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Abstract: Commercial grade sulfonated-Polyethersulfone (S-PES) and functionalized multiwall
carbon nanotube (f-MWCNT)/polyvinylpyrrolidone (PVP) nanocomposites (NCs) were used to
enhance and optimize the antifouling, protein resistance and protein separation properties of the
S-PES ultrafiltration membranes. The polarities of sulfonic groups of S-PES, carbonyl carbon of
pyrrolidone, hydroxyl and carboxyl groups of f-MWCNT in the membrane composition helped
to strongly bind each other through hydrogen bonding, as shown by Fourier-transform infrared
spectroscopy (FTIR). These binding forces greatly reduced the leaching of NCs and developed long
finger-like projection, as confirmed by elution ratio and cross-sectional studies of the membranes via
field emission scanning electron microscope (FESEM). The contact angle was reduced up to 48% more
than pristine PES. Atomic force microscopy (AFM) was employed to study the various parameters
of surface roughness with 3d diagrams, while grain analysis of membrane surface provided a
quantitative estimation about volume, area, perimeter, length, radius and diameter. The NCs/S-PES
enhanced the flux rate with an impressive (80–84%) flux recovery ratio and (58–62%) reversible
resistance (Rr) value in situ, with 60% and 54.4% lesser dynamic and static protein adsorption. The
best performing membrane were reported to remove 31.8%, 66.3%, 83.6% and 99.9% for lysozyme-
(14.6 kDa), trypsin-(20 kDa), pepsin-(34.6 kDa) and bovine serum albumin (BSA-66 kDa), respectively.

Keywords: membrane; carbon nanotube; protein; antifouling

1. Introduction

Protein purification strategies are currently being employed in industrial and academic
applications, with particular emphasis on methodologies, which are implemented for the
production of recombinant proteins of biopharmaceutical importance. Therefore, protein
concentration and purification is one of the most intensive separation processes for biotech-
nology, biomedicine and food production industries [1]. Nowadays, several separation
approaches have been applied to separate and purify proteins from its mixture. These
include adsorption, electrophoresis membrane contactors, ultrafiltration (UF), tangential
flow filtration and chromatography [2–5].
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UF, in particular, has been gaining much more consideration because it is easy to han-
dle, does not require chemical additives and could be easily scaled up at a low operational
cost. Furthermore, it is more efficient to other clearance methods [6–9].

The main component of a membrane filtration process is the property of a membrane
that could offer high separation efficiency against proteins without experiencing severe
fouling. The phase inversion method is commonly used to fabricate the UF membranes
sold in the market. Mostly, these membranes are made of hydrophobic/semi-hydrophobic
polymers such as polyethersulfone (PES), polyvinylidene fluoride, polypropylene and
Polysulfone [10–13].

PES is a highly thermoplastic, relatively less flammable and chemically resistant
polymer. It is, however, relatively hydrophobic in nature and has less water sorption. It
will cause the PES membrane to have a strong interaction with proteins via hydrophobic
and electrostatic forces during the protein filtration. These, as a result, negatively affect
the membrane water flux and increase membrane fouling, leading to frequent membrane
cleaning. For that reason, the PES-based membrane is frequently modified to increase its
anti-fouling propensity before its practical use [14,15].

In the area of nanotechnology, polymer matrix-based nanocomposites have generated
a significant amount of attention in the recent literature. Inorganic nanoparticles were
used as fillers to form nanocomposite membranes due to their hydrophilicity, large specific
surface area, pore channels and other functional characters. There are many inorganic
nanoparticles, such as silica, Al2O3, Fe3O4, ZnO, and CdS, ZrO2, TiO2, zeolite, and carbon
nanotubes that are used in the fabrication of nanocomposite membranes with improved
antifouling properties. This type of membrane has brought a new concept to improving
membrane separation efficiency during the water treatment process, but it is not the main
research focus of studies on the protein separation process [10,16–18].

The blending of PES with hydrophilic nanomaterials attracts much interest due to
its ability to improve the permeate flux and rejection. Hydrophilic nanomaterials are
responsible for enhancing water absorption during a filtration process, which reduces water
transport resistance and improves membrane permeability. Multiwall carbon nanotubes
(MWCNTs) were previously used as inorganic fillers to increase membrane performance
because of its exceptional chemical, mechanical and electrical properties. However, its
hydrophobic and inert nature tends to have dispersion difficulty in some solvents. In order
to fully disperse the MWCNTs, different modification methods are used, among which acid
treatment is the best to perform at the laboratory and industrial levels. The acid treatment
of MWCNT could cause oxidation on the nanotube surface, improving its hydrophilicity.
With the improvement in hydrophilicity, MWCNTs tend to have the better dispersion
capability in solvent [19,20]. Phao et al. [21], for instance, improved the wettability and
dispersion ability of CNTs by doping them with nitrogen. The modified CNTs were then
incorporated into the PES dope solution to fabricate a new type of membrane exhibited 70%
flux improvement compared to the control PES membrane (without CNTs incorporation).

Besides inorganic hydrophilic nanomaterials, hydrophilic polymers, such as PVP, are
also always considered as an additive to improve the hydrophilicity of the PES-based
membrane. PVP is a highly polar, physiologically inert, non-ionic, amphiphilic and water-
soluble polymer. It swells in aqueous media and, thus, can be used to modify membrane
performance. PVP has been previously reported to have a positive influence in improving
MWCNT dispersion quality in different solvents [6,7].

