of polymers and membranes.
Their peculiarity is that they possess specific recognition sites toward a particular com-
pound of interest (called template) and are able to selectively recognize and separate it
from complex mixtures containing other analytes, including their structural analogs.

These specific recognition properties render them highly selective and advantageous
with respect to their corresponding non-imprinted materials (that are not selective) for
achieving specific detection and separation at the molecular level [7–17].

In the case of molecularly imprinted polymers (MIPs), the recognition sites are usually
created during the polymerization process. The synthesis of MIPs entails the polymerization
of a functional monomer around the template molecules with the aid of a cross-linker.
Subsequently, the template is extracted from the neonatal polymer matrix leading to the
formation of recognition sites that exhibit high complementarity to it in shape, size and
chemical function [8–12,15,16]. Molecularly imprinted membranes (MIMs) represent a
special format of imprinted polymers combining their specific recognition properties with
the typical features of membrane science.

Membrane processes are advanced and sustainable technologies that are increasingly
replacing traditional separation techniques or integrating with them to achieve better
utilization of raw materials, greater separation efficiency at lower costs and high value
products. This is pursued in the logic of a circular economy, which aims at resource re-
cycling and waste valorization, also considering environmental and human protection as
well as economic and social needs. Today, membrane operations and particularly pressure-
driven processes are used successfully in various area such as chemical, pharmaceutical,
food, biotechnological, water treatment and much more [18–23]. However, an increase in
selectivity for achieving high separation levels of tailored compounds from complex mix-
tures is necessary. From this point of view, the creation of specific recognition sites within a
membrane matrix (or on its surface) leads to the production of highly selective membranes
such as MIMs. The employment of these smart membranes as such or integrated with
traditional membranes is promising for developing sustainable green processes.

MIMs are produced via different routes. For example, composite MIMs are prepared
via the phase inversion technique embedding pre-synthesized MIP particles within the
membrane matrix or copolymerizing a thin layer of an imprinted polymer with the surface
of a pre-existing membrane. The phase inversion technique is also applied for creating
the recognition sites directly into the membrane matrix during its formation. In this case,
template molecules are added to the cast solution, and after membrane formation, their
removal frees the membrane’s recognition sites. In this last method, MIPs are not used, and
non-composite imprinted membranes are obtained [7,11–13,17,18].

MIMs offer several advantages over MIPs. In particular, even if MIPs exhibit high
specificity, they suffer of a low loading capacity and a scarce possibility of working in



Membranes 2022, 12, 472 3 of 33

continuous operation mode. However, due to their high crosslinking status, they are poorly
processable. Conversely, the exploitation of both the inherent selectivity conferred by the
imprinting procedure and the typical features of membrane-based separation processes
(continuous mode operation, easy-scale up, large-scale application, mild operating condi-
tions of pressure and temperature, etc.) allow MIMs to overcome these drawbacks and
exhibit superior selectivity and separation efficiency [7,9,11,13,17,24–26]. Some examples
of MIMs application are the detection and separation of biomolecules, the enantiomeric
separation, the recovery of bioactive compounds from different matrices, and the removal
of pesticides and dyes from water [7,11,13,18,25,26].

It is undeniable that due to its numerous advantages, molecular imprinting technology
is attracting more and more attention. However, until now, despite their high separation
performance, MIMs are largely used only at the academic level, while their acceptance on
the industrial scale is still in an embryonic stage and needs to be heartened. Some factors
hindering their application are the reproducibility, the use of high quantities of solvents
and reagents often not quite eco-friendly during their fabrication, the increase in membrane
cost, and so on. Some of them might be restrained with actions devoted to increasing the
visibility and the industrial trials of these innovative tools. In addition, the integration of
other membrane operations, such as nanofiltration, ultrafiltration, reverse osmosis, and
membrane distillation with MIMs will stimulate their future large-scale application as well
as their market. Finally, in this perspective and in view of the strict regulations aimed at
the protection of the environment and the reduction of wastes, the scientific community
and manufacturers are increasingly exploring the employment of greener strategies in their
production processes while maximizing their efficiency and environmental friendliness.

The sustainable potential of molecular imprinting technology has been recently dis-
cussed [27]. This review presents an overview of the basic principles and approaches of GC
for producing novel green polymers and membranes. Moreover, it discusses the general
aspects concerning the application of the GC concept to the production of MIPs. Finally, it
highlights the production of green molecularly imprinted membranes in agreement with
the principles of green molecular imprinting.

Considering the advantages of GC in many sectors and its relevance in producing
eco-friendly high selective separation tools, we are confident that this review will give great
contribute to the current research trend in stimulating the production and the employment
of molecularly imprinted membranes while applying the concept of green chemistry both
on the research and industrial scale.

2. Green Chemistry

Sustainable development of syntheses, manufacturing materials and separation pro-
cesses is becoming more and more a priority on the educational, research and industrial
levels for obtaining benefits needed by modern society. In this scenario, chemistry plays
a central role in improving the economy, the environment and quality of life. The strict
environmental regulations make the chemical industry one of the main sectors affected
by environmental problems. These rules require the development of new approaches
in chemical processes and in the synthesis of chemical compounds that are safer for the
environment and human health. It is in this context that a new branch of chemistry dealing
with ecological approaches and called “green chemistry” was born. Today, it attracts great
attention and appears as a strategic alternative to traditional chemical processes to reduce
the environmental problems and afford the new needs of competitiveness. The concepts of
GC is based on the identification and development of sustainable pathways in chemical
synthesis and processes, emphasizing environmental and ethical objectives [1–4]. Green
chemistry, also known as “benign chemistry” or “sustainable chemistry”, was born in 1990
in the United States of America, by virtue of initiatives aimed at developing chemical prod-
ucts and processes capable of eliminating or reducing the use and production of hazardous
substances. Starting from these good purposes, the “twelve principles of green chemistry”
were formulated [1,28]. Figure 1 summarizes them.
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As is evident, the principles of GC promote the use of renewable materials and
chemical processes with less impact on the environment and with reduction of the quantity
of material and risks and dangerous reagents, thus contributing to the sustainability of
chemicals and manufacturing processes. According with these principles, many research
studies have made significant growth in the green chemistry applications field either at the
level of syntheses and reactions or at the level of chemical processes using green routes. For
example, the use of GC in chemical reactions requires experimental conditions and synthesis
protocols, which include green constituents as solvents, reagents and catalysts [1–4,28].
From this viewpoint, considering that pharmaceutical and fine chemical industries generate
the most abundant wastes, many efforts for reducing them began in the third millennium.
For example, for reducing the emission of solvents lost in waste during organic syntheses
(as in the production of advanced pharmaceutical intermediates), the use of catalytic
methods such as catalysis heterogeneous and bio-catalysis has been foreseen [2,29].

In order to make meaningful comparisons concerning the effectiveness of the various
synthetic strategies, their sustainability is evaluated by measuring some parameters such
as the environmental factor (E-factor) and atom mass economy (AE). The first indicates
the mass of total waste produced versus mass of final obtained product. A value in the
range of 25–100 kg indicates a high amount of produced waste with a consequent negative
environmental impact [2,30].

