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Abstract: Diamond films were deposited on silicon nitride (Si3N4) substrates with three different
roughnesses using the method of hot-filament chemical vapor deposition (HFCVD). The tribological
properties of the film were studied by changing the deposition time, deposition distance, and
methane (CH4) concentration. The friction coefficient, delamination threshold load, and wear rate of
the diamond films were tested and calculated using the reciprocating friction and wear test under
dry friction conditions. The results show that, when the deposition time is 12 h, the bonding force of
the film is the lowest and the friction coefficient is the largest (0.175, 0.438, and 0.342); the deposition
distance has little effect on the friction performance. The friction coefficients (0.064, 0.107, and
0.093) of nano-diamond films (NCD) prepared at a 40 sccm CH4 concentration are smaller than
those of micro-diamond films (MCD) prepared at a 16 sccm CH4 concentration. The load thresholds
before delamination of Ra 0.4 µm substrate diamond film are as high as 40 N and 80 N, whereas the
diamond films deposited on Ra 0.03 µm substrates have lower wear rates (4.68 × 10−4 mm3/mN,
5.34 × 10−4 mm3/mN) and low friction coefficients (0.119, 0.074, 0.175, and 0.064). Within a certain
load range, the deposition of a diamond film on a Ra 0.03 µm Si3N4 substrate significantly reduces the
friction coefficient and improves wear resistance. Diamond film can improve the friction performance
of a workpiece and prolong its service life.

Keywords: HFCVD; diamond films; Si3N4 substrates; roughness; carbon source concentrations;
friction and wear

1. Introduction

In recent years, the research of inorganic membrane has attracted people’s attention.
Inorganic membrane has excellent properties such as robustness, physicochemical stability,
and long-term performance. Jianzhou Du et al. [1] prepared porous alumina ceramic
membranes on air bearings. The results showed that the load capacity increased from 94 N
to 523 N when the porosity increased from 5% to 25%. The porosity is an important factor
for improving the performance of an air bearing, and it can be optimized to enhance the
bearing’s stability and load capacity. The tribological properties of diamond film are some
of the key factors affecting the film properties. Diamond film is widely used in industrial
production because of its superior properties.

Si3N4 ceramics are some of the strongest ceramic materials and have excellent thermal,
mechanical, and chemical properties, as well as good wear resistance. These properties
are essential for mechanical applications with demanding tribological properties. Si3N4
is commonly used in industrial applications such as plain bearings, cutting tools, and
mechanical seals [2]. However, during the process of wear, the free surface of Si3N4
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reacts with the surrounding moist air and converts to hydrated silica produced on the
worn surface. This performance destroys the stability of Si3N4, and severe wear has been
observed for the self-mated Si3N4 tribopair. Special measures for depositing thin films on
Si3N4 reduce wear. Diamond films have excellent mechanical and tribological properties,
such as high hardness, good wear resistance, and a low coefficient of friction, and have
received extensive attention in mechanical and tribological, high-performance engineering
surfaces [1,3]. Si3N4 ceramic is considered an ideal material for the deposition of diamond
films (~1 × 10−6 K−1) due to its low thermal expansion coefficient (~2.9 × 10−6 K−1),
which ensures the required bonding strength between diamond films and substrates [4–7].
The tribological properties of diamond films play an important role in the performance
and service life of diamond-coated components [8]. HFCVD is one of the methods most
commonly used to prepare diamond films, which is simple to operate and has a low cost
and can realize a large area of deposition and the deposition of diamond films on complex,
geometric surfaces.

Many researchers have studied the tribological properties of various diamond films.
Abreu et al. [9] studied the friction properties of NCD deposited on Si3N4 substrates under
different surface treatment states. The results showed that the threshold load before film de-
lamination depends on the initial roughness of the substrate, and the NCD showed a slight
wear state suitable for self-pairing, dry sliding conditions. Bin Shen et al. [8] deposited
MCD and NCD on a Si3N4 substrate and conducted friction tests with different counter-
bodies. The results showed that the deposition of a diamond film on the Si3N4 substrate
significantly reduces the friction coefficient, reduces the wear rate, and improves the wear
resistance. Naichao Chen et al. [3] deposited a single-layer MCD, a single-layer sub-micron
diamond film, and a multilayer MCD on the surface of Si3N4 and conducted friction tests.
The results showed that the multilayer MCD had the highest wear resistance. However,
research on the deposition of diamond films on substrates with different roughnesses is
scarce. The tribological properties and mechanical application of diamond films under
different substrate surface conditions are different. Therefore, it is beneficial to the wide
application of diamond films in the engineering field to clarify the tribological properties
of diamond films under different surface conditions.

