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Abstract: Using an environmentally friendly approach for eliminating methylene blue from an aque-
ous solution, the authors developed a unique electrospun nanofiber membrane made of a combination
of polyethersulfone and hydroxypropyl cellulose (PES/HPC). SEM results confirmed the formation
of a uniformly sized nanofiber membrane with an ultrathin diameter of 168.5 nm (for PES/HPC)
and 261.5 nm (for pristine PES), which can be correlated by observing the absorption peaks in FTIR
spectra and their amorphous/crystalline phases in the XRD pattern. Additionally, TGA analysis
indicated that the addition of HPC plays a role in modulating their thermal stability. Moreover,
the blended nanofiber membrane exhibited better mechanical strength and good hydrophilicity
(measured by the contact angle). The highest adsorption capacity was achieved at a neutral pH under
room temperature (259.74 mg/g), and the pseudo-second-order model was found to be accurate.
In accordance with the Langmuir fitted model and MB adsorption data, it was revealed that the
adsorption process occurred in a monolayer form on the membrane surface. The adsorption capacity
of the MB was affected by the presence of various concentrations of NaCl (0.1–0.5 M). The satisfactory
reusability of the PES/HPC nanofiber membrane was revealed for up to five cycles. According to
the mechanism given for the adsorption process, the electrostatic attraction was shown to be the
most dominant in increasing the adsorption capacity. Based on these findings, it can be concluded
that this unique membrane may be used for wastewater treatment operations with high efficiency
and performance.

Keywords: polyethersulfone; hydroxypropyl cellulose; electrospun nanofiber membrane; food
industry wastewater; adsorption

Membranes 2022, 12, 413. https://doi.org/10.3390/membranes12040413 https://www.mdpi.com/journal/membranes

https://doi.org/10.3390/membranes12040413
https://doi.org/10.3390/membranes12040413
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/membranes
https://www.mdpi.com
https://orcid.org/0000-0001-6187-5351
https://orcid.org/0000-0001-7566-6198
https://orcid.org/0000-0003-1101-3248
https://orcid.org/0000-0003-3852-4523
https://orcid.org/0000-0002-7911-1058
https://orcid.org/0000-0002-7925-3144
https://orcid.org/0000-0002-3347-0506
https://orcid.org/0000-0003-2400-640X
https://orcid.org/0000-0002-3395-3276
https://doi.org/10.3390/membranes12040413
https://www.mdpi.com/journal/membranes
https://www.mdpi.com/article/10.3390/membranes12040413?type=check_update&version=1


Membranes 2022, 12, 413 2 of 19

1. Introduction

The pollution of the world’s water supplies has been noted as a major issue. Contami-
nants in wastewater may include a wide range of substances, such as microbes, colloids,
proteins, heavy metals, and dyestuffs. Among them, dyestuff-contaminated industrial
wastewater has significantly negatively impacted water and land quality, human health,
and the ecosystem. It is the most challenging compound to remove from the industrial
effluent streams because of having a stable and complex structure [1–5]. Notably, the food
industry uses a variety of dyestuffs for their manufacturing purposes, and methylene blue
(MB) is one of them. One of the most often utilized dyes in the manufacture of consumer
goods, such as roasters, cutlery, and paper sheets, is MB (cationic azo dye). It may perma-
nently harm the eyesight of people and animals alike, by causing severe eye burns. Acute
palpitations and wheezing may be caused by some substances, which might exacerbate
lung difficulties [6–8]. The investigation of suitable techniques for eliminating MB from
wastewater discharge by the food sector is thus a fundamental challenge.

The adsorptive removal of dyes from industrial effluents, in particular, has been
identified as one of the most workable and effective methods by virtue of its simplicity, high
efficiency, and availability of pollutant capture sites in their structure [9–11]. Nowadays,
electrospun-based nanofibers membrane materials, usually with smaller diameters (less
than 100 nm) and larger surface areas, are extensively used to replace traditional adsorbents.
The electrospinning process is carried out by applying an electric field (a high voltage power
supply) in which the working solution contained in a syringe is connected to the spinneret
using a needle, and the Taylor cone formed indicates the development of the nanofiber
membranes. Subsequently, a stainless steel plate is used to collect the as-synthesized
nanofiber membranes. To date, various polymers have been applied to fabricate nanofiber
membranes because of their feasibility in the electrospinning process, meaning a greater
adjustability of the diameter, alignment, and orientation in a linear form [12–16].