The atom economy is a number given from the ratio between the formula weight of the
obtained product with respect to the total formula weight of the reactants [2,30]. Assuming
exact stoichiometric amounts of starting ingredients and a theoretical chemical yield, it is
useful for a quick prediction of the waste that will be generated in the process. Other green
metrics, as for example the mass of process water and of used solvents with respect to the
mass of the final product, the net mass of materials used, the energy consumed and so on,
are discussed in the literature [30–33].

Briefly, some of the advantages offered by greener processes are: the avoidance of
unneeded wastes; the possibility of recycling solvents, catalysts, and other reagents; the
development of lower-hazard reactions and small quantity of reactants, thus preventing
disasters; low energy consumption, prevention of contamination, better product quality,
and so on [1–4]. Currently, green strategies lead in producing inorganic and organic
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compounds, nanomaterials, composites, aerogels, quantum dots, etc. Furthermore, green
approaches can help in improving some traditional materials such as ceramics, polymers,
adsorbents, bioplastics and biocomposites [1–4].

Among various applications of GC, great advantages derive from the employment of
water and other green solvents in chemical reactions such as aqueous catalysis [34–36], of
supercritical fluids (i.e., supercritical CO2) [37,38], ionic liquids (ILs) [39–41], deep eutectic
solvents (DES) [42–44] and fluorous media [45]. Other green approaches are microwave-
assisted and ultrasound-assisted processes [46–48], hydro/solvo thermal reactions [49,50],
magnetic field-assisted synthesis [51], mechanochemistry [52], and UV irradiation [53,54].
All these approaches and the evolution of GC have been accurately reviewed [1,55–61],
highlighting that over the last 20 years, the principles of green chemistry have strengthened
the environmental sustainability of chemical processes.

3. Toward Green Polymers and Membranes

One of the different goals pursued in the field of materials science is the applica-
tion of GC for producing sustainable green polymers and membranes [62–75] as well as
inorganic–organic hybrid materials of based on a polymeric matrix holding a small amount
of inorganic material (such as carbon-based nanotubes, metal nanoparticles and graphene
oxide) [76–81]. Green chemistry has been applied for fabricating numerous biopolymers,
biopolymer-based membranes [64,66] and different synthetic polymers, such as acrylic-
based polymers [82], poly(vinyl) chloride [83], polyurethane [84], and so on. Synthetic
processes include the use of biomass-based sources [85] and renewable raw monomers
such as triglycerides, terpenes, allylic and olefinic monomers [85,86]. An important aspect
dealing with the production of hybrid materials is the compatibility of both organic and
inorganic ones, and for achieving this goal, surfactants are often used. In this context,
microwave irradiation for liquefying lignin as the starting material for the synthesis of
flexible polyurethane was performed [87]. A microwave-assisted method for producing
piperazine-containing bisphenol formaldehyde polymer was also applied [88].

An innovative strategic application of GC takes place in the valorization of vegetable
wastes for preparing biodegradable bioplastic films. Perrotto et al. [89] produced environ-
mentally friendly and freestanding bioplastic-based films in a simple one steep process
(in aqueous solutions of hydrochloric acid), exploiting different waste matrices (carrot,
parsley, radicchio and cauliflower). They maintained the color of starting material and
antioxidant properties. Moreover, these films exhibited mechanical properties similar to
those of traditional synthetic plastics (i.e., polypropylene, polyethylene, polystyrene, poly
(methyl methacrylate) (see Figure 2) [89].

The combination of these bioplastics with other polymeric materials produced com-
posite films with reduced oxygen permeability and increased mechanical resistance, suit-
able for packaging application. One example is the polyvinyl acetate/carrot bioplastic
blend [89]. Other cases of food waste valorization are the synthesis of cellulose-based
bioplastics from wastes of parsley and spinach stems, rice hulls, and cocoa pod husks by
digestion in trifluoroacetic acid (TFA), casting, and subsequent solvent evaporation [90].
Protein-based polymers and starch-based plastics [91,92] are also produced. The successful
recycling of non-edible parts of vegetables demonstrated that it is possible to substitute
non-renewable plastic resources with renewable biodegradable resources, thus centering
on green chemistry and circular economy concepts [93,94].

The preparation strategies of greener membranes fulfilling the principles of GC were
classified by Szekely and co-authors on the basis of the priority of their contributions [95].
Figure 3 summarizes them [95].

The first necessities are the use of greener solvents and minimizing the use of toxic
chemicals for rendering the process safer. From this viewpoint, the preferred solvents are
water, acetone, isopropanol, ionic liquids and supercritical CO2, while dimethylformam-
mide, dimethylacetamide, dioxane, hexane, chloroform and N-methylpyrrolidinone are
undesired (see Figure 4) [95].
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In producing polyimide P84 membranes, Soroko et al. substituted the toxic dimethyl-
formammide and dioxane with the greener acetone and dimethylsulfoxide [96,97]. In addi-
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tion, the use of inorganic salts (i.e., calcium chloride, sodium tartrate), non-toxic organic
molecules (i.e., citric acid) or UV irradiation for post-membrane preparation crosslinking
helps in reducing the waste of toxic reagents [97–101]. Another fruitful strategy is the
employment of bio-based solvents, such as glycerol and its derivatives, aqueous solutions
of carbohydrates and gluconic acid, lignin-derived solvents, fatty acid methyl esters, and so
on [102,103]. The second priority deals with the minimization of waste production, energy
consumption and operating costs by reducing the steps of the membrane preparation
procedure as much as possible. One possible approach is the combination of crosslinking
and coagulation in one step, by adding the cross-linker to the cast solution. Third, the use
of renewable and degradable materials as bio-based materials is advisable.

The fourth goes for solubilizing and crosslinking polymers at room temperature for re-
ducing energy consumption. The production of degradable membranes is the final greener
aspect that aims at the substitution of the conventional petroleum-based membranes with
easy degradable bio-based membranes. Nevertheless, the production of bio-based poly-
mers is not yet enough to satisfy the wide request of membrane manufacturing at the
industrial level [66,95].

Cellulose, a polysaccharide produced by plants made up of long macromolecular
chains of β-D-glucose, is one of the most employed raw materials for preparing bio-
based membranes. It is used for preparing polymeric flat-sheet films and hollow-fibers
with green synthetic routes as the employment of green solvents such as, methyl lactate,
N-methylmorpholine-N-oxide and ionic liquids [66,95,103–108]. Cellulose-based polymers
are blended with other polymers, or they are hybridized with inorganic materials [109–111].
As it was critically reviewed by Galiano et al., bio-based polymeric membranes have
also been prepared using chitosan, hyaluronic acid, poly(isoprene), sodium alginate, and
more [66].