Functionalization of the polymer backbone is a technique to improve the hydrophilicity
without compromising membrane separation performance. Sulfonation of polymer, for
instance, could increase not only membrane hydrophilicity for better antifouling properties,
but also increase membrane permeability. Sulfonated polymers were also reported to
have greater thermal, chemical, mechanical and separation properties on the resultant
asymmetric membranes. Irfan et al., modified the PES membrane with S-PES to enhance
the permeability, pore size, hydrophilicity and sub-layer porosity of the membrane [15].
Wang et al. successfully minimized protein adsorption using the PES membrane blended
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with S-PES [22]. Since sulfonation increases the anionic character on the membrane surface,
the developed membrane tends to have greater electrostatic repulsion towards protein
molecules and favor reduced fouling phenomena [14]. Use of S-PES polymer is a good
choice for antifouling membranes, but its preparation at the lab scale seems quite difficult
because of the very sensitive preparation parameters, as reported by Guan et al., and
Deing et al. [23,24].

In the current research work, membrane performances were optimized using two-step
process; one of them is addition blending to the casting solution and other is immobilization
of polymer with hydrophilic fragments. In the first step, oxidized MWCNTs were prepared
via the treatment of pristine MWCNT with a mixture of concentrated nitric and sulfuric
acids and then mixed vigorously PVP to produced NCs by hydrogen bonding. In the second
step industrial grade S-PES with higher molecular weight were blended with PES polymer
and f-MWCNT/PVP-based NCs to produce a new type of UF membrane that could exhibit
greater surface hydrophilicity and antifouling resistance. Figure 1 represents the schematic
representation of the possible structure of S-PES/NCs-based membranes. The effects of S-
PES/NCs on the PES-based membranes were studied by FESEM, contact angle, and surface
free energy. Detailed AFM analyses were performed to observe the surface roughness,
pore profile and 3D images. Moreover, experiments that include static and dynamic BSA
adsorption, membranes antifouling performances and separation performance were also
conducted and discussed in detail.
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membranes.

2. Materials and Methods

The S-PES polymer having molecular weight 90,000 Dalton and 36% sulfonation degrees
was purchased by Konish chemical ind. Co., Ltd (Wakayama, Japan). Polyvinylpyrrolidone-
K90 and BSA (67K Da) were purchased from Fluka, dimethyl formamide (average molecular
weight = 80.14 g/mole), pepsin (35 KDa), trypsin (20 KDa) and lysozyme (14.6 KDa) were
obtained from Sigma-Aldrich. The pristine MWCNT (length: 12 micron, Average dia:
10 nm) was provided by the company of Chengdong (Shenzhen, China).

2.1. Acid Treatment MWCNT, NCs and Membrane Formation

The oxidation of MWCNTs with the mixture of concentrated nitric and sulfuric acids
produced the –COOH and –OH functional groups. These functional groups impart the
polarity to the nanotube layer. In addition, such a treatment resulted in a removal of
the metallic impurities [25]. In brief, raw MWCNTs were blended with a mixture of
concentrated nitric and sulfuric acid for 24 h at 110 ◦C, followed by filtration (using 0.22 um
polycarbonated membrane) and washing with distilled water until the pH ∼= 6–7.

Two-step processes were used for preparation of dope solutions. In the first step,
different types of NCs (Table 1, Step 1) were produced by blending functionalized MWCNTs
(f-MWCNTs) with PVP-K90 in DMF for 6 h at high stirring speed. In the second step, NCs



Membranes 2022, 12, 329 4 of 20

mixture was transferred into a round bottom flask attached to the conventional heating
mantle, followed by the addition of PES and S-PES polymer as per the formulation shown
Table 1. The final homogenous dope solutions were allowed to cool down before storing in
the glass bottles. Flat sheet membranes (160–200 um thickness) were cast using a casting
knife on a clean glass plate by dry-wet phase inversion method. Distilled water was used
as a coagulation bath at room temperature. After the post treatment in hot water bath, the
membranes were ready for further evaluation.

Table 1. Formulation of SPES and nanocomposite based membranes.

Formulations (Weight Percentage)

Memb
(M-CNT-SPES)

Step 1 (NCs) Step 2

f-MWCNT PVP DMF PES S-PES DMF

M-PS - - - 16 - 84.00
M1-15 0.1 3 20 13.6 2.4 60.90
M1-30 0.1 3 20 11.2 4.8 60.90
M1-45 0.1 3 20 8.8 7.2 60.90
M2-15 0.2 3 20 13.6 2.4 60.80
M2-30 0.2 3 20 11.2 4.8 60.80
M2-45 0.2 3 20 8.8 7.2 60.80
M3-15 0.3 3 20 13.6 2.4 60.70
M3-30 0.3 3 20 11.2 4.8 60.70
M3-45 0.3 3 20 8.8 7.2 60.70

In Table 1, membranes are named in ascending order of S-PES amount, its mean
notations 15, 30, and 45 in membrane name like M1-15, M2-30 and M3-45 showed weight
percentage of S-PES in correspond to total weight of polymer.