In comparison to other polymers, polyethersulfones (PESs) rely on their suitable ther-
mal stability, mechanical strength, and chemical resistance, making them a suitable material
in the realm of wastewater treatment. PESs have long been used to fabricate conventional
commercial membranes because of their high permeability, affinity, and selectivity [17–19].
Accordingly, electrospun-based PES nanofiber membranes are currently applied at a large
scale to remove pollutants from industrial effluents. For example, Koushkbaghi and co-
workers [20] fabricated dual layers of chitosan/PVA/PES filled with aminated-Fe3O4
nanoparticles for the removal of Cr(VI) and Pb(II) ions. The adsorption capacity was
strongly affected by solution pH. As such, pH 6 provides the maximum adsorption capacity
for Cr(VI), while a lower pH was found to be suitable for maximum Pb(II) ions. In a
similar approach, Zheng et al. [21] prepared ionic liquid grafted polyethersulfone-based
electrospun nanofibrous membranes and demonstrated that developed membranes could
be multifunctional materials, such as exhibited dye, heavy metals, and present antibacterial
efficiency. Nevertheless, PES-based electrospun nanofiber membranes showed some limita-
tions, such as hydrophobicity, low solubility, and stability, which need to be addressed in
order to achieve a satisfactory performance.

Conversely, the usage of cellulose-based natural materials in electrospinning is on
the rise because of their functionality, durability, and uniformity [22–26]. Among them,
hydroxypropyl cellulose (HPC), a non-ionic ether of natural cellulose, is a polymer with
temperature-dependent water solubility, excellent mechanical and thermal stability, and
good chemical characteristics. It is becoming more popular because of its renewable ability,
simplicity to manufacture, non-toxicity, and optical elements [27]. Additionally, surface
wettability with an aqueous medium, heat resistance, and molecular transmission phenom-
ena have been observed in HPC-based electrospun nanofiber membranes, making them
desirable for wastewater treatment. For instance, Soraya Hassanpour et al. [28] reported
that methylene blue (MB) dye was adsorbed from an aqueous solution using a new biocom-
patible adsorbent based on hydroxypropyl cellulose (HPC) and itaconic acid nanogels. For
the phenol adsorption, composite hydrogels based on hydroxypropyl cellulose (HPC) and
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graphene oxide (GO) were developed and employed with a maximum adsorption capacity
of 136.5 mg/g [29]. However, no one has yet reported on the synthesis of PES/HPC-based
electrospun nanofiber membranes and their use in wastewater treatment; thus, further
research is needed.

The present study, therefore, aims to fabricate a unique PES/HPC blended nanofiber
membrane utilizing a one-step electrospinning scheme, and use it for the first time to remove
the MB from an aqueous solution. Usually, the selected operational parameters, such as the
initial solution pH, contact time, initial MB concentration, and ionic strength concentration,
are carefully investigated in order to gain insights into the adsorption process.

2. Materials and Methods
2.1. Materials and Chemicals

In the present study, polyethersulfone (PES, Ultrason E 6020 P) with a molecular weight
of 65,800 g/mol was purchased from BASF SE (Ludwigshafen, Germany). Hydroxypropyl
cellulose (HPC, 99%, CAS No. 9004-64-2) was purchased from Shanghai Honest Chem. Co.,
Ltd. (Shanghai, China). N,N-dimethylacetamide (DMAc) (CAS No.: 127-19-5) was obtained
from TNJ Chemical Industry Co., Ltd., (Hefei, China). Methylene blue (95% pure) was
obtained from Sigma Aldrich Co., Ltd. (Darmstadt, Germany). A non-woven polyethylene
terephthalate (PET) paper was acquired from Guocheng Co. (Wuxi, China) and used as a
collector for the electrospun nanofiber membranes in this experiment. Other materials and
reagents were employed without additional modification, and deionized (DI) water was
used throughout the entire experiment.

2.2. One-Step Electrospinning

As shown in Figure 1, the PES/HPC nanofiber membranes were produced using the
one-step electrospinning process.
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Figure 1. An illustration of the one-step electrospinning nanofiber membrane fabrication process.

Blended PES/HPC solutions were prepared by dissolving 10 wt% PES and 2 differ-
ent HPC concentrations (2 and 4 wt%) into 86 mL of DMAc solution, and continuously
stirred for 4 h at room temperature. Then, the electrospinning process was carried out
on a laboratory-size electrospinning machine (Foshan Lepton precision measurement and
control technology Co., Ltd., M06, Foshan, China). The prepared solutions were transferred
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to separate 20 mL syringe pumps. Each solution was injected at a feeding rate of 1.0 mL/h
under an applied voltage of 7.5 kV at 28 ◦C. The distance between the needle tip and the
stainless steel plate was adjusted to 18 cm. The optimum electrospinning process conditions
were determined by preliminary experiments. The nanofiber membranes were removed
from the PET non-woven sheet and placed in a vacuum dryer oven (Zhengzhou Keda
Machinery and Instrument Equipment Co., Ltd., Henan, China) for 5 h at 60 ◦C, to remove
the DMAc solvent. The pristine PES nanofiber membranes were also made using the same
procedure, for comparison purposes, but without the addition of HPC. Accordingly, the
pristine HPC was also prepared using the absence of PES. Table 1 presents the overall
electrospinning conditions.

Table 1. The electrospun solution properties and their fiber characteristics.