The global market trend of green chemistry is increasing in different fields, especially
in the pharmaceutical sector as well as agro-food processes and packaging, and it was
predicted that its values will reach USD 165 billion by the year 2027 [112]. Nevertheless,
the production of green separation materials endowed with high specific and selective
separation ability at both the ionic and molecular levels, such as imprinted materials,
is still in infancy. Therefore, more efforts at the research level, including development
and technological transfer, are necessary for assessing the potential of integrating green
chemistry with imprinting technology for a possible application of green highly selective
tools at a large scale in the near future.

4. Green Chemistry in the Synthesis of Molecularly Imprinted Polymers: General Aspects

Imprinting technology is a multidisciplinary approach that bio-mimics the interactions
of enzyme–substrate and antigen–antibody occurring in living systems in order to produce
selective, resistant and reusable imprinted materials (i.e., polymers and membranes). These
advanced separation tools exhibit high selective recognition and separation properties
toward a specific compound of interest (both called “template” [7,12,13,113–116]. Currently,
molecularly imprinted polymers are produced at the research and industrial levels and
are employed in different areas of science and technology [13,114,116–118]. Prominent
applications include chromatographic separation [119,120], solid-phase extraction and
microsolid-phase extraction [121–123], sensing [124–126], chiral separation [127], drug
delivery [128,129], and so on. This high specificity is due to the presence of recognition sites
complementary to the template molecules and capable of recognizing them in a selective
way from complex mixtures. The selective recognition sites are created during the synthesis
of MIPs and make them advantageous with respect to traditional non-imprinted polymers
for obtaining tailored separations at the molecular level [8–12,15,16].

Nevertheless, even if the features of these materials are in line with the GC con-
cept, conventionally used reagents and strategies are not accurately green. Therefore,
environmental awareness, the objective of an efficient use of raw materials and the simulta-
neous increased demand for highly selective separation systems, has led to the application
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of the principles of green chemistry to their production. This was pursued considering
the needs of sustainable practices and GC advances, as well discussed by Erythropel et al.,
who proposed the “green chemisTREE” as a window display for the actions and continued
growth of green chemistry [130].

The traditional synthesis of an imprinted polymer involves the polymerization of a
functional monomer in the presence of the template, with the aid of a crosslinker and an
initiator. During the process, the functional monomer polymerizes around the template,
which remains entrapped in the nascent polymer chains. The removal of the template
after polymerization reveals specific recognition sites distributed into the neonatal im-
printed polymeric matrix. These sites are complementary to the template in terms of
chemical function, shape and size, and are able to recognize and separate it from a complex
mixture containing other compounds, including its structural homologues and opposite
enantiomers [12,13,113,131]. Figure 5 shows a schematic representation of the synthetic
procedure of MIPs.
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Relevant aspects of the overall synthetic process include:
The necessary chemical complementarity between the template and the functional

monomer, which forms pre-polymerization complexes (via covalent or non-covalent binding);
The choice of a reaction solvent non-interfering with the monomer–template interac-

tions for warranting the formation of efficient recognition sites;
The use of the cross-linker for ensuring the formation of a three-dimensional cross-

linked network and for stabilizing the recognition sites;
The employment of an appropriate organic solvent (or other methods) for removing

the template from the imprinted matrix and for freeing the recognition sites.
From the above, it is clear how all these aspects of MIPs synthesis have an influence

on the environment and on social impact. Furthermore, the health risk of imprinters and
the negative influence of the poor degradability of MIPs that end up in the environment
after their use should be consider. In a recent review [132], Arabi et al. listed the critical
sides of the traditional imprinting technology (see Figure 6).

The authors critically evidenced the unsustainable points of the imprinting and post-
imprinting steps, including the application and disposal of MIPs. This research group also
coined the term “greenification” to present for the first time the fourteen green principles
of imprinting technology [132] as a general guide for the development of green MIPs (see
Figure 7).

These principles cover different aspects, ranging from the employment of non-toxic
(or low-level) reagents and synthetic methods to the fabrication of self-cleaning MIPs in a
short time and the optimization with the aid of computational design prioritizing operator
safety [132].

For example, traditional largely used functional monomers such as methacrylic acid,
acrylic acid, and 4-vynil pyridine, as well as the cross-linkers ethylene glycol dimethacry-
late, trimethylolpropane trimethacrylate, and divinylbenzene, are known as toxic chemical
compounds, and according to the principles of green imprinting, they begin to be replaced
with harmless or environmentally friendly monomers. In this context, room temperature
ionic liquids (RTILs) and deep eutectic solvents (DESs) have emerged as green functional
monomers and solvents [133–135]. Ionic liquids are non-volatile and non-flammable com-
pounds miscible with a wide number of organic solvents. They exhibit low vapor pressure
and high boiling point, high stability, ionic conductivity and viscosity. RTILs are able to
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interact with different organic compounds and bio-macromolecules through the formation
of hydrogen bonds, anion-exchange, hydrophobic, electrostaic and π–π interactions. RTIL-
base MIP presents excellent recognition properties in an aqueous environment [136,137].
One example is represented by the synthesis of a chlorsulfuron-imprinted MIP using
1-vinyl-3 butyl imidazolium chloride. Binding studies evidenced a higher binding capacity
of the MIP (3.88 mg·g−1) toward the template molecules with respect to the non-imprinted
polymer (2.96 mg·g−1). Furthermore, in competitive adsorption, this MIP showed a high
binding selectivity (47.2%) toward the template with respect to its analogs [138]. In a differ-
ent work, 1-viny-3-carboxybutyl imidazolium bromide resulted in an efficient functional
monomer in the synthesis of a polymer imprinted with synephrine [139]. Table 1 lists some
ionic liquids used as functional monomers and their relative template.
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Table 1. Some examples of ionic liquids used as functional monomers in the synthesis of im-
printed polymers.

Functional Monomer Solvent Template Ref.

1-Allyl-3-ethylimidazolium bromide
([AEIM]Br) Water Phenylephrine

(dummy template of clenbuterol) [140]

1-allyl-3- ethylimidazolium
hexafluorophosphate; Water and chloroform 4,4–Dichlorobenzhydrol [141]

3-(anthracen-9-ylmethyl)-1-vinyl1H-
imidazol-3-ium

chloride;
Methanol p-Nitroaniline [142]

1-[3-(N-cystamine)propyl]-3-
vinylimidazolium
tetrafluoroborate;

Water a-Fetoprotein [143]

1-Ethyl- 3-methylimidazolium
tetrafluoroborate ([EMIM][BF4]), ethanol/water Patulin [144]

1-(a-methyl
acrylate)-3-methylimidazolium bromide; Methanol and water Caffeine [145]

1-vinyl-3-methylimidazolium chloride Acetonitrile and water Benzoic acid
(dummy template of salicylic acid) [146]

1-allyl-3-methylimidazolium bromide Acetonitrile Bromide (Z)-3-(chloromethylene)-6-
flourothiochroman-4-one [147]

1-allyl-3-vinylimidazolium chloride Water and ethanol Imiquimod [148]

1-allyl-3-vinylimidazolium chloride; methanol Sulfamonomethoxine [149]