2.2. Characterizations
2.2.1. FTIR, XRD and FESEM

The instrument’s spectrum “One B, Perkin-Elmer” was used to determine FTIR spec-
trums of the MWCNT, f-MWCNTs, S-PES and the bonding chemistry of NCs and its
corresponding membranes. Prior to analysis, all the samples were heated at 70 ◦C for
2 h to minimize the possible effect of moisture. The XRD patterns of the raw MWCNT
and acid treated MWCNT (f-MWCNT) were studied by the D8 Advance X-ray, Bruker
instrument. The JEOL JSM-7500F was used to determine the cross-sectional morphology of
all formulated membranes. Prior to this analysis, the membrane samples were prepared in
liquid nitrogen, then by sputter-coated with platinum.

2.2.2. Hydrophilicity

Surface hydrophilicity of the fabricated membranes were determined by the sessile-
drop dynamic method (CAM 101 optical Contact Angle Meter, KSV Instruments, Helsinki,
Finland) using an optical contact angle measurement system.

2.2.3. Surface Roughness Parameters via AFM

The Park XE-100 instrument of the AFM technique was used for generating 3D images
of membrane top surface together with the its roughness parameters. The region tab of
AFM software was used to determine the surface roughness parameters of the entire image,
having a size (10 µm × 10 µm) [26]. The surface roughness parameters included were
Min, Max, Mid and Rpv, which symbolize the minimum height, maximum height, the
average between the minimum and maximum height and peak-to-valley, respectively. Rq,
Ra, Rz, Rsk and Rku that correspond to root-mean-squared roughness, roughness average,
ten points average roughness, skewness and kurtosis of the line, respectively, were also
included in this study.
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2.2.4. Surface Profiles via Grain Analysis

The grain analysis of the membrane surface proves to be a good technique to determine
the various parameters of its surface profile, which include the volume, length, area,
perimeter, radius and diameter of the detected grains. The XEI-AFM standard image
processing and analysis software automatically provide the quantitative estimation of
surface profiles parameters of scanned images [6].

2.2.5. Porosity, Flux Rate and Flux Recovery

The flux rate J (Jw1, Jw2 and Jw3) of all formulated membranes was measured using
DI water and the protein solution Jp (Jp1 and Jp2) at 3 bar pressure. The concentration of
protein solution was kept at 1000 ppm and cross flow cell (effective membrane surface area
of 42 cm2) was used for the experiments, whereas the Equation (1) was utilized for flux
determination,

J =
V

t × A
(1)

where, V is the volume of permeate (L), t is the time (h) and A is the effective membrane
area (m2). The flux recovery was checked up to two cycles after fouling the test membranes
with BSA solution (detail mention in Section 2.2.6) and Equations (2) and (3) was used to
measure the flux recovery percentage (RFR) [27].

For f irst cycle RFR1(%) =
Jw2

jw1
× 100 (2)

For 2nd cycle RFR2(%) =
Jw3

jw1
× 100 (3)

The water absorption experiments were also used to measure the porosity (ε) of all mem-
branes and Equation (4) was used for this purpose. Unit of porosity lies between 0 and 100,
represents percentage of pore space (p.u) in unit volume.

ε (p.u) =
wWet − wDry

V. δw
(4)

where, wDry and wWet are the weights in gram of dry and wet membranes, δw represents
the density (0.998 g/cm3) of water and V is the pure water flux (mL).

The surface free energy (SL) of interaction at the interface between the liquid and
the membrane surface (−∆SL) was calculated using Young–Dupre revised equation
(Equation (5)) [28],

− ∆SL = (1 − cos θ)γT
L (5)

where, θ is the contact angle and γT
L is the total surface tension of water (72.8 mJ· m−2).

2.2.6. Anti-Fouling and Membrane Resistances

The membrane fouling is of two types, one is the reversible fouling that can be
removed by washing with DI water and second is the irreversible fouling that needs
chemical cleaning agent. In this work, the antifouling property with respect to membrane
resistance parameters were measured against BSA solution for up to two cycles. For the
experiments, first Jw1 was measured (a detail mentioned in Section 2.2.5) as the pure water
flux for 1 h and then water was replaced with 1000 ppm BSA solution and its flux was
noted as ‘Jp1’ for the next 30 min under the same condition. After that, the membrane was
cleaned with DI water and pure water flux was again measured as Jw2 for the next 1 h. The
test was continued (second cycle) and again water was replaced by the protein solution
(Jp2) followed by washing and measurement of flux as Jw3.
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For detailed analysis, the membrane total resistance rate (Rt), the reversible resistance
(Rr) and the irreversible resistance (Rir) rates were calculated using Equations (6)–(8) for cycle
one and Equations (9)–(11) for the second cycle of the membrane fouling, respectively [6].

Rt1(%) =

(
1 −

Jp1

Jw1

)
× 100 (6)

Rr1(%) =
Jw2 − Jp1

Jw1
× 100 (7)

Rir1(%) =
Jw1 − Jw2

Jw1
× 100 (8)

Rt2(%) =

(
1 −

Jp3

Jw1

)
× 100 (9)

Rr2(%) =
Jw3 − Jp3

Jw1
× 100 (10)

Rir2(%) =
Jw1 − Jw3

Jw1
× 100 (11)

2.2.7. Protein Adsorption Studies

The antifouling behavior of the formulated membranes was also observed by the
dynamic protein adsorption experiments, which were performed to conclude the quan-
titative estimation of adsorbed amount of BSA on the membrane surface. Small pieces
of membranes (0.5 cm × 5 cm, n = 5) were immersed into the vials containing 10 mL of
protein (1 g/L) solution at pH ∼= 7. The vials were kept on the water shaker at 25 ◦C for
6 h. After that, the membranes were removed from the protein solutions and the protein
concentration was determined from the change in concentration of the protein solution
before and after the adsorption via calibration curve method [27].