MCD and NCD were deposited on Si3N4 substrates with different roughnesses using
HFCVD. Diamond films with different structures were obtained by adjusting the deposition
parameters, and the composition and surface morphology of the films were characterized.
The tribological properties of diamond films with different roughnesses were studied by
sliding tests under dry friction conditions.

2. Materials and Methods

Diamond films were deposited on a Si3N4 ceramic substrate (25 × 25 × 3 mm) with
HFCVD technology using CH4 and hydrogen (H2) mixture as reaction gas. The Si3N4
substrates with three different roughnesses (0.03, 0.1, and 0.4 µm) were manufactured by
the manufacturer. Before the test, roughness tester was used to measure the roughness
of the substrate. We ensured that it conformed to test standards. Before preparation, the
surface of the substrate needed to be pretreated. The substrates were degreased and cleaned
in ultrasonic baths with acetone and ethanol, rinsed in deionized water, and dried in hot
air. After cleaning, the substrates were exposed to diamond suspension (5 nm) for 30 min
with ultrasonic to increase the nucleation sites for diamond film growth. The hot filaments
consisted of seven tantalum wires 50 cm long, which were straightened and fixed by a
high-temperature spring. The Si3N4 was placed below the hot filaments on the sample
holder, which remained fixed. The tantalum wire was carbonized for 2 h before deposition.
The gas pressure was set to 3 kPa, and the temperatures of the hot filaments and substrate
were 2450 ± 50 ◦C and 850 ± 30 ◦C, respectively. The specific diamond film deposition
parameters are shown in Table 1.
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Table 1. Deposition parameters.

Sample
Number

Roughness
(µm)

CH4 Concentration
(%)

Deposition Time
(h)

Deposition Distance
(mm)

Gas Flow (sccm)

CH4 H2

A1 0.03 2 8 4.5 16 800
A2 0.1 2 8 4.5 16 800
A3 0.4 2 8 4.5 16 800
B1 0.03 2 8 3 16 800
B2 0.1 2 8 3 16 800
B3 0.4 2 8 3 16 800
C1 0.03 2 12 4.5 16 800
C2 0.1 2 12 4.5 16 800
C3 0.4 2 12 4.5 16 800
D1 0.03 5 5 4.5 40 800
D2 0.1 5 5 4.5 40 800
D3 0.4 5 5 4.5 40 800

Hitachi S-4800 scanning electron microscope (SEM) was used to observe the surface
morphology of diamond film. The fracture cross-section morphology of the sample was
observed using a Zeiss Sigma 500 SEM. Shimadzu XRD-7000 X-ray diffractometer (XRD)
was used to analyze the grain orientation of diamond film. The composition of the film
was analyzed by Thermo Fisher DXR Microscope Raman spectrometer. The roughness
of diamond film was analyzed by Taylor Hobson roughness tester. The friction and wear
properties of the prepared diamond films were tested on a Rtec MFT-5000 tribotester, and
Si3N4 ceramic balls (diameter 6.35 mm) were used as counterbody ball. The dry friction
experiment was carried out at room temperature. During the friction and wear test, the
reciprocating frequency was kept at 3 Hz, and the reciprocating friction stroke was 10 mm,
which provided an average sliding speed of 0.06 m/s. The tribotests were performed on
bare substrate and substrates coated with diamond films. The adhesion ability of diamond
film was judged by analyzing the load threshold side of diamond film shedding. A 20 N
normal load was applied to all diamond films for friction tests. After the test, wear rate was
measured by Rtec UP-Sigma white light interferometer, and the wear tracks were observed
by Keyence VHX-1000 ultra-depth-of-field optical microscope.