1-(Triethoxysilyl)
propyl-3aminopropylimidazole bromide

Tetrahydrofuran and
methanol

Bisphenol A
(dummy template of

organochlorines)
[150]

1-vinyl-3 butyl imidazolium chloride Water Lysozyme [151]

1-Vinyl-3-ethylimidazolium bromide Water Ochratoxin A [152]

1-Viny-3-carboxybutyl
imidazolium bromide Methanol and water Synephrine [139]

1-vinyl-3 butyl imidazolium
tetrafluoroborate Methanol Cyhalothrin [153]

1-vinyl-3-propylimidazole sulfonate Water Hemoglobin [154]

1,6-hexa-3,30 -bis-1-vinylimidazolium
bromine Water Levofloxacin [155]

3-(3-aminopropyl)-1vinylimidazolium
chloride Water Bovine serum albumin [156]

Mono-6A-deoxy-6-(1-vinyl
imidazolium)-β-cyclodextrin tosylate Phosphate buffer C terminal peptides of

cytochrome C [157]

3-Propyl-1-vinyl imidazolium bromide Methanol and water Amoxicillin [158]

Importantly, ionic liquids are not only used as functional monomers and porogens,
they are also employed as additives, cross-linkers and dummy templates. These aspects are
well discussed in different papers [134,136,159–162]. However, the employment of RILs is
restricted by their high cost. In addition, not all of them are assessed to be non-toxic, and in
some cases, it is preferred to use their derivatives [163].

Other strategies involve the use of metal ions [164], boronates [165] and bio-based
monomers, etc. [132,166,167]. For example, chitosan, and sodium alginate are natural excel-
lent biocompatible, eco-friendly and cost-effective materials simply polymerizing under
mild conditions and interact efficiently with different types of templates (i.e., ions, organic
molecules and biomolecules [132,167,168]. Furthermore, inorganic salts such as calcium
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chloride and N, O-bismethacryloyl ethanolamine (NOBE) resulted a valid alternative to
move toward greener crosslinking agents [60,169]. Self-initiated polymerization is also a
good strategy for avoiding the use of initiators. For example, it has been demonstrated that
acrylic monomers such as 2-hydroxyethyl methacrylate, glycidyl acrylate and methacrylic
acid are self-initiating polymerizable functional monomers by a simple excitation to a
triplet state [170,171].

Considering that some polymerization methods lead to the production of high volumes
of disposal and toxic solvents (e.g., chloroform, dichloromethane, N, N-dimethylformamide,
hexane), which can contaminate the environment and operators, are studying new green
solvents as alternatives to traditional ones [172]. In this perspective, deep eutectic solvents
are emerging as a new generation of green solvents [173]. They consist of two components
that are a hydrogen donor (e.g., choline chloride) and hydrogen acceptor (e.g., alcohols,
amides, amines, urea). They have similar features to ionic liquids, but they are cheaper, safer,
highly biodegradable and can be produced by non-ionic-based compounds [173–178]. As it
was well discussed in recent review papers [60,133,135], they have an excellent recognition
ability in aqueous media and are increasingly employed in imprinting technology. Recently,
an imprinted polymer was fabricated using a bio-based deep eutectic solvent for the
enrichment of organophosphorous in fruits and vegetables [179]. Adsorption experiments
carried out with 5 mL of solution containing 5 mg of MIP and a mix of pesticides having
each one an initial concentration of 218 mg·L−1 revealed an excellent adsorption capacity
toward all pesticides in a short time (30 s). The highest value (218.62 mg·g−1) was observed
in the case of chlorpyrifos, while the adsorption capacity of the non-imprinted polymers
was low (48.58 mg·g−1). Another example is the synthesis of MIPs used for the recovery
of the bioactive compound synaptic acid from agricultural wastes [180]. More in detail,
the imprinted polymer was applied for selectively remove sinapic acid from waste rape
seed extract after oil manufacture. The maximum adsorption capacity was 121 mg·g−1,
while that of the non-imprinted polymer was 23 mg·g−1. Selectivity studies carried out
in the presence of the competing compounds ferulic acid, cinnamic acid, and vanillic acid
showed a selectivity factor synaptic acid/competitor of 20.86, 28.77 and 24.26, respectively.
Conversely, the non-imprinted polymer was not selective and exhibited similar adsorption
capacity toward all tested compounds [180].

Other strategic approaches devoted to the reduction of conventional solvent consump-
tion and emission involve the combination of green porogenic solvents with traditional
functional monomers and cross-linkers or solvent reflux during polymerization [181,182].
The supercritical carbon dioxide (CO2)-assisted synthesis is also a fruitful alternative to the
traditional synthesis employing organic solvents. Supercritical CO2, which is obtainable as
a high pure subproduct of the industry, combines the properties of gas and liquid states.
Owing to its numerous features (apolar, high diffusion coefficient and mass transport
capacity, cheap, inert, low viscosity, non-flammable, non-toxic, odorless, recyclable), it
represents a sustainable solvent both at the research and industrial levels and is a good
porogen of imprinting processes [60,183,184].

Microwave and ultrasound have been present for some years as sustainable strate-
gies used in the imprinting process. More in detail, microwave-assisted synthesis and
the ultrasound-assisted synthesis are applied as innovative green approaches during the
polymerization step. The use of microwave consistently reduces the polymerization time
with respect to traditional heating. This is due to the promotion of high heat transfer into
the reaction mixture that facilitated the increase in reaction rate and the decrease in the
energy consumption [60,132,185,186]. A reduction of reaction rate is also obtained when
employing ultrasound. This is due to the cavitation effect determined by the ultrasonic
energy that increases the solubility and the diffusivity of reactants into the polymerization
solvent [187,188]. It was demonstrated that MIPs are synthesized with the aid of these
green actions, exhibiting similar or higher specific recognition properties of those prepared
via traditional routes [189–194].
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Another extremely important point to consider is the type of chosen template. The
use of toxic templates results as hazardous for human health. In some cases, this problem
is overcome by the use of non-toxic dummy templates. Bagheri et al. [195] exploited
this approach for fabricating dummy molecularly imprinted polymers able to remove
acrylamide from biscuit samples. Instead of the toxic acrylamide, the similar propanamide
was employed as a dummy template in a synthetic process carried out in a green aqueous
environment, thus also avoiding the use of organic solvents [195]. Dummy molecularly
imprinted polymers for detecting and quantifying acrylamide in other food matrices have
also been synthesized [196]. In a different way, the drug ractopmanine was detected in
pig tissues with MIPs synthesized using ritodrine as the dummy template [197]. Another
example of a dummy template is the natural isoflavon daidzein in the production of
MIPs capable of removing fluoroquinolones from fish samples [198]. Dummy molecularly
imprinted resins resulted in efficient solid-phase extraction of plant growth regulators [199].