2.2.8. Protein Transmission

The protein separation experiments were conducted using four different types of
proteins, namely, lysozyme-14.6 kDa, trpsin-20 kDa, pepsin-34.6 kDa and BSA-66 kDa. The
cross-flow cell was used for this experiment and 250 mL protein solution of each protein
type having 1000 ppm concentration was filled in the feed container (Cf) one by one and
UF experiment was carried out at 3 bar pressure. Permeate (Cp) was collected after 30 min.
The protein rejection R (%) was calculated using Equation (12).

R =

(
1 −

Cp

C f

)
× 100 (12)

3. Results and Discussion
3.1. MWCNT Functionalization

The pristine MWCNTs are highly hydrophobic and generally exist in the form of
bundles due to intrinsic van der Waals forces. They have very low solubility in solvent and
limited interfacial bonding with polymers. Hence, homogeneously dispersed MWCNTs as
well as good interfacial bonding in polymer-composites depend on the surface modification
of the MWCNTs [29]. Acid treatment was carried out in this work to open ends of MWCNTs
and to introduce carboxylic and hydroxyl groups on the MWCNTs surface via oxidation.
Acid treatment was also found to be effective to minimize the π-π stacking or hydrophobic-
hydrophobic interaction of the MWCNTs and reduce the extent of agglomeration [30]. The
XRD spectra of MWCNT and f-MWCNT are shown in Figure 2, in which the f-MWCNTs
exhibit the peak intensity up to the 5000 at 25.4◦ related to the (002) plane. The pristine
MWCNT shows lower intensity of its XRD peak at (100) plane on the same angle than
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f-MWCNT. This observation is similar to the work of Buang et al. and Cheng et al.,
where higher peaks of f-MWCNT are related to the hydroxyl and carboxyl functional
groups [31,32]. The FTIR analysis (Figure 3) is also used to confirm the presence of –COOH
and –OH groups at the surface of f-MWCNTs. The comparison of MWCNT and f-MWCNT
shows that the new peaks at 3500 cm−1 and 2900 are related to the hydroxyl group of
alcohol and acid, while the peak at 1690 cm−1 indicates the presence of a carbonyl group of
–COOH. Thus, the FTIR and XRD results verify the presence of new functional groups onto
the f-MWCNT surface upon acid treatment process.
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3.2. Nanocomposite and Corresponding Sulfonated Membranes (FTIR)

Figure 3 also shows the FTIR spectra of PVP and different types of f-MWCNT/PVP-
based NCs. For the pure PVP, the vibrational bands at 1250, 1300, 1460, 1670 and 3500 cm−1

are assigned to the C–N stretching, CH2 wagging, C–H bending, amide group of PVP
and pendent amide, respectively [7]. Whereas, for the NCs, the prominent peaks at 1670,
2900 and 3500 cm−1 are associated with the carbonyl group of the amide pyrrolidone ring
and -OH group of alcohol/acids. The FTIR spectra can be used for the authentication of
hydrogen bonding and the alteration of the FTIR band in terms of broadening or moved
to a low absorption frequency range, related to H-bonding [33]. The comparison of NCs
spectrum with the f-MWCNT and pure PVP shows that peaks of PVP at 1250, 1300 and
1460 cm−1 move to a slightly lower frequency range, whereas the vibrational band of f-
MWCNT at 3600 cm−1 disappeared and the peak at 3500 cm−1 of pure PVP becomes shorter
and broadened. Moreover, FTIR spectra from 1690 cm−1 (OH of f-MWCNT) to 1670 cm−1

(C=O, amide group of PVP) also show a prominent shift of peaks and spectrum peaks
become broadened, disappear and move to lower frequency; this portion is highlighted in
Figure 3. These changes confirm the presence of hydrogen bonding in all the NCs.

In this work, industrial grade S-PES polymer was used and the degree of sulfonation
was verified by acid base titration scheme and by the FTIR spectrum. Figure 4 illustrates
the FTIR results of PES, S-PES and some selected membranes. Compared to the FTIR
spectrum of PES, the S-PES membrane shows a visible band at 1028 and 1187 cm−1 that
belonged to the symmetric and asymmetric stretch of the sulfonate group, whereas the peak
at 1134 cm−1 is correlated to the increment of –S=O groups [34]. For the PES, the peak at
1249 cm−1 is attributed to the asymmetric stretching vibrations of the S=O group, whereas
aromatic rings of the PES show the bending vibration at 1480 and 1570 cm−1 [35]. In all
the sulfonated/NCs membranes, the FTIR spectra at 3500 and 1650 cm−1 are changed, and
peaks become broadened and shorter compared to the NCs spectrum (Figure 3). Moreover,
the FTIR zone at 1000 to 1370 cm−1 displays the hydrogen bonding; FTIR line position is
changed and almost broadened and straight, especially in the cases of M1-30 and M3-30
membranes. This area is co-related to –C–N, –SO3H and –S=O polar groups. Thus, the
peaks at 3500, 1650 and 1050–1370 cm−1 confirm the presence of hydrogen bonding in the
sulfonated/NCs membranes.
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3.3. FESEM Analysis