3. Results and Discussion
3.1. Properties of Diamond Films
3.1.1. Surface Morphology of Diamond Films

Figure 1 shows the surface morphology of the diamond films with different deposition
parameters. In Figure 1, A1 is sample A1 (Ra 0.03 µm, 16 sccm, 8 h, 4.5 mm), A2 is sample
A2 (Ra 0.1 µm, 16 sccm, 8 h, 4.5 mm), A3 is sample A3 (Ra 0.4 µm, 16 sccm, 8 h, 4.5 mm),
B1 is sample B1 (Ra 0.03 µm, 16 sccm, 8 h, 3 mm), B2 is sample B2 (Ra 0.1 µm, 16 sccm,
8 h, 3 mm), B3 is sample B3 (Ra 0.4 µm, 16 sccm, 8 h, 3 mm), C1 is sample C1 (Ra 0.03 µm,
16 sccm, 12 h, 4.5 mm), C2 is sample C2 (Ra 0.1 µm, 16 sccm, 12 h, 4.5 mm), C3 is sample C3
(Ra 0.4 µm, 16 sccm, 12 h, 4.5 mm), D1 is sample D1 (Ra 0.03 µm, 40 sccm, 5 h, 4.5 mm), D2
is sample D2 (Ra 0.1 µm, 40 sccm, 5 h, 4.5 mm), and D3 is sample D3 (Ra 0.4 µm, 40 sccm,
5 h, 4.5 mm). The following numbers have the same meaning as explained above. Sets
A–C were MCD, and set D was NCD. When the CH4 concentration was 16 sccm, as shown
in sets A–C, the microstructure of the diamond film was dense. Most of the grains in the
sample had a triangular plane (111) as the outer surface, while a few A grains had a square
plane (100), and a few A planes (100) were parallel to the sample plane, and the grains were
angular. When the CH4 concentration was 40 sccm, as shown in the D set, with the increase
in CH4 concentration, the grains in the film were refined, a large number of nano-grains
were generated, and the plane of the film was optimized. The increase in CH4 flow causes
the micro-grains to change into nano-grains, because the increase in CH4 flow reduces
the etching ability of hydrogen ions and generates sp2 carbon at grain boundaries, which
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hinders the growth of diamond grains. As shown in set A, the deposition time was 8 h. The
deposition time of the C set was 12 h. The grain size of both was about 1 µm, indicating
that deposition time has little effect on the grain size. As shown in set A, the deposition
distance was 4.5 mm, and the deposition distance of set B was 3 mm. The grain size of
sample B was larger: about 2 µm. As shown in C1–C3, the roughness of the Si3N4 substrate
was 0.03 µm, 0.1 µm, and 0.4 µm, respectively. It can be seen from the figure that the surface
of the diamond film was also roughened sequentially after deposition.
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Figure 1. The surface morphology of diamond films.

Roughness is one of the important factors affecting the tribological properties of
diamond film. Figure 2 shows the roughness of the diamond films prepared. The Si3N4
substrate used in the experiment was divided into three sets, and its roughness was 0.03 µm,
0.1 µm, and 0.4 µm, respectively. It can be seen from sets A–D that the roughness of the
diamond film was similar to that of the Si3N4 substrate, and both of them were improved,
which may be due to the fact that diamond grains grow in different directions on rough
substrates, and the roughness is amplified by the size of diamond grains themselves [10].
The roughness of the diamond film is proportional to the roughness of the substrate. In sets
1 and 2, the roughness of the samples in set D was the lowest. This is because the roughness
of the substrate is related to the size of diamond grains. The samples in set D were NCD
with very small diamond grains, and the substrate was relatively smooth, which made the
roughness smaller. From Figure 1 (D1,D2) it can be seen that the surface was relatively
smooth; the roughness of the three set substrates was 0.4 µm, which is relatively rough, and
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the roughness of the prepared diamond film was mainly related to the roughness of the
substrates [11], which were all around 0.5 µm. For sets A–C, the roughness of the diamond
film was obtained by changing the deposition time and distance. It can be seen that the
roughness of set B of samples was the largest. The set B test shortened the distance between
the hot filament and the substrate. As can be seen from Figure 1, set B could also be used. It
can be seen that the diamond grain size was the largest, indicating that the roughness has a
certain relationship with the grain size. Through the measurement of roughness, it can be
proved that the roughness of the substrate is one of the main factors of the roughness of the
diamond film.
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3.1.2. Fracture Cross-Section Morphology of Diamond Films

Figure 3 shows the fracture cross-section morphology of B1 and D3 samples, where B1
is MCD and D3 is NCD. MCD grew in columnar form and coarsely grew into 1~2 µm grains
from the finer grains at the bottom, while NCD grew in nanoclusters. The diamond grains
were very small, and their obvious crystal shape could not be distinguished. The average
growth rate of B1 and D3 was 0.27 µm/h and 1.16 µm/h, respectively. The growth rate
of the diamond film increased with the increase in CH4 concentration, mainly due to the
increase in methyl radical ([CH3]), which is considered to be the main source of diamond
growth [12]. The deposition rate could be improved by increasing the CH4 concentration,
and the quality of the diamond film could be reduced.