The template removal from the polymer matrix after both the imprinting process
and the subsequent recognition stage is also a crucial issue. First, the traditional process
involves the use of large solvent volume. Second, polymer swelling (due to the solvent
action) as well as extreme extractive conditions of pH and temperature can alter the created
structure of recognition sites, thus negatively affecting their performance. In this scenario,
acetic acid and sodium dodecyl sulfate (SDS) are largely used for removing bio-based
templates from imprinted polymers even if the surfactant can be adsorbed by the MIP,
allowing for the presence of a negative charge [132]. In order to reduce or avoid the volume
of the extraction solvent, microwave-assisted extraction, ultrasound-assisted extraction
and pressurized hot water extraction were found to be effective in replacing conventional
organic solvents [7,132,200]. Lorenzo et al. [201] intensively discussed the mechanism of
these strategies adopted for template removal. A good strategy for reducing reactants
consumption, waste generation operating cost, and imprinters exposure is multi-template
imprinting, which entails the contemporary use of two or more templates aimed at creating
their corresponding recognition sites in a unique polymer matrix [202–204].

Staying faithful to the principles of greenification, current trends deal with the ap-
plication of green actions on one or more of the aspects discussed above, also combin-
ing eco-friendly and traditionally used chemicals, synthetic routes and post-imprinting
phases. Even if greenificated imprinted polymers present the advantages of harmlessness,
eco-sustainability and biodegradability, further efforts are still underway to implement
production and application. In this context, the roadmap that goes from 2012 to 2030 in
Figure 8 envisages the achievement of various objectives [132]. Some of them are the almost
total employment of bio-based monomers from renewable resources, solvent-free imprint-
ing, the elimination of the post-imprinting stage, the recovery of wastes from imprinted and
their corresponding non-imprinted polymers, and the conversion of wastes in functional
materials [132].

In parallel to the research improvement in producing greenificated MIPs, attention
was also focalized on the application of the principles of green imprinting technology to
the production of green imprinted membranes, which are an advanced form of imprinted
polymers, as is discussed in next paragraph.
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5. Green Molecularly Imprinted Membranes

In accordance with the principles of green molecular imprinting, one of the biggest
challenges for scientists is the use of greener approaches and/or materials for the production
of green imprinted membranes, which represent a special format of imprinted polymers.

In general, membrane separation processes entail the separation and concentration
of one or more desired compounds, employing a membrane as a separation system. The
separation occurs owing to the different permeability of the solutes through the membrane
under the application of a suitable driving force (i.e., pressure gradient, concentration
gradient, etc.). Some typical features rendering competitive membrane-based operations
with respect to traditional techniques are easily scaled-up, stability in a wide pH range,
work in mild conditions of pressure and temperature, and have no phase change or re-
quirement of additives (or in minimal part), low energy consumption and environmental
impact. They can operate as single units or in a continuous integrated manner. The choice
of the membrane is an important aspect to consider, because it represents the key to the
separation process. Most relevant parameters determining the separation performance are
membrane permeability, selectivity and stability [18–23]. From this viewpoint, the idea of
introducing tailored specificity into a traditional membrane has opened up new frontiers
in the field of membrane operations from microscale to nanoscale applications. This is be-
cause imprinted membranes are intelligent tools exploiting contemporary typical features
of imprinting and membrane technologies, thus offering several advantages with respect to
imprinted polymers and traditional membranes [205–208]. For example, MIPs suffer from
a low load capacity and a poor possibility of working continuously, and due to their high
level of crosslinking, they are poorly processable. Conversely, MIMs are able to operate
in a continuous mode, can be applied at large-scale and show higher binding capacity
and separation efficiency. In addition, they exhibit improved selectivity with respect to
the traditional ones but preserve their stability and permeability properties and separate
structural homologues and enantiomers between them [206–209]. Molecularly imprinted
membranes are applied in different areas both as an alternative to the traditional separation
technologies or integrated with them as well as with non-imprinted membranes for ob-
taining a high purification level of specific molecules in a sustainable way [7,206,210–213].
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However, despite their many advantages and although their production has grown a bit
more in recent years, the number of works dealing with the production of MIMs is still low
compared to that of MIPs (see Figure 9).

1 
 

 
Figure 9. Published papers on MIPs and MIMs from 2000 to 2021 based on web of science core
collection. (Reprinted with permission from Ref. [206]. Copyright 2021 Elsevier).

Therefore, more efforts are necessary for their wide-ranging development, not only
in the field of research but also at an industrial level. As summarized in Figure 10,
some examples of MIMs application are the separation of macromolecules and drugs
and the selective recovery of drugs, bioactive compounds, and herbal ingredients from
different matrices [206,213–219]. Other applications are the clinical monitoring of drugs
and toxic compounds [220,221], the drug delivery [222–226], the enantiomeric separa-
tion [227–229], as well as the detection and removal of contaminants from water and other
sources [206,209,230–232]. Among all these applications, one example is the production
of artemisinin-imprinted composite membranes for the selective separation and purifica-
tion of the anti-malaria drug artemisinin from ethanol solutions containing its structural
homologue artemether. In adsorption experiments, the maximum adsorption capacity
of MIMs was 158.85 mg·g−1, while that of the corresponding non-imprinted membrane
was 37.35 mg·g−1. Furthermore, the imprinted membrane exhibited an adsorption selec-
tivity for artemisinin/artemether of 2.04. In competitive permeation experiments, the
permeate flux of artemisinin was 12.5 mg·cm−2 s−1 × 10−4, while that of artemether
was 2.68 mg·cm−2 s−1 × 10−4 [216]. Another example is the extraction of the herbal ac-
tive ingredient Ebracteolata B, which exhibits different pharmacological effects such as
anti-tubercle and anti-cancer activities, from Euphorbia fischeriana extract [217].

The separation of template molecules is achieved via either their selective retention or
facilitated permeation [7,206,209,229,230,233,234].

Molecularly imprinted membranes are prepared in various configurations (flat sheets,
hollow fibers, nanofibers) by exploiting different strategies, where the interactions of
template-functional monomers and template-recognition sites of the membrane matrix
occur via covalent or non-covalent bond (similar to MIPs) [7,13,206,209,213,235,236].