The addition of NCs and S-PES could affect the phase separation kinetics of membrane
formation, which ultimately change cross-sectional morphology of resulted membranes, as
shown Figure 5.
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The polar groups of NCs contribute the COO– and OH–, whereas S-PES provide
–SO3H functional molecules that produce instability with non-polar groups of the polymer
solution. This polar and non-polar combination in the dope solutions demonstrated the
higher exchange rate between dope and coagulation bath liquid than non- polar composi-
tion of M-PS membranes. Thus, most of the S-PES/NCs-based membranes show typical
asymmetric structure. The M-PS membrane, however, contains short finger-like entities and
spongy structure. As the amount of sulfonation is increased from 15 to 45%, the shape of
capillary changes. The M1-15 membrane demonstrates a typical dense layer and finger-like-
entity that progressively transforms to open ends in M1-30, whereas the M1-45 membrane
displays long channel-like structures. Similar trends are also found in M2 (M2-15 to M2-45)
and M3 (M3-15 TO M3-45) series membranes, which are made of the same S-PES amount,
although they contain a different amount of NCs. The findings suggest that sulfonated
polymer is a dominant factor compared to NCs in affecting basic internal morphology of
the membranes. It must be noted that the open-ended membranes generally lose their
mechanical strength and are less practical for industrial applications [36].

3.4. Hydrophilicity and Elution Ratio

The comparative results on membrane hydrophilicity are presented in Figure 6. It is
observed that CA of M-PS is 89.88◦, but the value significantly decreased to 46.75◦ upon the
addition of S-PES/NCs additives in the M3-45 membrane. The membrane M1-15 shows
a 32% reduction of CA compared to the M-PS that was further reduced by the increasing
amount of S-PES polymer. Similar trends are observed from membrane M2-15 to M2-45 and
M3-15 to M3-45. The membrane M3-45 displays a 48% greater reduction of CA compared
to the pristine PES membrane. The low CA of M3-45 might be due to the higher amount of
NCs and degree of sulfonation than all other formulated membranes. When the sulfonation
degree increased from 15 to 30% and 45%, CA decreased by 3.3–4.5% and 5.2–5.7% in all
membranes. These values indicate that the higher amount of S-PES in the dope solution
enhanced the ionic effect on the membrane surface. Thus, the extent of S-PES looks directly
proportional with the addition of hydrophilicity; these outcomes are parallel to the available
works of Wang et al. [37].
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Figure 6. Comparison of PES membrane with and without NCs and SPES in terms of contact angle
(n = 5).

Figure 7 shows the quantitative measurements of the elution ratio of all the formulated
membranes. All the membranes show some amount of elusion ratio. The M-PS membrane
demonstrates the lowest elusion ratio (0.59%). This might be due to the loosening of some
solvent molecules. The M1 series membranes (M1-15 to M1-45) show a higher amount
of elusion than those of M2 and M3 series membranes. Moreover, as the sulfonation
increases, the elution ratio also increases, a trend that is found in all membranes. The M1-45
membrane shows the highest value of elution (4%) compared to the M2-45 (2.54%) and
M3-45 (2.49%) membranes, although it exhibits lower CA. It is observed that the increasing
amount of f-MWCNT in the NCs from the M1 to M3 series membranes gradually reduces
the elution ratio. In the NCs, the f-MWCNT has a dual-nature, i.e., hydrophobic (carbon-
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based chain) and hydrophilic (carboxylic and hydroxyl). Thus, it could act as a bridging
material between PES and PVP due to pi-pi interaction and H-bonding. In the M1 series
membranes, the amount of f-MWCNT is 0.1 wt.%, i.e., two and three times lower compared
to M2 (0.2%) and M3 (0.3%) membranes, respectively. However, the 0.1% of f-MWCNT
added is not able to hold the PVP and S-PES in the M1 membranes, mainly due to its high
elusion ratio.
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3.5. AFM Studies
3.5.1. Surface Roughness Parameters

The effects of S-PES and NCs on the membrane surface properties are further studied
by AFM; the results are in Figure 8. The white and brown color represents the difference in
surface heights on the membrane surface. The white spot shows the higher points on the
membrane surface that might be due to the agglomeration of NCs. This agglomeration is
found in the membranes that contained 45 wt.% S-PES in membrane composition. Since the
S-PES has lower polymer weight than PES, the decrease in dope viscosity with increasing S-
PES content is understandable [24]. The reduced viscosity is likely to cause less sheer stress
on the NCs for its separation from its own agglomerates, leading to its poor dispersion
and slight accumulation compared to other membranes. The quantitative measurements of
image statistics with respect to surface roughness parameters are summarized in Table 2.
The M1-15 shows a 123 nm maximum height of grains; the value is further increased to
275 nm in M1-30 and 289 nm in M1-45 membranes. A similar trend can also be found in
the M2 series membranes. The findings show that the increasing load of S-PES polymer
tends to enhance surface roughness. Rahimpour et al. [38] have also reported similar
results in their work, where PES/S-PES blended membranes were prepared by the phase
inversion method.