3.1.3. Raman Spectra of Diamond Films

The purity and bonding method of the diamond film was judged according to the
Raman peak intensity in the Raman spectrum. Figure 4 shows the Raman spectrum and
fitting peaks of the diamond obtained under different deposition parameters. Raman peaks
v1 (1150 cm−1), v2 (1250 cm−1), and v3 (1450 cm−1) indicate that there were nanodiamonds
or trans-polyacetylenes in the diamond film [13]; D peaks (1350 cm−1~1360 cm−1) and G
peaks (1550 cm−1~1580 cm−1) indicate the existence of an sp2 structure [14]; 1332 cm−1 is
the characteristic peak of diamonds. When the concentration of CH4 was 16 sccm, as shown
in Figure 4 for sets A–C of samples, the diamond’s characteristic peak intensity was large,
and the surface film was mainly bonded by sp3 bonds. Combining with Figure 1’s sample
sets A–C, it can be concluded that the diamond crystal quality is better. Among them, the
trans-polyacetylene peak, D peak, and G peak are relatively weak, which indicates that the
sp2 bonding content is low, and the grain boundary density of the diamond film is low.
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Figure 3. The cross-section morphology of MCD and NCD: (B1-1) the magnification of B1 sample
was 10,000 times; (B1-2) the magnification of B1 sample was 20,000 times; (D3-1) the magnification of
D3 sample was 5000 times; (D3-2) the magnification of D3 sample was 10,000 times.

When the CH4 concentration was 40 sccm, as shown in Figure 4 for sample set D, the
characteristic peaks of diamond became weaker, mainly the D peak and the G peak, and
the trans-polyacetylene peak was enhanced, indicating that the grain boundary density
increased and the grain size decreased [15–17], and, as shown in Figure 1D’s set of samples,
a large number of nanocrystalline diamonds were generated. This is because the increase in
the CH4 concentration reduces the rate of hydrogen ion etching of graphite, resulting in an
increase in the content of non-diamond phases, an increase in the probability of nucleation
on the surface of the film, and the crystallization of the film. The quality decreases, and the
intensity of the diamond’s characteristic peaks weakens. The Raman spectrum of sample
sets A–C was similar, and it was very different from sample set D. In sample sets A–C,
the deposition time and the distance from the hot filament to the substrate were adjusted,
which had little effect on the film quality. Sample set D changed the CH4 concentration and
affected the film quality. The influence was great, and it can be seen from Figure 1 that the
surface morphology of the two was very different.

Equation (1) [18] calculates the residual stress in the film:

σ = −0.567 (v − v0) GPa/cm−1 (1)

where σ represents residual stress, and v0 represents the characteristic peak value of
diamond at 1332 cm−1. v represents the diamond Raman displacement of the film. The
right deviation of v over v0 is compressive stress, and the left deviation is tensile stress.
Table 2 shows the results of the Raman spectroscopy analysis. The residual stress of 1 (Ra
0.03 µm) in sample set A–D was larger than 3 (Ra 0.4 µm) in the same set. The minimum
residual stress of the B3 sample (Ra 0.4 µm, 16 sccm, 8 h, 3 mm) was −0.02 GPa, and
the maximum residual stress of the C1 sample (Ra 0.03 µm, 16 sccm, 12 h, 4.5 mm) was
+0.80 GPa, indicating that the deposition time increased. The residual stress also increased.
The diamond characteristic peak, full-width at half-maximum (FWHM) of the continuous



Membranes 2022, 12, 336 7 of 16

CVD diamond films synthesized on non-diamond substrates, generally varied in the range
of 5–25 cm−1. The smaller the FWHM, the higher the diamond crystal quality [19,20]. It
can be seen from Table 2 that the FWHM varied in the range of 7–9 cm−1, and the crystal
quality was generally good. The B1 sample (Ra 0.03 µm, 16 sccm, 8 h, 3 mm) had the
smallest FWHM; the C3 sample (Ra 0.4 µm, 16 sccm, 12 h, 4.5 mm) had the maximum
FWHM. Through the analysis of FWHM and residual stress, it can be seen that the quality
of sample set B’s diamond film was better.
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Table 2. Results of the Raman spectra of diamond films.