One of the traditional preparation methods of MIMs is the surface imprinting of a
pre-existing membrane via the copolymerization of a thin imprinted polymer layer with the
surface of a pre-existing membrane (e.g., commercial or previously prepared). This route
obtains composite flat-sheets, hollow fibers as well as nanofiber membranes. The applica-
tion of the phase inversion technique leads to the production of composite MIMs by means
of the hybridization of previously synthesized MIP particles with a polymer commonly
used for preparing membranes, either via “wet” or “dry” phase inversion (or their combi-
nation). These last methods are also useful for preparing non-composite MIMS MIMs using
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a polymer ad hoc functionalized with chemical functions able to interact with the template
molecules. Therefore, in this case, the simultaneous formation of the membrane structure
and of its selective recognition sites occur [7,13,206,209,213,229,230,235,236]. As an example
of membrane preparation, Donato et al. [229] developed S-naproxen-imprinted membranes
via photo-copolymerization of the functional monomer 4-vinylpiridine with the surface of
a commercial polypropylene microfiltration membrane. The enantioselective-imprinted
membrane exhibited a facilitated permeation of the enantiomer template. At optimized
operating conditions (T = 25 ◦C, pH = 3.4, P = 0.4 bar, ((R,S)-Nap) = 7.0 µg/mL−1), the
permselectivity factor S-naproxen/R-naproxen was 1.8. The water permeation flux was
typical of ultrafiltration. On the contrary, the pristine commercial membrane and the blank
non-imprinted membranes were not selective. In particular, the commercial membrane
allowed for the permeation of both enantiomers, while the blank membrane exhibited a low
permeation rate owing to the absence of the S-naproxen recognition sites [229]. Composite
MIMs prepared via the phase inversion technique hybridizing the poly (vinylidene) fluo-
ride matrix with polymer particles imprinted with 4,4-methylendianiline exhibited high
specific retention toward the template with respect to non-imprinted membranes and
those prepared with the only commercial poly (vinylidene) fluoride [237]. In permeation
experiments performed in isopropanol at pressure of 0.1 bar with an initial feed concen-
tration of 10 mg·L−1 (in 100 mL), MIMs containing 33 wt.% of MIP particles showed
the highest binding capacity (7.5 µmol·g−1). At the same conditions, the corresponding
non-imprinted membrane and the simple PVDF membrane exhibited a binding capacity
of 4.4 and 2.0 µmol·g−1, respectively. The permeability of the poly (vinylidene) fluoride-
based membrane was in the nanofiltration range, while that of MIM and non-imprinted
membranes was typical of ultrafiltration, indicating that the addition of polymer particles
to the poly (vinylidene) fluoride matrix increased its permeability performance. Moreover,
the MIM exhibited a selectivity factor of 1.82 toward 4,4-ethylendianiline [237].

Membranes 2022, 12, x FOR PEER REVIEW 15 of 33 
 

 

 

Figure 10. Application areas of MIMs. (Reprinted with permission from Ref. [206]. Copyright 2021 

Elsevier.) 

The separation of template molecules is achieved via either their selective retention 

or facilitated permeation [7,206,209,229,230,233,234]. 

Molecularly imprinted membranes are prepared in various configurations (flat 

sheets, hollow fibers, nanofibers) by exploiting different strategies, where the interactions 

of template-functional monomers and template-recognition sites of the membrane matrix 

occur via covalent or non-covalent bond (similar to MIPs) [7,13,206,209,213,235,236]. 

One of the traditional preparation methods of MIMs is the surface imprinting of a 

pre-existing membrane via the copolymerization of a thin imprinted polymer layer with 

the surface of a pre-existing membrane (e.g., commercial or previously prepared). This 

route obtains composite flat-sheets, hollow fibers as well as nanofiber membranes. The 

application of the phase inversion technique leads to the production of composite MIMs 

by means of the hybridization of previously synthesized MIP particles with a polymer 

commonly used for preparing membranes, either via “wet” or “dry” phase inversion (or 

their combination). These last methods are also useful for preparing non-composite MIMS 

MIMs using a polymer ad hoc functionalized with chemical functions able to interact with 

the template molecules. Therefore, in this case, the simultaneous formation of the mem-

brane structure and of its selective recognition sites occur 

[7,13,206,209,213,229,230,235,236]. As an example of membrane preparation, Donato et al. 

[229] developed S-naproxen-imprinted membranes via photo-copolymerization of the 

functional monomer 4-vinylpiridine with the surface of a commercial polypropylene mi-

crofiltration membrane. The enantioselective-imprinted membrane exhibited a facilitated 

permeation of the enantiomer template. At optimized operating conditions (T = 25 °C, pH 

= 3.4, P = 0.4 bar, ((R,S)-Nap) = 7.0 µg/mL−1), the permselectivity factor S-naproxen/R-

naproxen was 1.8. The water permeation flux was typical of ultrafiltration. On the con-

trary, the pristine commercial membrane and the blank non-imprinted membranes were 

not selective. In particular, the commercial membrane allowed for the permeation of both 

enantiomers, while the blank membrane exhibited a low permeation rate owing to the 

Figure 10. Application areas of MIMs. (Reprinted with permission from Ref. [206]. Copyright
2021 Elsevier).



Membranes 2022, 12, 472 16 of 33

Over time, these approaches were improved and strategically combined for producing
advanced membranes [238–248].

Figure 11 shows the representation of flat-sheet membranes exhibiting selective bind-
ing toward template molecules, thus separating them from competing compounds that
accumulate in the permeate stream [7].
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The high performance of selective separation of MIMs, combined with the typical
characteristics of membrane processes, makes their use rational with the principles of green
imprinting technology, even if some characteristics relating to their preparation need to
be better addressed with new and greener interventions. Similar to the case of MIPs, this
is already occurring in part, as for example via the use of more environmentally friendly
functional monomers, solvents and polymers that form the membrane structure. Other
ecological actions are the application of new synthetic routes or the dummy template and
multi-template imprinting, as well as the template extraction with ultrasound, microwave
or supercritical CO2.

For example, the phase inversion technique is useful for preparing MIMs with safe co-
polymers such as poly(acrylonitrile-co-acrylic acid) and natural polymers such as chitosan,
sodium alginate, cellulose, β-cyclodextrin-based, etc. In particular, natural polymers (and
their derivatives) have emerged as high promising materials that form membranes owing
to their low cost, eco-friendly features as well as the abundance of active chemical functions
(i.e., amino, carboxyl and hydroxyl, groups) with affinity toward many compounds and
establishing with them multiple interactions [249–252]. An important aspect of the em-
ployment of these materials is the possibility of avoiding in some cases the polymerization
process, while leading the formation of a “polymer–template complex”. This is due to
the interactions between the functional groups of the template and the complementary
chemical moieties of the polymeric material that form the membrane [250,251,253,254].
This structure is stabilized with the aid of a cross-linker both during or after membrane
formation. These types of polymer–template interactions comprise hydrogen bonding,
electrostatic and π–π interactions, and van der Waals forces. A problem with these materials
is the structural stability in severe conditions; thus, the scientific community is making
efforts in the direction of producing more stable innovative bio-based MIMs. Table 2 reports
some examples on natural materials used in fabricating innovative MIMs.
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Table 2. Some examples of natural materials used in the production of MIMs.

Natural Material Template Application Ref.

