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Considerations on the filtration of thin stillage 
Another factor to be considered considers the preparation of the feedstock material 

involved in the scale-up approach proposed herein. The particle size analysis of thin stil-
lage details that over 40% of the solids are under a 0.45-μm threshold, while over 90% of 
the total P is present aggregated or associated with particles smaller than 0.45 μm [6]. In 
this sense, the presence of unnecessary solids likely would pose additional engineering 
challenges in the operation of the scalable ion exchange columns. Through a batch filtra-
tion of thin stillage, using different pressures, the filtration profile was obtained (Fig. S1A) 
considering a batch filtration system under different pressures from 10 psi to 50 psi at 
room temperature, from which, a further analysis can be made based on the linearization 
of the variables t/V against V (Fig. S1B). The linearization of t/V against V provides an 
estimation of parameters involved in the scale-up. 

 
Figure S1. (A) Filtration profile of thin stillage under different pressures using a 0.45 μm cellulose 
filter; (B) Linearization of t/V against V on the filtration of thin stillage. 
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Considerations on the van Deemter model 
The van Deemter model describes the mechanisms of band broadening in chromato-

graphic separations for non-ideal separations, i.e., those that do not follow a linear iso-
therm. It has been described that the rate theory development in systems in which non-
ideality are caused by axial molecular diffusion, axial Eddy diffusion, and finiteness of 
transfer coefficient [17]. For a system that follows the two rules of ideal chromatography, 
in which (i) the equilibrium concentrations are proportional in the two phases, and (ii) the 
exchange process is reversible according to purely its thermodynamic parameters, i.e., the 
equilibrium between particle and fluid is immediate, the mass transfer coefficient tends 
to positive infinity, and there are no diffusion effects within the system, the partition co-
efficient is related to the ratio of the amounts of those phases present in a column. For 
ideal chromatography, then, the separation of different solutes can be explained on arith-
metic approximations. For systems in which non-linear isotherms are present, i.e., in sys-
tems in which the effect of nonlinearity of the isotherm cannot be neglected, usually com-
prehend conditions with fast mass transfer, and that axial diffusion can be neglected [18], 
also describing that bands in nonlinear ideal chromatography should be sharp-front and 
long-tailed. 

For non-ideal chromatography and nonlinear isotherms, which comprehend most of 
the adsorption processes in mixture separations, there exists a comprehensive cooperation 
of two theories – the rate theory and the plate theory [17]. The plate theory describes the 
separation efficiency of a chromatographic column by the height equivalent to a theoreti-
cal plate (HETP, or simply, H). The rate theory provides all information on the influence 
of kinetic phenomena and lies its idealization within its acceptability at specific condi-
tions, e.g., thin film cases. This has been applied [19,20] on the analysis of the interpreta-
tion of a rate coefficient through a liquid film, as basis [17] to further combine the condi-
tions raised by Glueckeuf et al. [21], who related plate height to particle size, particle dif-
fusion, and diffusion through the film surrounding the particles, especially those regard-
ing Eddy diffusion and intraparticle diffusion. Figure S2 depicts the differences of pore 
diffusion and Eddy diffusion under such considerations. 

 
Figure S2. Scheme of Eddy and pore diffusion contributions to axial dispersion on a packed bed 
(adapted from [22]). 
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The derivation of the plate theory has been extensively described in the literature 
[10]. The history and elution curve of a single band in partition chromatography are taken 
for demonstration, and vi and vii are defined as the volumes of the moving and immobile 
phase in one theoretical plate. For a system with a distribution factor K, assumed to follow 
a linear profile of concentrations in both phases in the chromatographic separation, i.e., 
solid, and fluid, the effective plate volume, v, can be thus defined as:  v = v୧ + ୴౟౟୏ , for which, c୧ = Kc୧୧ 

For a system with feed concentration equals c0, and the feed volume equals A, the 
material balance derived for the first plate if a volume dS of the fluid phase passes through 
is as follows, visually depicted in Figure S3: v୧dc୧,ଵ + v୧୧dc୧୧,ଵ + c୧,ଵdS = ቄc଴dS for 0 ൑ S ൑ A0 for S ൐ A  

Similarly for the other plates, i.e., for n>1, v୧dc୧,୬ + v୧୧dc୧୧,୬ + c୧,୬dS = c୧,୬ିଵdS 
 

 
Figure S3. Partition chromatography in stages (adapted from [17]). 