Sample Number A1 A3 B1 B3 C1 C3 D1 D3

FWHM/cm−1 9.08 8.86 7.91 8.36 8.64 9.55 9.01 9.37
v/cm−1 1330.98 1331.24 1332.29 1332.03 1330.58 1330.69 1332.75 1332.54
σ/GPa +0.58 +0.43 −0.16 −0.02 +0.80 +0.74 −0.42 −0.30

3.1.4. XRD Patterns of Diamond Films

When the lattice constant of the HFCVD diamond film is close to that of natural
diamond, it indicates that the quality of the diamond film is good, but the stress in the
film causes lattice distortion, resulting in the shift of the lattice constant [21]. Figure 5
shows the XRD patterns of the diamond films with substrates of different roughnesses.
According to the standard card (PDF06-675), the diffraction peaks at 2θ = 43.9◦ and 75.3◦

represent diamond (111) and crystal (220) planes [22], and other peaks can be assigned to the
substrate material (Si3N4) because diamond films are relatively thin and easily penetrated
by X-ray [23]. It can be seen from Figure 5 that all the diamond films had (111) and (220)
characteristic peaks. When the CH4 concentration increased from 16 sccm to 40 sccm, it can
be seen from Figure 5d that the intensity of the (220) diffraction peak increased significantly,
indicating that the preferred orientation of the crystal plane of diamond changed from (111)
to (220). It can also be seen from Figure 5d that, when the CH4 concentration was 40 sccm,
the width at half the maximum of the (111) crystal plane became larger, which is due to the
increase in the CH4 concentration, the increase in the secondary nucleation density, and the
smaller diamond grains; the grain defect density can also cause this change. In Figure 1, the
transformation of the diamond crystal plane from (111) to (220) and the decrease in grain
size can also be seen. Figure 5a–c shows the XRD patterns of diamond thin films obtained
by changing the deposition time and distance on substrates with different roughnesses. It
can be seen that the patterns were relatively similar, the influence was small, and the CH4
concentration was the most influential factor.

3.2. Friction and Wear Properties of Diamond Films

Figure 6 shows the friction coefficients of the MCD and NCD of the substrates with
different roughnesses under different loads. A1 and A3 were MCD with a substrate
roughness of 0.03 µm, and D1 and D3 were NCD with a substrate roughness of 0.4 µm. A
normal load from small to large was applied to the diamond film, and the dry friction and
wear tests were carried out for 30 min. If the film delamination was observed, the test was
ended [24,25]. As shown in Figure 7, the normal loads of film separation of A1, A3, D1, and
D3 were 27.5 N, 40 N, 30 N, and 80 N, respectively. As can be seen from Figure 6, before
the film was delaminated, that is, when the normal load was relatively small, the friction
coefficient was relatively small: around 0.1. When the film came off and delaminated,
the friction coefficient was relatively large: around 0.6. Combined with Figure 7, it can
be seen that the delamination loads of A3 and D3 films were larger than those of A1 and
D1, indicating that the adhesion of diamond films deposited on the Ra 0.4 µm substrate
was higher. The delamination load of the D1 film was greater than that of A1, and the
delamination load of D3 was greater than that of A3, indicating that the adhesion of NCD
was greater than that of MCD. The delamination load of D3 was 80 N, which was much
larger than that of A3, indicating that the adhesion of NCD deposited on the Ra 0.4 µm
substrate with higher roughness was stronger.
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Figure 8 shows the friction coefficient curves of uncoated Si3N4 substrates with dif-
ferent roughnesses under different loads. It can be seen from the figure that the friction
coefficients of diamond films deposited on substrates with roughnesses of 0.03 µm and
0.4 µm were around 0.5–0.7, which is relatively large, which also provides a basis for judg-
ing film delamination in Figure 6. It can be seen from Figure 6 that the friction coefficient of
the film without separation was about 0.1, which is much smaller than the 0.5–0.7 of the
Si3N4 substrate, indicating that the deposition of MCD and NCD on the Si3N4 substrate
can reduce the friction coefficient and improve the friction performance.