Cellulose
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In developing green membranes, natural polymers are used as such for direct mem-
brane preparation or as membrane support, coatings or additives for preparing composite
membranes via the simultaneous use of traditional polymers (e.g., poly (vinylidene) flu-
oride, polysulfone, poly (ether sulfone) polyacrilonitrile, etc.). Among natural materials,
chitosan possesses both amino and hydroxyl groups, the presence of hydroxyl groups
characterizes cellulose, and sodium alginate is a polyelectrolyte rich in carboxyl groups.
The macrocyclic β-cyclodextrin consists of an external hydrophilic part and a hydrophobic
inner cavity playing a key role in the recognition process. Owing to the biocompatibility,
biodegradability and non-toxicity of natural polymers, MIMs prepared with them are
suitable for application in the medical, nutraceutical and pharmaceutical fields as well as in
water treatment. For example, bacterial cellulose was used for producing both diosgenin-
imprinted membranes [250] and quercetin-imprinted [251] membranes, which exhibited a
sustained selective release of the template molecules. Recognition sites were created di-
rectly into the polymer matrix during the membrane formation step via the phase inversion
technique. In a different way, chitosan was used for fabricating a MIM-based sensor able
to selectively detect and remove the 4-nitrophenol from drinking water [260]. In batch
adsorption studies, this membrane exhibited a maximum adsorption of 723.25 µmol·g−1 of
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4-nitrophenol, while the adsorption capacity exhibited by the corresponding non-imprinted
membrane was 517.69 µmol·g−1. In addition, MIMs were selective with respect to compet-
ing phenol, 3-nitrophenol and 4-methoxyphenol, while non-imprinted membranes were
not selective. The treatment of real samples (containing 7.19 µmol·L−1 of this toxic phenolic
compound) with MIMs leads to a removal efficiency of 70.6% [260]. More recently, sodium
alginate resulted in high efficiency as a polymer, forming enantioselective MIMs with tai-
lored recognition sites specific for d-tryptophan [266]. After their formation, the membranes
were crosslinked with calcium chloride by the coordination of two carboxyl groups of the
natural polymer and one Ca2+ ion exchanged with Na+. In pressure-driven permeation
tests, these innovative smart membranes were able to separate tryptophan isomers from
a racemic solution thorough a facilitated permeation of the template enantiomer. At an
operating transmembrane pressure of 0.2 MPa, feed concentration of 0.5 mmol·L−1 and pH
above the isoelectric point of tryptophan (5.89), the permeation flux of d-tryptophan was
5.8 × 10−5 mol·m−2·h−1, and the permeation enantiomeric excess was about 99% (mem-
brane thickness was 0.02 mm) [266]. Conversely, the non-imprinted membrane showed a
permeation flux of almost two times lower (2.91 × 10−5 mol·m−2·h−1). Composite MIMs
were also prepared via coating the surface of a poly (vinylidene) fluoride membrane with a
d-tryptophan-imprinted sodium alginate film, as is shown in Figure 12 [254].
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2017 Elsevier).

After the coating step and before the template extraction, the new composite MIMs
were crosslinked with calcium chloride. Optimized membranes with an imprinted layer
thickness of 0.02 mm exhibited a water flux of 6.46 L·m−2·h−1, a d-tryptophan flux of
about 1.3 L·m−2·h−1 and an enantiomeric excess of 99.13 [254]. Electrospun methy-
lene blue-sodium alginate/polyethylene oxide imprinted nanofiber membranes [267]
and methyl orange-TiO2/calcium alginate hydrogel as a matrix [268] were also pro-
duced. The binding capacity of these membranes toward the template dye was 14.13 and
3186.7 mg·g−1, respectively. Recently, for producing green tetracycline-imprinted nanocom-
posite membranes, a biomass-based strategy was developed [273]. In this context, biomass-
activated imprinted carbon nanoparticles were embedded into the matrix of porous cel-
lulose acetate/chitosan-blended membranes via phase inversion [273]. These obtained
hybrid imprinted membranes exhibited a high permeate rate of the template molecules with
respect to the competing structural analog oxytetracycline. The permselectivity factor was
2.4. Other examples of biomaterials are lignin, starch and water-soluble proteins [253,274].
For increasing the number of recognition sites, these materials are also functionalized via
esterification, etherification, graft copolymerization, oxidation and Schiff’s base reaction,
thus producing biopolymers derivatives [253].

In agreement with the principles of the green molecular imprinting, the employment
of greener solvents such as acetone, dimethylsulfoxide, ethanol, isopropanol, ionic liquids,
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water and deep eutectic solvents for membrane preparation is also continuously increasing
as an alternative to the traditional toxic solvents (e.g., dimethylacetammide and dimethyl-
formammide and chloroform). In addition, multi-template imprinting, the use of less
toxic functional monomers, initiators and cross-linkers, and more green template extraction
strategies is growing [27,275]. A thin polymeric layer imprinted with thymopentin was poly-
merized on the surface of a regenerated cellulose acetate membrane using the ionic liquid
1-vinyl-3-ethyl acetate imidazolium chloride as a functional monomer [276]. Membranes
were tested in solid-phase extraction disks for purifying thymopentin. Scatchard analysis
indicated the presence of both high and low affinity binding sites exhibiting a maximum
binding capacity equal to 13.07 and 8.04 mg·g−1, respectively [276]. In another case, the
ionic liquid 1-butyl-3-methylimidazolium chloride was used as a co-additive for preparing
blended salicylic acid-imprinted cellulose acetate/polyethylene glycol-4000 membranes.
The aim was the recovery of this active pharmaceutical ingredient from wastewaters [277].
Membranes exhibited higher binding affinity with respect to those prepared without the
ionic liquid. In addition, the selectivity factor for salicylic acid with respect to the competing
compounds p-hydroxybenzoic acid and phenol was 5.85 and 5.90, respectively [278]. Fan
and coauthors developed a macroporous cryogel-imprinted membrane using (1-vinyl-3-
(2-amino-2-oxoethyl) imidazolium chloride as a functional monomer and bovine serum
albumin as a model template protein [279], in a phosphate buffer as solvent and porogen.
The pre-polymerization mixture was infiltrated between two glass plates and the subse-
quent polymerization took place at −18 ◦C, leading to the formation of a macroporous
membrane structure having a uniform distribution of pores (see Figure 13).
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Figure 13. Pre-polymerization mixture components during the synthesis of the cryogel bovine
serum albumin-imprinted membrane fabricated by Fan et al. (a); infiltration of the mixture between
two glass plates (b); SEM image (upper) and photo (down) of the obtained free-standing flat-sheet
membrane (c); diffusion cell used in permeation tests (d). (Reprinted with permission from Ref. [278].
Copyright 2018 John Wiley and Sons).

Permeation tests carried out in a diffusion cell with solutions containing the template
and the similar human serum albumin (having each one the concentration of 0.4 mg·L−1)
evidenced a high transport rate of the template molecules: the permeation amount of
bovine serum albumin was 2.82 mg·cm−2, while that of the competing protein was
1.63 mg·cm−2 [278].

Other syntheses, involving the application of the dummy template strategy, led to
the production of innovative MIMs. For example, the separation of the herbal Chinese
medicine (anti-malaria) artemisinin from the contaminant artemether was achieved with
composite membranes imprinted with the dummy compound artesunate. This was because
artemisinin has no chemical groups that can interact with functional monomers [279].
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Membrane were prepared via the phase inversion adding pre-synthesized artesunate–MIP
particles to a poly (vinylidene) fluoride cast solution.