The introduction of yn and w to the equations above, which simplify the concentra-
tion volumetric profile and the linear velocity, i.e., yn=ci,n/c0, and w=S/v, the equations 
above are simplified to: dyଵdw + yଵ = ൞1 for 0 ൑ w ൑ Av0 for w ൐ Av  

dy୬dw + y୬ = y୬ିଵ (n ൐ 1) 

Initial conditions are y1=y2=…=yn=0 for w=0. 
The solution for all stages can be written as: 

y୬ =
⎩⎪⎪⎨
⎪⎪⎧න eି୵ᇱ wᇱ୬ିଵ(n − 1)! dwᇱfor 0 ൑ w ൑ Av୵

଴ න eି୵ᇱ wᇱ୬ିଵ(n − 1)! dwᇱfor w ൐ Av୵
୵ି୅୴

 

The integrand of yn for w>A/v is the Poisson distribution function, which can be ap-
proximated on conditions in which w is large enough, usually greater than 100, and qual-
itatively described if the number of plates is not too small (infinitely thin column) or if the 
band has arrived at the end of the column. Therefore, it can be assumed the following is 
true: 1n! eି୵ᇱwᇱ୬ ൎ 1√2πw′ eି(୵ᇲି୬)మଶ୵ᇱ  
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For large values of w’, it can be assumed that w’≈n, and that n-1≈n, and redefining w 
and yn as above, the van Deemter elution curve is described as: c୧,୬ = c଴v√2πn න eି(ୗ୴ᇲି୬)మଶ୬ dS′ୗ

ୗି୅  

In order to relate width and height of an elution curve to the plate number, van 
Deemter et al. [17] defined the dimensionless quantities of s and a, as being: s = Sv√n  and a = Av√n 

Which rewrites the equation above as being: c୧,୬c଴ = 1√2π න eିଵଶ(ୱᇲି√୬)మdS′ୱ
ୱିୟ  

For the maximum value of ci,n/c0, the equation will be equivalent to an error function, 
i.e.: ൬c୧,୬c଴ ൰୫ୟ୶ = erf a2√2 

Van Deemter et al. [17]  also define ∆S as being the width referent to the distance 
between the points of intersection of the tangents in the inflection points with the hori-
zontal axis. For arithmetic purposes, a new implicit function δ is defined. δeିஔమଶ = (a + δ)eିଵଶ(ୟାஔ)మ

 
Thus, ∆s = a + 2δ + √2π a + δδ eஔమଶ (erf a + δ√2 − erf δ√2) 

Despite the mathematical complexity of ∆S, it can be easily seen that both height 
(ci,n/c0), and width (∆s) are only dependent on a. In summary, the efficiency of separation 
and recovery of a compound in chromatographic-based separations are only dependent 
upon the feed volume, the effective plate volume, and the number of theoretical plates. 

If a continuous column was to be considered, i.e., the case in which a column does 
not fully saturate, a mass balance can be written according to the visual representation on 
figure S4.Lapidus and Amundson [23] described Eddy diffusion present in packed bed 
behavior, in which the longitudinal diffusion is caused by irregularities in the packing, 
which provide small signals to the overall diffusion coefficient. 
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Figure S4. Material balance in a column (adapted from van Deemter et al. [17]). 

For a cross sectional area on figure S4, it is seen that: F୧ ∂c୧∂t = F୧D ∂ଶc୧∂zଶ − F୧u ∂c୧∂z + α(Kc୧୧ − c୧) F୧୧ ∂c୧୧∂t = α(c୧ − Kc୧୧) 

Lapidus and Amundson [23] derived the solution for equation above, when a pulse 
of concentration c0 during a short time t0 was introduced to the system. Their solution is 
read as: c୧c଴ = zt଴2t√πDt eି୸(ି୳୲)మସୈ୲ ି஑୲୊౟ + න zt଴eି୸(ି୳୲ᇱ)మସୈ୲ ି஑୲୊౟2t′√πDt′୲

଴ ඨቈ αଶKt′F୧F୧୧(t − tᇱ)቉ eି஑୏୊౟౟ (୲ି୲ᇲ)ି஑୲ᇱ୊౟ Iଵ ቐ2ඨαଶKt′(t − tᇱ)F୧F୧୧ ቑ dt′ 
The general equation derived from Lapidus and Amundson [23] can be simplified if 

a column has a large number of transfer units and mixing stages. The number of mixing 
stages can be defined for a column of height l as ul/2D, in which the height of a mixing 
stage being equal to 2D/u. The height of a transfer unit is defined by van Deemter as Fiv/ 
α. 