Sample Type Polymer
Concentrations (wt%)

Voltage
(kV)

Flow Rate
(mL/h)

Viscosity
(mPa/s)

Conductivity
(mS/cm) Fiber Morphology Diameter

(nm)

PES 10 7.5 1.0 2268 1.6 Continuous fibers 261.5
HPC 2 12 1.5 320 0.002 No fibers -

PES/HPC 10/2 7.5 1.0 1845 1.9 Beads with fibers 184.1
PES/HPC 10/4 7.5 1.0 1543 2.2 Continuous fibers 168.5

2.3. Analytical Methods

An NDJ-8S digital rotating viscometer was used to measure the solution’s viscosity
(Movel Scientific Instrument Co., Ltd., Ningbo, China). The pH was determined by a DZS-
706A multi-parameter analyzer and the conductivity of the solution using a conductivity
meter (INESA Scientific Instrument Co., Ltd., Shanghai, China). A professional DropMeter
A-300 was used to measure the water contact angles of the membranes (Kudos Instruments
Corp. New York, NY, USA). A Phenom desktop scanning electron microscope was used
to analyze the nanofiber membrane surface morphologies (SEM, Thermo Fisher Scientific,
Tokyo, Japan). The samples were gold-sputtered and the accelerating voltage was 5 kV prior
to the acquisition of the SEM photos. The acquired SEM photos were utilized to analyze
the fiber diameter distribution behavior of the membrane, which was processed using
ImageJ software (https://imagej.nih.gov/ij/download.html, accessed on: 30 September
2021). Fourier transform infrared spectroscopy (IR, Interspectrum, low noise DLATGS,
FTIR-920; Tartu maakond, Estonia) was used to detect the presence of functional groups in
the nanofiber membranes. In order to obtain the quantitative FT-IR spectra, the samples
were ground with potassium bromide powder in a mortar and pestle and then placed in
front of the laser beam to be illuminated. Subsequently, the spectra were collected within
the wavenumber ranging from 400 to 4000 cm−1. A TG analyzer (TG 209 F1 Libra, Netzsch
Instruments, Wolverhampton, UK) was used to study the thermal characteristics of the
samples throughout a temperature range of 0 to 850 ◦C. The heating rates were maintained
at roughly 10◦/min over the entire temperature range. The TG analysis was carried out at
a flow rate of 50 mL/min, while the sample was in a nitrogen environment. The crystal
structure of the membrane was determined using an X-ray diffractometer (Empyrean,
Malvern PANalytical, Worcestershire, UK), with scans being taken from 2θ = 10◦ to 80◦.
The nanofiber membranes’ mechanical characteristics were assessed using an ASTM D882-
18-compliant tensile tester (KD-III type BA-100m (Transcll technology, Shenzhen, China) at
room temperature. The dimensions of the sample were 5 × 40 mm, and a rotational speed
of 1 mm/min was employed throughout the test.

2.4. Batch Adsorption Studies
2.4.1. The Effect of the Solution pH

The effect of the solution pH was investigated by the following experimental pro-
cedures: a total of 10 mg of weighted adsorbents was placed into VWR centrifuge tubes
(polypropylene) holding 10 mL of a 400 mg/L MB solution and magnetically swirled for

https://imagej.nih.gov/ij/download.html
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24 h at a speed of 200 r/min under different pH conditions (3–10), at room temperature. The
pH of the solution was adjusted by adding a buffer solution that had been previously made
in the presence of 0.1 M HCl and NaOH. Following each test, a predetermined quantity of
the solution was obtained at certain intervals and filtered through a 0.45 µm membrane
filter. Following this, A Perkin-Elmer Lambda 25 UV-Vis spectrophotometer (Waltham,
MA, USA) was used to measure the concentration of MB at a 200–800 nm wavelength range.
The adsorption capacity of MB at time t (qt, mg/g) was calculated using the following
Equation (1) [30]:

qt =
(C 0 − Ct)V

m
(1)

where C0 (mg/L) and Ct (mg/L) are the initial MB concentrations and that at time t, V (L)
is the volume of MB solution, and m (g) is the adsorbent amount.

2.4.2. The Effect of the Initial MB Concentrations

The effect of the initial concentrations of MB on the equilibrium adsorption capacity
by the pristine PES and PES/HPC nanofiber membranes was examined. In order to create
workable solutions for the different batch experiments, the stock solution was diluted in
deionized water first. In order to assess the impact of the MB concentration on adsorption
performance, a series of identical procedures were carried out under a range of different MB
concentrations (200, 400, 600, 800, and 1000 mg/L) at a neutral pH and room temperature.

2.4.3. The Effect of the Ionic Strength Concentration

In the presence of the produced pristine PES and PES/HPC nanofiber membranes,
a standard adsorption approach was used to evaluate the influence of ionic strength on
the adsorption capacity of MB. In a similar approach, 10 mg of adsorbents was put into
10 mL of 400 mg/L MB solution at a neutral pH by adding varying concentrations of NaCl
(0.1–0.5 M) and stirred for 24 h.