In the case of the M3 series membrane, the M3-45 shows the highest maximum heights
(463 nm) compared to other formulated membranes. This suggests that as the S-PES
polymer concentration increased in the dope, the distribution of NCs decreased, which
was also visible in the 3D images of the membranes (Figure 8). Furthermore, the higher
accumulation of NCs in M3-45 could be due to the excessive usage of f-MWCNT (0.3 wt.%)
in the membrane, almost double that of M1 and M2 series membranes, which might require
more dispersion power or time to achieve better dispersion. This work is in agreement with
Daraei et al. [39], who reported that superior dispersion quality of CNTs was achievable
when a low content of nanomaterials was added in the formulation. Parallel statements
were conveyed by Vatanpour et al. [40], who blended MWCNT as an additive in PES-based
membranes and improved the antifouling properties.
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The dispersion effect of NCs seems to control the Ra parameter of all the formulated
membranes. The M-PS membrane shows 19.92 nm Ra that was first reduced in all 15%
S-PES-containing membranes. The Ra value then progressively increases from 15 wt.%
S-PES membranes to 45 wt.% S-PES containing membranes in all series. The increment of
Ra values with S-PES showed that the higher weight percentage of S-PES polymer favored
the NCs aggregation.

3.5.2. Grain Analysis (Surface Profile)

The presence of S-PES and NCs in the dope formulation tends to improve the surface
chemistry of PES-based membranes; the changes are analyzed by grain analysis graphs
(Figure 9). Increasing the content of S-PES in the polymer solution from 15 to 45 wt.%
increases the grain volume, radius and diameter of the resultant membranes in all mem-
brane series (M1, M2 and M3), irrespective of the amount of NCs added (Figure 9A,B). The
grain radius and diameter of M1 (M1-15 to M1-45) and M2 (M2-15 to M3-45) membrane are
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almost the same, but they exhibit different surface roughness (Table 2) and hydrophilicity
(Figure 6). The observed results of perimeter, area and length of membrane grains show
similar trends; these results are also supported by the FESEM images.
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Figure 9. Surface Profiles result of all formulated membranes, obtained via XEI-AFM software of
scanned images. (A)-The volume and area of grains, (B)-Radius and diameter of surface grain,
(C)-Perimeter and length of grains.

As mentioned earlier, in the FESEM images (Figure 5) of the membranes, the increased
amount of S-PES from 15 to 45 wt.% affected the capillary system and changed the shape
from typical dense layered-finger-like projection (15 wt.%-S-PES) to progressively open-
ended (30 wt.%-S-PES) and then again close-ended with long channel-like structures
(45 wt.%-S-PES). This transformation was especially visible in M1 and M3 membrane series;
the data of perimeter, area and length represent the same outcome. In the Figure 9A,B, the
quantitative values of perimeter, area and length were first increased by 30 wt.% S-PES
(compared to corresponding 15 wt.% S-PES membranes) and then decreased with 45 wt.%
S-PES (compared to 30 wt.% S-PES membrane).

Its mean open-ended capillaries of M1-30 and M2-45 occupied more space than other
membranes. Whereas, in the M2-30 membrane showed a lower value of perimeter, area
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and length than M2-15 and M2-45 membranes, because its FESEM images also showed that
its capillaries were first closed and had not changed into the open-ended projection directly.
The variation of surface profile parameters might be due to difference of NCs, especially
the amount of f-MWCNT (0.1 to 0.3%) and its distribution in the membrane matrix.

3.6. Porosity and Flux Rate

Figure 10 presents the porosity and water flux of all fabricated membranes. As can
be seen, incorporating S-PES and NC into the PES membrane matrix could enhance the
porosity from 0.334 in M-PS to 2.77 in M2-45. The membranes from M1-15 to M1-45 and
from M2-15 to M2-45 show progressive increment of porosity, but this increasing trend
is not shown in the M3 series membranes. The M1 membranes show a lower porosity
value than its corresponding membranes of the M2 series, suggesting that an increasing
amount of NCs from 0.1 to 0.2% could positively improve the number of pores per unit
area. The M3 membranes contain 0.3% of NCs and demonstrate a higher surface roughness
owing to the accumulation of some NCs (Table 2). With respect to water flux, results
show that all NCs/S-PES-based membranes exhibit higher flux rate than the pristine PES
membrane. The flux rate of S-PES is 12.94 L/m2h, i.e., it increased 88.7% by the addition
of NCs (0.1% f-MWCNT and 3% PVP) and 15% S-PES polymer. The flux rate is further
increased in M1-30 and M1-45 membranes by the addition of 30% and 45% S-PES polymer.
The M2-15 and M3-15 membranes show 89.6% and 90.4% higher flux rate compared to
the M-PS membranes. The flux rates of M2 and M3 also increased with the addition of
S-PES polymer; all three membranes series (M1, M2 and M3) show similar trends. The flux
rates of M1-15, M2-15 and M3-15 are 114.4, 123.7 and 133.7 L/m2h, respectively. All these
membranes contain 15 wt.% S-PES, but a variable amount of NCs. The increment of flux
rate from M1 to M2 and M3 might be due to the amount of f-MWCNT added.