Figure 14 shows the behavior of the adsorption capacity and the selectivity factor (α)
artemisinin/artemether of the best membrane.
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Figure 14. Adsorption capacity of poly (vinylidene) fluoride artesunate-imprinted (a) and non-
imprinted membrane (b) (containing the 16.6 wt.% of MIP particles) toward artemisinin and
artemether as well as selectivity factor (α) in time. Artesunate was used as a dummy template.
Concentration of each analyte in the feed solution = 200 mg·L−1; transmembrane pressure = 0.1 MPa;
temperature = 25 ◦C; flow rate = 17 mL·min−1; active membrane area = 21.23 cm2. (Reprinted with
permission from Ref. [279]. Copyright 2021 Elsevier).

In another work, the detection of the mycotoxin citrinin in rice was accomplished
using membranes imprinted with the less toxic dummy template 1-napthol [280]. Recently,
in an eco-friendly synthesis involving the use of 1-vinylimidazole as a functional monomer
and mild photo-co-polymerization conditions on the surface of a nylon-66 membrane,
gatifloxacin was used as a dummy template. The prepared composite MIMs allowed for the
simultaneous recognition and extraction of the antibiotics enrofloxacin and ciprofloxacin
from egg samples [281].

The chemical structure of some investigated compounds and that of their relative
dummy templates used in MIMs fabrication are reported in Table 3.

Table 3. Some target molecules and their relative dummy template used in green MIMs production.

Target Compound Dummy Template Application Ref.

Artemisinin
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Table 3. Cont.

Target Compound Dummy Template Application Ref.
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the subsequent recognition process. This is because possible template traces remaining in 
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[176,286,287]. A contribution in this direction also comes from the use of supercritical CO2 

both during the polymerization step and during template extraction [288–290]. 

As is evident, the combination of the concept of green chemistry with that of molec-
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membranes”, which are promising for application in different sectors characterizing our 

life. However, it is necessary to make further efforts to use them now more than before on 

a large scale and on the industrial level, even in new integrated processes that require high 
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6. Conclusions 

Over time, human necessities and technological progress have allowed for contem-

porary increases in chemical processes at the research and industrial levels. However, the 

consumption of large solvent, toxicity of some used materials, and disposal problems have 

led to a status quo no longer sustainable both from the points of view of human health 

and from that of the host planet. The development of more eco-friendly processes has 

therefore become an emergency, allowing for the advent of green chemistry. According 

to its 12 principles based on ecological approaches, it plays a key role as a strategic alter-

native to the traditional chemical processes for reducing environmental problems and 

coping with new requirements of sustainability and economic affordability. Today, green 

chemistry finds application in organic and inorganic syntheses, in chemical reactions, and 

separation processes, as well as in the production of greener polymers and membranes, 

such as biopolymers and biopolymer-based membranes via the valorization of wastes. In 

this scenario, the world of molecular imprinting has embraced the concept of green chem-

istry and the current trend is devoted to the development of eco-friendly processes for 

producing green molecularly imprinted materials. 

In particular, in agreement with the principles of green molecular imprinting and 

with their high selective separation performance, green MIMs are promising efficient tools 

for application in different areas. Strategic green actions characterizing their production 

are focalized on the minimization of waste production and energy and solvents consump-

tion as well as on the use of harmless chemicals. They are realized with the aid of compu-

tational design, prioritizing operator security and including the use of greener or natural 

polymers as membrane-forming material, greener functional monomers, cross-linkers 

and solvents such as ionic liquids, deep eutectic solvents, acetone, dimethylsulfoxide, eth-

anol, water and supercritical CO2. The dummy template imprinting and the multi-tem-

plate imprinting strategies represent other effective approaches that are also effective in 

limiting the use of toxic or precious templates and in avoiding the template bleeding prob-

lem. 
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In a different approach, cinnamic and ferulic acids were used simultaneously for fabri-
cating dual-template imprinted membranes exhibiting permeability typical of ultrafiltration
and capable of detecting them in cereal samples [284].

In addition to the aspect of template use and extraction discussed in the previous
paragraph, (limiting the use of toxic or precious templates as well as solvent consumption
for their removal), the dummy template and the multi-template imprinting strategies are
useful to control/avoid the template bleeding that sometimes represents a drawback of the
subsequent recognition process. This is because possible template traces remaining in the
membrane can negatively affect precise analytical determinations if released [176,285,286].
A contribution in this direction also comes from the use of supercritical CO2 both during
the polymerization step and during template extraction [287–289].

As is evident, the combination of the concept of green chemistry with that of molecular
imprinting technology has proven successful in the development of “green intelligent
membranes”, which are promising for application in different sectors characterizing our
life. However, it is necessary to make further efforts to use them now more than before on
a large scale and on the industrial level, even in new integrated processes that require high
selective separation efficiency.

6. Conclusions

Over time, human necessities and technological progress have allowed for contem-
porary increases in chemical processes at the research and industrial levels. However, the
consumption of large solvent, toxicity of some used materials, and disposal problems have
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led to a status quo no longer sustainable both from the points of view of human health
and from that of the host planet. The development of more eco-friendly processes has
therefore become an emergency, allowing for the advent of green chemistry. According
to its 12 principles based on ecological approaches, it plays a key role as a strategic al-
ternative to the traditional chemical processes for reducing environmental problems and
coping with new requirements of sustainability and economic affordability. Today, green
chemistry finds application in organic and inorganic syntheses, in chemical reactions, and
separation processes, as well as in the production of greener polymers and membranes,
such as biopolymers and biopolymer-based membranes via the valorization of wastes.
In this scenario, the world of molecular imprinting has embraced the concept of green
chemistry and the current trend is devoted to the development of eco-friendly processes
for producing green molecularly imprinted materials.

In particular, in agreement with the principles of green molecular imprinting and with
their high selective separation performance, green MIMs are promising efficient tools for
application in different areas. Strategic green actions characterizing their production are
focalized on the minimization of waste production and energy and solvents consumption
as well as on the use of harmless chemicals. They are realized with the aid of computational
design, prioritizing operator security and including the use of greener or natural polymers
as membrane-forming material, greener functional monomers, cross-linkers and solvents
such as ionic liquids, deep eutectic solvents, acetone, dimethylsulfoxide, ethanol, water
and supercritical CO2. The dummy template imprinting and the multi-template imprinting
strategies represent other effective approaches that are also effective in limiting the use of
toxic or precious templates and in avoiding the template bleeding problem.

The typical characteristics of membrane processes have allowed them to spread widely
with great success, predominantly in the case of pressure-driven membrane operations.
Conversely, despite the excellent properties of molecularly imprinted membranes, there is
still considerable work to accomplish for better exploitation of the combination of green
chemistry with imprinting technology for their possible application at a large scale in the
near future. From this viewpoint, and taking present the greenificated roadmap from 2012 to
2030 of green imprinting technology, this review represents an opportunity for stimulating
the awareness of exploring other green aspects of MIMs production for enhancing their
sustainability and environmental remediation. In this perspective, it is legitimate to predict
that the production of advanced green imprinted membranes and their integration with
traditional membrane operations such as ultrafiltration, nanofiltration, reverse osmosis or
membrane distillation will make it possible to market them.
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