2.5. Reusability

The reusability of the adsorbents was determined by soaking them in a 2 mM HCL
solution for 6 h at room temperature. Five regeneration cycles were carried out under
identical experimental conditions, with each tested adsorbent being washed twice with DI
water and then prepared for the next adsorption cycle. Following that, the concentration of
MB was measured to determine the adsorption capacity.

3. Results and Discussion

The current study was undertaken to develop a novel electrospun nanofiber mem-
brane for the purification of food industry wastewater, whereby MB was used as a model
pollutant. For this purpose, a non-toxic polymer hydroxypropyl cellulose was used as
an additive to improve the affinity of the electrospun nanofiber membrane towards the
purification medium, as indicated by the adsorption process. The structure–property rela-
tionship of the blended membrane was studied using a variety of characterization methods,
and its adsorption behavior was investigated in depth, including the kinetics, isotherm,
and reusability. Finally, a tentative adsorption mechanism was presented to explain the
adsorption process.

3.1. The Properties of the Adsorbents
3.1.1. SEM

SEM images were used to determine the analysis of the morphological traits of elec-
trospun nanofiber membranes made of PES and PES/HPC, respectively. Regarding the
average diameter distribution, the smooth surface of the pristine PES nanofiber membrane
(Figure 2a) is characterized by homogeneous large-in-diameter fibers with a diameter of
261.5 nm (Figure 2d). On the other hand, blended PES/HPC nanofiber membranes (con-
centration: 10/2 wt%) (Figure 2b) produced smaller diameter fibers (184.1 nm) (Figure 2e),
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but beads were on their surface, which is not feasible. However, when the concentration
of HPC was increased to 4% (Figure 2c), this resulted in a more homogeneous structure
with a smaller diameter (168.5 nm) and more smooth fiber stacking (Figure 2f). In ad-
dition, the reason for this phenomenon might be described by decreasing the solution
viscosity (Table 1), which, in turn, reduces the nanofiber diameter; increasing the solution
conductivity (Table 1) also has the same effect of reducing the fiber diameter, as reported
elsewhere [31,32]. Therefore, in view of the smaller diameter and beads-free membrane,
pristine PES and PES/HPC (10/4 wt% concentration) samples were chosen for the following
experimental parts. Moreover, it is known that composite polymer nanofiber membranes
with smaller diameters have a high specific surface area at a given volume than those with
a larger diameter, and hence more active sites to adsorb more organic pollutants during
adsorption [33,34].
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(10/2 wt%) (b,e), and PES/HPC (10/4 wt%) (c,f) nanofiber membranes.

3.1.2. FTIR

FTIR is well known for its effectiveness in interpreting structural data by providing
the vibrational band’s shape, intensity, and changes of environmental and conformation
characteristics at the molecular level of polymers. Figure 3 depicts the FTIR spectra of
the pristine PES and the blended PES/HPC electrospun nanofiber membrane. From the
pristine PES nanofiber membrane spectrum, it was observed that the absorption peaks
appeared at 710 cm−1 and 820 cm−1, assigned to CH2 bond C–H stretching, respectively.
The characteristic bands of the functional groups at 1106–1150 cm−1, 1319 cm−1, 1568 cm−1,
1670 cm−1, and 1750 cm−1 correspond to O=S=O, C–O stretching, C=C stretching, N–
C=O carbonyl vibrations, and C=O stretching, respectively [35]. The stretching vibration
of aromatic C–H groups is also responsible for the two prominent absorptions broader
peaks observed at 2830 cm−1 and 3250 cm−1 [36]. The absorption peaks of the blended
PES/HPC membrane are almost identical to those of the pristine PES nanofiber membrane,
except for smaller additional peaks across the blended membrane spectrum. For example,
the wide absorption peak at 3583 cm−1 is attributed to the OH stretching vibration of
free hydroxyl and hydrogen bonds. Subsequently, a shoulder peak at 1635 cm−1 (C=O
stretching), 1164 cm−1 (C–O asymmetric stretching), and two consecutive sharp narrow
peaks were counted at 895 cm−1 (C–O deformation and -CH2 rocking) and 726 cm−1 for
the twisting of O–H, which are typical of the nature of HPC polymers [37,38]. Based on
these findings, it can be concluded that the successful interaction between PES and HPC
was dominated by physical contact rather than a chemical reaction.
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3.1.3. XRD

Figure 4 shows the XRD patterns for the pristine PES and PES/HPC blended electro-
spun nanofiber membrane. Due to the amorphous nature of the PES polymer, the pure PES
nanofiber membrane displayed a strong characteristic peak at 2θ = 13.54◦. Additionally,
there was another peak that emerged at 2θ = 43.14◦ because of the second carbon pair
existence in the neighboring chain [39]. The effect of the addition of HPC on the blended
PES/HPC nanofiber membrane did not present any major changes, with a broader peak at
2θ = 12.44◦. It is considered that the somewhat ordered amorphous phase of the HPC is
responsible for the wide peak at 2θ = 20.1◦, while the crystalline phase of the main chain
backbone–backbone d-spacing corresponds to the peak at 2θ= 8.94◦ [40].
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3.1.4. TGA