Membranes 2022, 12, x FOR PEER REVIEW 14 of 20 
 

 

M2-15 −60.41 117.85 28.72 178.26 16.03 12.01 173.69 −0.62 6.60 
M2-30 −84.44 138.88 27.22 223.32 23.80 18.35 212.37 −0.23 3.89 
M2-45 −245.73 280.15 17.21 525.88 47.41 31.44 516.70 0.19 6.61 
M3-15 −84.79 297.59 106.40 382.39 21.66 14.63 377.02 −2.52 29.20 
M3-30 −115.05 123.34 4.14 238.39 34.42 27.46 235.19 −0.11 3.04 
M3-45 −125.77 462.56 168.40 588.34 74.13 50.15 581.85 −1.95 8.25 

3.6. Porosity and Flux Rate 
Figure 10 presents the porosity and water flux of all fabricated membranes. As can 

be seen, incorporating S-PES and NC into the PES membrane matrix could enhance the 
porosity from 0.334 in M-PS to 2.77 in M2-45. The membranes from M1-15 to M1-45 and 
from M2-15 to M2-45 show progressive increment of porosity, but this increasing trend is 
not shown in the M3 series membranes. The M1 membranes show a lower porosity value 
than its corresponding membranes of the M2 series, suggesting that an increasing amount 
of NCs from 0.1 to 0.2% could positively improve the number of pores per unit area. The 
M3 membranes contain 0.3% of NCs and demonstrate a higher surface roughness owing 
to the accumulation of some NCs (Table 2). With respect to water flux, results show that 
all NCs/S-PES-based membranes exhibit higher flux rate than the pristine PES membrane. 
The flux rate of S-PES is 12.94 L/m2h, i.e., it increased 88.7% by the addition of NCs (0.1% 
f-MWCNT and 3% PVP) and 15% S-PES polymer. The flux rate is further increased in M1-
30 and M1-45 membranes by the addition of 30% and 45% S-PES polymer. The M2-15 and 
M3-15 membranes show 89.6% and 90.4% higher flux rate compared to the M-PS mem-
branes. The flux rates of M2 and M3 also increased with the addition of S-PES polymer; 
all three membranes series (M1, M2 and M3) show similar trends. The flux rates of M1-15, 
M2-15 and M3-15 are 114.4, 123.7 and 133.7 L/m2h, respectively. All these membranes con-
tain 15 wt.% S-PES, but a variable amount of NCs. The increment of flux rate from M1 to 
M2 and M3 might be due to the amount of f-MWCNT added. 

 

  

0.0

1.5

3.0

4.5

6.0

Po
ro

si
ty

 (p
.u

)

Membranes

Membranes 2022, 12, x FOR PEER REVIEW 15 of 20 
 

 

 

Figure 10. Pure water flux rate and porosity of all formulated membranes (n = 3). 

3.7. Antifouling Properties of Membranes 
Figure 11 presents the protein adsorption results of PES and S-PES/NC membranes. 

All membranes show lower adsorption of protein via the static method compared to the 
dynamic method. In the static method, the protein adsorption only occurs at the surface 
of the membranes, whereas, in the dynamic method, the stirring condition enforces the 
protein molecules to adsorb on the surface, as well as inside the membrane pores. The 
findings are in agreement with the work of Nakamura and Matsumoto [41], in which they 
also reported that protein adsorption is higher in the dynamic method compared to the 
static method. Moreover, it was found that all the S-PES/NCs membranes show lower 
protein adhesion than that of the M-PS membrane. According to Van der Bruggen et al. 
and Khulbe et al., the hydrophobicity of the PES membranes is its major weakness (severe 
fouling) for industrial application [42,43]. Liangliang et al. reported that higher protein 
adhesion on the membrane surface results from low hydrophilicity [44]. 

 
Figure 11. The static and dynamic protein adsorption results of fabricated membranes (n = 3). 

In this work, the higher hydrophobicity of M-PS membrane might be the reason for 
its higher protein adhesion in comparison to other formulated membranes. Since the hy-
drophilic membrane is preferable to adsorb water rather than solutes, it was also observed 
that lowering the contact angle results decreased the fouling of protein. All M3 series 
membranes show a higher amount of protein adsorption, which could be due to their 
greater surface roughness (see Table 2) compared to M1 and M2 membranes. The mem-
branes that contain 45 wt.% S-PES show lower protein adsorption than those of mem-
branes made of 15 and 30 wt.% S-PES. This indicates that higher amounts of sulfonation 
tend to create a repulsive effect against proteins and to reduce their adsorption. 

0

50

100

150

200

Fl
ux

 ra
te

 (L
/m

².h
)

Membranes

20

30

40

50

60

Pr
ot

ei
n 

ad
so

rp
tio

n 
(u

g/
cm

2 )

Membranes

Dynamic Static

Figure 10. Pure water flux rate and porosity of all formulated membranes (n = 3).

3.7. Antifouling Properties of Membranes

Figure 11 presents the protein adsorption results of PES and S-PES/NC membranes.
All membranes show lower adsorption of protein via the static method compared to the
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dynamic method. In the static method, the protein adsorption only occurs at the surface
of the membranes, whereas, in the dynamic method, the stirring condition enforces the
protein molecules to adsorb on the surface, as well as inside the membrane pores. The
findings are in agreement with the work of Nakamura and Matsumoto [41], in which they
also reported that protein adsorption is higher in the dynamic method compared to the
static method. Moreover, it was found that all the S-PES/NCs membranes show lower
protein adhesion than that of the M-PS membrane. According to Van der Bruggen et al.
and Khulbe et al., the hydrophobicity of the PES membranes is its major weakness (severe
fouling) for industrial application [42,43]. Liangliang et al. reported that higher protein
adhesion on the membrane surface results from low hydrophilicity [44].
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Figure 11. The static and dynamic protein adsorption results of fabricated membranes (n = 3).