The wear scar profile of the worn surface of the film was measured by a white-light
interferometer, and the wear rate of the worn film was calculated. Figure 9 shows the
scratch trajectories formed under the delamination load of the MCD and NCD films with
substrates of different roughnesses. The wear rate of the diamond film was calculated by
Formula 2 [26]:

K =
V
LF

(2)

K is the wear rate of the film, V is the wear volume of the film, and the unit is mm3; L
is the total sliding stroke of the wear experiment, and the unit is m; F is the normal load
applied to the film, and the unit is N.

The wear rates of the A1, A3, D1, and D3 diamond films were 4.68 × 10−4 mm3/mN,
1.05 × 10−3 mm3/mN, 5.34 × 10−4 mm3/mN, and 5.44 × 10−4 mm3/mN, respectively. A1
was MCD with a substrate roughness of 0.03 µm, which has good crystal quality and a low
wear rate. Combined with Figure 9, it can also be seen that the width and depth of the wear
mark curve of A1 were lower, indicating that it has good wear resistance. The wear rates of
MCD and NCD with a substrate roughness of 0.03 µm were lower, indicating that there is a
certain relationship between the wear rate and substrate roughness.
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Figure 9. Cross-sectional profiles of the wear track of diamond films.

Figure 10 shows the coefficient of friction curves under dry friction conditions with a
20 N load applied to the prepared diamond films. It can be seen that the variation trend of
the friction coefficient of all samples was the same, which was characterized by a relatively
strong and narrow peak at the beginning, mainly due to the relatively low hardness of
the Si3N4 ceramic ball surface during the friction sliding process. There was a plowing
action of sharp diamond grain peaks, and, after a period of friction, the subsurface formed
a transfer film on the diamond crystals [27,28]. After the running-in period, the stable
wear stage was entered, and the friction coefficient also became stable. Figure 11 shows
the average friction coefficient of the prepared diamond film after the friction and wear
test, which reflects the friction properties of the diamond film under different deposition
conditions. Figure 12 shows the OM images of wear tracks.
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Figure 10a shows the friction coefficient curves of diamond films deposited at different
deposition distances. It can be seen that the friction coefficient curves for deposition
distances of 3 mm and 4.5 mm were roughly the same. It can be seen from Figure 11 that
the average friction coefficients of A and B were very similar, ranging from 0.07 to 0.17.
Among them, the friction coefficient of B1 presented a sawtooth shape in the later stage
of entering the stable stage. This may be because the micron columnar grains interacted
with the counterbody to cause the diamond grains to fall off. After falling off, the grains
fall on the opposite grinding surface between the diamond film and the Si3N4 ceramic
ball. During the reciprocating sliding process of the ceramic ball, the friction coefficient
fluctuates when it encounters the diamond grains. Combining sets A and B in Figure 12, it
can be seen that the wear track morphology was also very similar, and there was no overall
shedding of the diamond coating. The results show that the deposition distance has little
effect on the friction coefficient.

Figure 10b shows the friction coefficient curves of diamond films deposited at different
deposition times. Among them, C2 and C3 with a deposition time of 12 h did not enter a
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stable state until about 800 s, but the friction coefficient of the stable state was still larger
than that of A1–A3 with a deposition time of 8 h. Based on Figure 8, it can be seen that the
average friction coefficient of set C was larger than that of set B, and the average friction
coefficient of B2 and C1 was close, which may be because the roughness of the C1 substrate
was relatively low. It can be seen from the C set of Figure 12 that the C1–C3 diamond films
were peeled off. This shows that the adhesion of the diamond film with a deposition time
of 12 h was less than that of the diamond film with a deposition time of 8 h. The increase in
the friction coefficient may be due to the direct grinding of the Si3N4 ball with the Si3N4
substrate after the delamination of the diamond film. Due to the existence of the transfer
film, the friction coefficient of the C set was lower than the friction coefficient (0.5–0.7) of
the friction coefficient between the Si3N4 ball and the Si3N4. The results show that, within
a certain deposition range, too long a deposition time increases the friction coefficient and
reduces the bonding force between the film and the substrate.