Figure 5 displays the results of a TGA profile on the thermal stability of the pristine
PES and the blended PES/HPC electrospun nanofiber membranes, and is nowadays
receiving special attention. The pristine PES nanofiber membrane exhibited three phases
of weight loss, whereby the weight loss in the first phase (30–100 ◦C) was less than 5%
because of the evaporation of water molecules that were physically attached to the polymer
backbone chain. Following this, the elimination of the leftover solvent from the pristine
nanofiber membrane surface occurred during the second-phase degradation, which took
place between 140 and 400 ◦C, and resulted in a weight loss of 21%. Additionally, when
deterioration reached a temperature between 496 and 673 ◦C, the ether bond (C–O) fracture
of the pristine PES nanofiber membrane caused the greatest weight loss (around 54%) [41].
The case of the PES/HPC blended electrospun nanofiber membrane is interesting; it exhibits
a two-phase thermal degradation pattern, and a modest weight loss between (1–5)% was
detected during the first phase (30–100 ◦C) due to moisture evaporation. Additionally, the
major weight loss occurred from 285 to 650 ◦C (around 71%), with a maximum degradation
peak found at 355 ◦C, which is related to the existence of the DMAc solvent evaporation
temperature. Moreover, this degradation pattern was much lower than the HPC polymer
reported in the literature [42]. Overall, it was observed that the blended PES/HPC nanofiber
membrane demonstrated a better thermal performance (total weight loss: 76%), compared
to the pristine PES nanofiber membrane (total weight loss: 80%). These findings indicate
the existence of a physical interaction between hydroxypropyl cellulose and PES materials.
Furthermore, more hydrogen bonds were established between the hydroxyl groups of
HPC and the sulfone groups of PES in the presence of HPC as an adhesion material,
which increased PES/HPC interfacial contact and promoted thermal stability [43]. This
observation is consistent with an earlier study that found blended nanofiber membranes
acceptable for thermally coupled wastewater-treatment applications [44].
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3.1.5. Mechanical Properties

The mechanical properties of the electrospun NMs have been proven to be critical
in wastewater treatment [45]. The mechanical characteristics between pristine PES and
blended PES/HPC nanofiber membranes were examined in this study using tensile studies,
and the findings are presented in Figure 6. A larger strain percentage (27.12%) was observed
in the pristine PES nanofiber membrane, although the tensile strength of the membrane
was more reduced (around 3 MPa). A 30.2% increase in the tensile strength (3.82 MPa)
was observed in the blended PES/HPC nanofiber membrane, compared to the pristine
PES nanofiber membrane, demonstrating that the intercalation of HPC into the PES matrix
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significantly improves the intermolecular interaction. Additionally, because of the presence
of surface hydroxyls, it is possible to increase the number of physical or chemical cross-
linking sites, which is favorable to the mechanical qualities [46]. Additionally, a larger
number of nodes may be found in the fiber pores, thanks to a reduction in the overall
diameter of the blended PES/HPC nanofiber membrane due to HPC inclusion (an increased
surface area), resulting in higher tensile strength.
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3.1.6. Hydrophilicity

The membrane’s surface wettability, particularly its hydrophilicity, is thought to be
a significant characteristic for improving water purification performance [47]. This study
assessed the hydrophilicity of two electrospun nanofiber membranes by measuring their
contact angles. For the pristine PES electrospun nanofiber membrane, the contact angle was
81.10 ± 1.3◦ (Figure 7a), which indicates that the membrane had less hydrophilicity with a
rough surface (Figure 7c). A lower contact angle of 55.4 ± 0.9◦ was found for the blended
PES/HPC electrospun nanofiber membrane, indicating that the membrane has a more
hydrophilic and smooth surface (Figure 7b,d). The contact angle of the membranes tends
to decrease when a HPC polymer is added to the solution, as reported in a previous study
by Gradinaru et al. [48]. Overall, this study implies that, because of their hydrophilicity,
PES/HPC membranes adsorb more dye molecules, utilizing their high porosity behavior
to generate a stronger affinity between the water/dye and membrane surface [29,49].
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3.2. MB Adsorption Studies
3.2.1. The Effect of the Initial Concentration

The adsorbent’s binding sites are influenced by the initial dye concentration, which
has an indirect effect on dye adsorption capability. Consequently, the adsorption capacity
was tested under optimum conditions at various starting concentrations ranging from
50–1000 mg/L. The adsorption capacity of both adsorbents is favorably influenced by the
starting concentration, as is shown in Figure 8.
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The fast adsorption capacity (43.47–186.12 mg/g) of a PES/HPC blended nanofiber
membrane was observed with an increase in the starting concentration from 50–400 mg/L,
while increasing the concentration further, by up to 1000 mg/L, resulted in a slightly
increased adsorption capacity of 198.78 mg/g. When the concentration is more than
400 mg/L in both scenarios, a reasonable increase in the adsorption capacity indicates
that equilibrium has been attained. A similar pattern was observed for the pristine PES
nanofiber membrane, although the adsorption capacity was relatively low throughout
the entire varied concentrations, where the highest capacity of 41.02 mg/g was achieved
at 400 mg/L. This result indicates that an increase in the concentration promotes mass
transfer, which, in turn, raises the driving force for MB adsorption. MB molecules are also
transported in significant numbers from the aqueous phase to the nanofiber membrane’s
solid surface, resulting in an increased adsorption capacity [50].