In this work, the higher hydrophobicity of M-PS membrane might be the reason
for its higher protein adhesion in comparison to other formulated membranes. Since
the hydrophilic membrane is preferable to adsorb water rather than solutes, it was also
observed that lowering the contact angle results decreased the fouling of protein. All
M3 series membranes show a higher amount of protein adsorption, which could be due
to their greater surface roughness (see Table 2) compared to M1 and M2 membranes.
The membranes that contain 45 wt.% S-PES show lower protein adsorption than those
of membranes made of 15 and 30 wt.% S-PES. This indicates that higher amounts of
sulfonation tend to create a repulsive effect against proteins and to reduce their adsorption.

Figure 12 compares the water flux profile of membranes before and after being used
for the BSA UF process. The sharp decrement of the flux rate (Jp1 and Jp2) of the BSA
solution is observed in all membranes, when pure water (feed solution) is replaced by the
BSA solution. This reduction might be due to the accumulation and adsorption of protein
molecules on the membrane surface and to inner pores that induce fouling.

A more comparative and deeper assessment of antifouling may be obtained from the
results shown in Figure 13A,B with respect to RFR, Rt, Rr and Rir; two round cycles of
pure water and protein solution filtration were performed. As shown, M1-15 membrane
records 82% FFR, 78.5% Rt against BSA fouling, in which 60.5% are reversible. The M2-15
membrane demonstrates similar results compared to the M1-15 membrane, but with a slight
reduction (3–4%) in RFR and Rt compared to the M3-15 membrane. The slightly higher
protein fouling of the M1-45 membrane could be attributed to its higher surface roughness.
For the M1-15 to M1-45 membranes, they all show almost the same flux recovery and total
resistance. It might be possible that, in the first round of water and BSA cycle (Figure 13A),
the particular amount of fouling of protein molecules on the membrane surfaces eliminated
the effect of surface roughness on the BSA solution in the 2nd round. Compared to other
formulated membranes, the M2-30 membrane shows the highest value of FFR (84.41%),
and 62.65% of the resistance is reversible. This higher value for the M2-30 membrane is
persistent in the 2nd round of the BSA and water cycle. The M3-15 and M3-30 membranes,
on the other hand, show lower antifouling resistance compared to their corresponding
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M1 (M1-15 and M2-15) and M2 (M2-15 and M2-30) series membranes. This might be due
to the higher amount of NCs, especially considering that the 0.3 wt.% of f-MWCNT with
3 g of PVP was not shown to be good in the membrane formulation, leading to higher
agglomeration of f-MWCNT and higher surface roughness, as discussed in Section 3.5.1.
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3.8. Protein Separation

The filtration and separation efficiency of S-PES/NCs-based membranes were evalu-
ated by the lysozyme, trpsin, pepsin and BSA proteins and Figure 14 shows the experiment
results. All the sulfonated based membranes show a higher rejection rate of protein than
non-sulfonated membranes (M-PES), although some of them possess higher grain diame-
ters than the M-PS membranes. In all the membranes, the rejection rate of protein decreases
with increased loadings of S-PES, irrespective of the amount of NCs added. The protein
separation efficiencies of membranes are lower in the M1 series membranes than in the
M2 and M3 series membranes. These results are consistent with protein adsorption and
antifouling results, where the M1 series membranes show a less repulsive effect toward
protein adhesion.
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4. Conclusions

The membranes with improved anti-fouling properties were successfully prepared
from the dope solutions composed of PES, S-PES and PVP/f-MWCNT-based NCs. The exis-
tence of S-PES and NCs in the PES-based membrane matrix was confirmed via FTIR. Except
for the M-PS control membrane, other membranes exhibited asymmetric structure with
long finger-like morphology. When the S-PES amount was increased from 15 to 45 wt.%,
the effect of NCs seemed almost the same in all the membranes, and the weight percentage
of S-PES in the membrane composition controlled the final orientation of the internal cap-
illary system, hydrophilicity and grain analysis estimation. The NCs play an important
role on the membrane surface roughness as well as the decrement of the leaching ratio of
the hydrophilic component (PVP and S-PES). The blending of PES membrane with S-PES
and NCs tended to improve membrane hydrophilicity, to increase surface roughness and
to improve the membranes surface profile, as shown by AFM analysis. The protein adhe-
sion studies indicated that the incorporation of the lesser amount of NCs and the higher
quantity of S-PES would lead to lower protein adsorption and lower antifouling properties.
The higher antifouling property of M2-30 membranes revealed that it has greater flux
recovery compared to other formulated membranes. The M-PS control membrane had a
very low flux rate with 63% RFR and 30% Rr, whereas most of the NC/S-PES membranes
demonstrated 80–84% RFR with 58–62% Rr. The protein separation experiments showed
that M1-15 to M1-45 membranes were able to reject 29–33% lysozyme, 62–65% trypsin,
79–83% pepsin, and almost 100% BSA, whereas other formulated membranes (M2 and M3
series) showed slightly lower separation efficiencies.

The current research work is limited to lab-scale evaluation, in which only three
different percentages of SPES (15, 30 and 45) of total polymer weight were evaluated. The
highest fouling resistance of 79% was achieved, with 38% of the resistance being irreversible,
in the first fouling round, which can be further optimized. In terms of a future prospective,
these membranes can be utilized on the industrial scale level and hollow fiber can be
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spun and evaluated using formulations of M1-15 to M1-45 membranes. These selected
membranes demonstrated higher protein resistance with higher water flux.
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