Figure 10c shows the friction coefficient curves of MCD and NCD. The friction coef-
ficients of the two were similar. It can be seen that the friction coefficient of A3 was the
highest after stabilization, and the friction coefficient of D1 was the lowest. However, it
experienced a sudden change in the friction coefficient in the stable stage, and the reason
is similar to that of B1 in Figure 10a. This is because the nano-diamond grains fall off
under the action of mechanical force when the nano-diamond grains are ground against
the Si3N4 ball. The Si3N4 ball encounters the diamond grains during the reciprocating
sliding process, which causes a sudden, short-term change in the friction coefficient. It
can be seen from sets A and D in Figure 11 that the average friction coefficient of NCD as
a whole was smaller than that of MCD. This is because the grain size in NCD decreases,
the crystal quality deteriorates, the friction area increases, the nano-diamond grains are
smoothed, and some of the grains fall off. The chips and the falling grains form a transfer
film at the friction interface, and, because of its smooth surface, low roughness, and the
lubricant of the amorphous carbon phase distributed at the diamond grain boundary, its
friction coefficient is lower than MCD.

By analyzing the overall average friction coefficient in Figure 11, it can be seen that
the friction coefficient of NCD was lower than that of MCD deposited under different
conditions. This also confirms the conclusion drawn from Figure 10c. From the perspective
of substrates of different roughnesses, it can be concluded that the relationship between the
average friction coefficient of the diamond film is COFRa0.03µm < COFRa0.4µm < COFRa0.1µm.
This also shows that the tribological properties of the diamond film are not proportional
to the roughness of the substrate. The average friction coefficient is the smallest when
the roughness of the Si3N4 substrate is 0.03 µm, and the average friction coefficient is the
largest when the roughness of the Si3N4 substrate is 0.1 µm.

Figure 12 indicates that sets A, B, and D had slight scratches, which did not damage
the surface of the diamond film. The C1–C3 diamond films were all peeled off, which is in
full agreement with the average friction coefficient in Figure 10. The wear scar width of C2
was larger than C1 and C3, which is also related to the average friction coefficient. It can
also be seen from Figure 12 that the one (Ra 0.03 µm) scratch in each set was the narrowest,
corresponding to its smaller average friction coefficient.

4. Conclusions

This paper reports the tribological properties of MCD and NCD diamond films de-
posited on Si3N4 substrates with different roughnesses using the HFCVD technique.

The surface morphologies and cross-sectional morphologies of the diamond films
were obtained by SEM. MCD diamond deposited at a 16 sccm CH4 concentration has larger
grains and better crystal quality. The NCD diamond grains deposited under 40 sccm CH4
concentration are finer, and the grain size is tens of nanometers. The growth model was
changed from a columnar growth to the nano-grain accumulation growth mode, and the
growth rate was greatly improved. The grain size increased (2–3 µm) when the deposition
distance was closer (3 mm). Changes in the deposition time had little effect on the surface
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topography. By analyzing the roughness of the diamond film, it was found that the growth
of the film matched its starting surface.

Raman spectra showed that the residual stress of diamond film deposited on the Ra
0.4 µm substrate was smaller, and the minimum residual stress was −0.02 GPa. Among
them, the FWHM of the diamond characteristic peaks was small, in the range of 7–9 cm−1,
indicating that the crystalline quality of the diamond film is good. The XRD results showed
that the preferred orientation of the diamond film changes from (111) to (220) when the
CH4 concentration increases from 16 sccm to 40 sccm.

The tribological properties of diamond films were studied by reciprocating friction
and wear tests. The adhesion of MCD and NCD deposited on the Ra 0.4 µm substrate was
greater when studying the load delamination threshold of diamond films. The lowest wear
rates of diamond films with a substrate roughness of 0.03 µm were 4.68 × 10−4 mm3/mN
and 5.34 × 10−4 mm3/mN. When the film was deposited for a long time (12 h), its friction
coefficient increased, and the adhesion between the film and the substrate was reduced.
The diamond film deposited on the Si3N4 substrate reduced the friction coefficient of the
material and improved the friction performance. The average friction coefficient of NCD
(0.064, 0.107, and 0.093) was lower than that of MCD, which depended on the grain size,
crystalline quality, and roughness. The diamond film deposited on the substrate with a
roughness of 0.03 µm had excellent mechanical and tribological properties, such as small
residual stress, a low wear rate, and a low average friction coefficient.
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