3.2.2. Adsorption Kinetics

The study of adsorption kinetics is crucial for determining the rate constant of the
entire adsorption process in relation to the contact time. Therefore, the kinetic behavior
of the MB adsorption onto PES and PES/HPC membranes was studied, with the findings
presented in Figure 9a,b, respectively. At the start of the experiment, the adsorption rate was
rapid, but it steadily slowed down as the duration continued, until it reached equilibrium.
The equilibrium for the MB adsorption was attained in 1080 min; it took 1440 min with PES,
but only 840 min with the PES/HPC, whereby 75% of MB was adsorbed within 360 min.
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These findings show that the introduction of HPC into PES resulted in a surface area with
more MB-capture active sites.
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Moreover, nonlinear pseudo-first-order (PFO) (Equation (2)) and pseudo-second-order
(PSO) (Equation (3)) models were used to explain the adsorption kinetics.

qt = qe

(
1 − e−k1t

)
(2)

qt =
k2q2

e t
1 + k2qet

(3)

where qt (mg/g) represents the adsorption capacity of MB at any time t; k1 (min−1) and k2
(g/mg/min) are the kinetic rate constants for the pseudo-first order and pseudo-second
order, respectively.

Figure 9a,b illustrates the fitted curves, with the fitted values reported in Table 2. For
PES, PSO had a higher correlation co-efficiency PSO (R2 = 0.9965) than PFO (R2 = 0.9893).
When the PES/HPC blended nanofiber membrane was present, the correlation co-efficiency
of PFO (R2 = 0.9908) was lower than that of PSO (R2 = 0.9995) in terms of R2. MB adsorp-
tion onto the PES and PES/HPC nanofiber membranes was found to be well fitted by the
PSO kinetic model, suggesting that the adsorption process of MB is dominated by the
chemisorption mechanism, in which electron exchange occurs between the adsorbent and
MB molecule binding sites, rather than by the electrostatic mechanism. Previous investi-
gations have also shown that the pseudo-second-order kinetic model for MB adsorption
may have a good fitting. For example, Luo et al. [51] observed that the adsorption of MB
followed a second-order kinetic model when they used a cellulose nanofiber-based highly
flexible compressible super assembled aerogel. Based on our research, it can be concluded
that the PES/HPC nanofiber membrane demonstrates an outstanding molecular adsorption
performance of MB in a short period of time, making it suitable for practical use.

Table 2. The kinetic parameters for MB adsorption.

Samples Pseudo-First Order Pseudo-Second Order

K1
(min−1)

qe
(mg/g) R2 K2

(g/mg/min)
qe

(mg/g) R2

PES 0.0034 35.3161 0.9893 0.0001 41.9531 0.9960
PES/HPC 0.0101 183.3293 0.9908 0.0004 195.0212 0.9995
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3.2.3. Adsorption Isotherms

Adsorption isotherms are a key factor in the adsorption process. Using this scheme, the
maximum adsorption capacity can be identified by determining the relationship between
the adsorbent and adsorbate equilibrium concentrations. Herein, the adsorption behavior
is investigated using two widely used nonlinear isotherm models, namely the Langmuir
model (Equation (4)) and the Freundlich model (Equation (5)). The Langmuir fitted model
indicates that the adsorption process occurs monolayer onto the homogeneous solid ad-
sorbent surface, while the Freundlich fitted isotherm model indicates that the adsorption
process occurs multilayer onto the heterogeneous solid adsorbent surface [52,53].

qe =
qmaxkLCe

1 + kLCe
(4)

qe = KFCe
1/n (5)

where qmax denotes the maximum adsorption capacity of MB (mg/g); KL represents the
constant of the Langmuir equation; Ce is used for the measurement of the solution concen-
tration at equilibrium; 1/n highlights the intensity of the adsorption; and KF indicates the
constant of the Freundlich equation.

A set of fitted curves are shown in Figure 10, while a list of derived isotherm parame-
ters can be found in Table 3. Based on the correlation co-efficiency values (R2), the adsorp-
tion isotherms for both membranes were consistent with the Langmuir isotherm model,
demonstrating monolayer adsorption on the heterogeneous surface of adsorbents [9]. Ac-
cording to the results, the PES/HPC nanofiber membrane has a maximum MB adsorption
capacity of 259.74 mg/g, while the pristine PES nanofiber membrane has a capacity of just
48.00 mg/g. This implies that the PES/HPC nanofiber membrane considerably increased
the adsorption capacity of MB, which is integrated with the KL value of the adsorbent,
since a higher KL of the adsorbent results in an improved adsorption performance at a low
concentration [54]. Table 4 compares our adsorbent to other adsorbents for MB adsorption
and shows that PES/HPC has an excellent adsorption capacity, and it is much higher
than others. The exceptional performance of the PES/HPC nanofiber membrane might
be explained by the presence of sulfonic and hydroxyl groups on the membrane’s surface,
which electrostatically interact with the cationic site of MB. This shows that the PES/HPC
nanofiber membrane may be a highly efficient adsorbent for removing pollutants from
wastewater.
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Table 3. The adsorption isotherm parameters for MB.

Samples
Langmuir Freundlich

qmax
(mg/g)

KL
(L/mg) R2 KF

(mg/g) 1/n R2

PES 48.0076 0.0026 0.9913 1.0012 0.5211 0.9747
PES/HPC 259.7402 0.0049 0.9984 10.1847 0.4593 0.9693

Table 4. A comparison of the MB adsorption capacity with the previously reported literature.

Adsorbent
Optimum
MB Conc.
(mg/L)

Optimum
pH Kinetics Isotherm qmax

(mg/g) Ref.

Cellulose nanofibrils 100 9 - Langmuir 122 [55]
Deacetylated cellulose acetate
(DA)@polydopamine
(PDA) nanofibers

50 6.5 2nd order Langmuir 88.2 [56]

Graphene/TEMPO-oxidized
cellulose nanofibrous 100 6.5 2nd order Langmuir 227.27 [57]

Cellulose citrate 100 3 2nd order Langmuir 96.2 [58]
Hydroxypropyl cellulose
(HPC)/graphene
oxide hydrogels

- - 2nd order Freundlich 118.4 [59]

Cellulose sponge 30 7 2nd order Langmuir 123.46 [60]
Vanadium pentoxide (V2O5)
nanoparticles/PES 1 10 2nd order Freundlich 85% [61]

PES nanofibers 400 7 2nd order Langmuir 48.0 Present work
PES/HPC nanofibers 400 7 2nd order Langmuir 259.74 Present work

3.2.4. Adsorption Mechanism

The pH of the solution has been thought to be important, because the surface charge
of adsorbents and the adsorbate are very dependent on the pH values determining the
adsorption performance. Consequently, the MB adsorption capacity was examined in the
presence of the PES and PES/HPC nanofiber membranes at different pH values ranging
from 3 to 10, and the findings are presented in Figure 11. With respect to both membranes,
the pH range between 3 and 5 was found to be steady, while the pH value rose from
5 to 7 and then progressively attained the greatest MB adsorption capacity between 7
and 10 for both membranes. In particular, the highest adsorption capacity of MB was
33.68 mg/g and 147.09 mg/g for PES and PES/HPC, respectively, at a neutral pH, which
is in line with previously published research [62]. The reason for these results can be
explained as follows: (1) the protonation behavior of the existing functional groups causes
the nanofiber membrane surface to become positively charged at an acidic pH. As a result
of the electrostatic repulsion between the positively charged membrane surface and the
cationic MB molecules, the adsorption uptake was decreased. (2) On the contrary, when
the pH is changed to neutral or alkaline, the nanofiber membrane surface charge exhibits
greater negativity, leading to a higher adsorption capacity. In the case of the blended
PES/HPC membrane, sulfonic and hydroxyl groups deprotonate at a neutral pH, resulting
in the membrane’s negative charge [43]. Overall, it was shown that at higher pH levels,
the PES/HPC membrane developed an electrostatic attraction ionic interaction with the
positive-charged MB molecules, which resulted in a tendency towards a greater adsorption
capacity, especially at neutral pH levels. Furthermore, the zeta potential, as shown in
Figure 11 (inset), provides additional evidence of these occurrences. For the PES and
PES/HPC nanofiber membranes, the point of zero charge (pzc) was observed at pH 6.3 and
5.5, respectively. Thus, both membranes have a positive <pzc and negative >pzc surface
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charge, with the negatively charged surface favoring adsorption through electrostatic
attraction, as is evident in our experimental study.
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Based on the above discussion, the tentative adsorption mechanism is depicted in
Figure 12. In adsorption, dye is adsorbed by the nanofiber membrane, and it is essential to
establish the mechanism that provides this desired adsorption capacity. Sulfonyl functional
groups are enriched in the backbone of the polyethersulfone compound and interact with
a cationic MB dye through various forces, such as an electrostatic interaction, hydrogen
bond, and Π–Π interaction [63]. The presence of sulfone groups, which are more polar than
ether groups, results in a more charged exchange between the adsorbent and adsorbate,
thus enhancing the electrostatic attraction and leading to a noticeable improvement of the
adsorption capacity for the PES/HPC nanofiber membrane [64]. It is worth mentioning that
the synthesized PES/HPC nanofiber membrane demonstrated an improved adsorption
capability at a neutral pH, which implies that the blended membrane surface includes a
significant number of oxygen-containing functional groups, which are deprotonated at
higher pH levels and facilitate electrostatic adsorption. The addition of HPC also provided
hydroxyl groups and facilitated the adsorption process by making both an electrostatic
interaction and hydrogen bonding and contributed to the adsorption process. Furthermore,
the presence of ionic strength decreased the adsorption capacity (Table 5), which is another
form of proof that the electrostatic interaction was dominant for MB adsorption by the
blended PES/HPC nanofiber membrane.

Table 5. The effect of NaCl concentrations and reusability tests on the MB adsorption capacity by the
PES and PES/HPC nanofiber membranes, respectively.

Samples Control, qe (mg/g) NaCl Concentrations (M), qe (mg/g)

0.1 0.2 0.3 0.4 0.5

PES 32.47 29.44 27.34 23.77 21.88 20.44
PES/HPC 185.45 182.32 180.21 179.15 178.05 177.25
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Table 5. Cont.

Samples Control, qe (mg/g) NaCl Concentrations (M), qe (mg/g)

Cycles, qe (mg/g)

1 2 3 4 5

PES 32.47 30.17 27.14 24.05 22.13 20.45
PES/HPC 185.45 183.12 181.88 178.18 176.21 174.85
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3.3. The Effect of Ionic Strength

A wide range of contaminants, such as suspended and dissolved chemicals, acids or
alkalis, salts, metal ions, and other hazardous substances, may be found in food manufac-
turing wastewater. The presence of ions raises the ionic strength of the solution, which
might affect the efficacy of the adsorption process. Thus, NaCl was added to the solution in
variable concentrations to study the influence of ionic strength on the adsorption capacity
of MB in the PES and PES/HPC nanofiber membranes (Table 5). It was noticed that when
the concentration of NaCl was increased, the MB adsorption capacity was reduced simulta-
neously. This could be attributed to the evolution of the electrostatic repulsion between the
dye molecules and negatively charged adsorbent surfaces at higher NaCl concentrations;
as the Na+ ions of NaCl compete for binding sites on the membrane surface with cationic
MB, less adsorption occurs. A similar phenomenon was also observed for MB adsorption
on a cellulose-based bio adsorbent, as reported by Liu et al. [65].

3.4. Reusability

Commercially accessible adsorbers can only compete if they can be used repeatedly
and can be regenerated. Adsorbents are judged to be effective, based on the presence
of these characteristics. As a result, a series of experiments were carried out employing
PES and PES/HPC membranes for up to five cycles under optimum conditions (Table 5).
According to the results, the pristine PES nanofiber membrane lost 32.21% of its adsorption
capacity after 5 cycles, but the PES/HPC nanofiber membrane lost only 4.51%, indicating
that the blended PES/HPC membrane is more reusable. For the PES/HPC nanofiber
membrane, the smaller fiber diameter (resulting in a greater surface area) and increased
hydrophilicity are credited with its exceptional performance. Given its high recyclability,
the PES/HPC nanofiber membrane adds another important property to its wastewater
treatment adsorption capacity.
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4. Conclusions

As an additive, it is claimed that HPC has a potential use in treating industrial wastew-
ater. HPC was successfully used to develop a new PES-based electrospun nanofiber
membrane in the current study. According to the morphological evidence, the synthesized
PES/HPC blended nanofiber membrane was devoid of beads and had an ultrathin diameter
(168.5 nm), in comparison to the original PES nanofiber membrane (261.5 nm). Further-
more, it displayed increased hydrophilicity, thermal stability, and mechanical stability, all
of which are important properties in the adsorption process. Additionally, it demonstrated
increased hydrophilicity as well as thermal and mechanical stability, all of which are critical
in the adsorption process. The PES/HPC nanofiber membrane took only 840 min (where
75% of the MB was adsorbed within 360 min) to achieve equilibrium, while 1080 min was
required for the pure PES nanofiber membrane, and the kinetics data revealed that the
pseudo-second-order (PSO) model performed much better than the pseudo-first-order
(PFO) model. The findings of the adsorption isotherms revealed that the PES/HPC blended
nanofiber membrane has an excellent MB adsorption capacity of 259.74 mg/g at a neutral
pH at room temperature, which is more superior, in comparison to the pure PES nanofiber
membrane (48.00 mg/g) obeying the Langmuir model. With regard to the ionic strength,
the adsorption capacity of the PES/HPC decreased with increased ionic strength concentra-
tions, but the recyclability was maintained for up to 5 cycles with good adsorption results.
Overall, it can be concluded that the newly synthesized PES/HPC electrospun nanofiber
membrane proves to be a very effective adsorbent for absorbing organic pollutants, such as
MB, and can also be used for capturing other pollutants, such as bacteria, phosphorus, am-
monia, nitrogen, and viruses from industrial wastewater effluents, which is of paramount
importance for clean water production and environmental sustainability.
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