Considerations on pressure drop 
Pressure drop is usually the limit that determines the size of a fixed bed chromatog-

raphy column, usually being an important parameter to be considered when one is per-
forming a resin screening. The Kozeny-Carman equation describes the pressure drop 
caused by the friction forces through an incompressible packed resin column: ∆P = u଴L 150μd୮ଶ ቈ(1 − ε)ଶεଷ ቉ 

In which u0 represents the superficial velocity of the mobile phase, L is the bed height, 
μ is the viscosity, dp is the particle diameter, and ε is the void fraction of the column [22] 

The Kozeny-Carman equation has limited applications on ion-exchange medium, 
since most resin material are made from compressible polymeric material (reference). The 
matrix material in which resins are made of (e.g., polyacrylate) will compress to an extent 
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depending on the cross-linking, bed height, column diameter, and frictional properties of 
the medium. The Kozeny-Carman equation also does not account for the presence of a 
wall material, in which the resin beads are contained. Wall effects are clearly visible on 
narrow columns, and provide additional support for the column, thus, reducing bed com-
pression. Different geometries will lead to different values of ucrit, which is the critical ve-
locity, in which the pressure increases asymptotically, and no additional flow is achieved. 
Additional flow instability is found in the formation of small and highly compressed re-
gions near the bottom of the column, which represent large deviations from the Kozeny-
Carman equation. Colby et al. [24] presented a model to account considering interstitial 
porosity, specific surface area, internal angle of friction, and the angle of wall friction. The 
three set of equations presented by [24] are as follows, for frictional support, stress on the 
particles, and the pressure gradient, respectively: ∂τ୸୸ୱ∂z = μu଴χ(τ୸୸ୱ ) − 4dୡ tan ϑ 1 + sin  ξ1 − sin  ξ τ୸୸ୱ  

χ(τ୸୸ୱ ) = 200εୱଶd୮ଶϕଶε୤ଷ 

∂P∂z = −μu଴ χ(τ୸୸ୱ ) 

In which τzz represents the stress acting on the resin particles in the axial direction, 
usually represented in Pa, z is the distance from the inlet of the column, χ (τzz) being an 
expression describing the contribution of porosity and specific surface area to the pressure 
gradient, dc is the column diameter, ϑ being the angle of wall friction, ξ as the internal 
angle of friction, and ϕ as the shape factor of the particles (m-1). 

The solution of these equations is often given by 4th-order Runge-Kutta integration 
method, and several analyses have reported errors within the 20% range. Soriano et al. 
[25] presented a column pressure drop model accounting gravity and the forces acting on 
the bottom, top, and the sides of a differential-sized slice of a column. The semi-empirical 
model accounts for the constant K from the Blake-Kozeny equation: K = K଴eି൬ ୔୔౩బ൰

 

And is written as: dPୱdh = ∆ρ(1 − ε)g + Ku଴ − Pୱk tan ϑ ൬ 4dୡ൰ 

In which, the new variables are K as the Blake-Kozeny constant, K0 as the permeabil-
ity of the uncompressed gel matrix (m2), P as productivity (g L-1 h-1), Ps0 as the matrix 
rigidity (kPa), h as the reduced plate height (H/dp), Δρ as the density difference between 
the medium and the mobile phase, g as the acceleration due to gravity, k as a pressure 
coefficient, and Ps as the verticle solid pressure in the bed (kPa). 

The most appropriate way to solve the model derived by Soriano et al. [25] is to em-
ploy 4th-order Runge-Kutta integration methods, to generate axial pressure-flow curves 
for a given matrix and column specifications. An empirical model to predict pressure drop 
from a series of bed compression measurements – using different aspect ratios and column 
diameters was introduced by Stickel et al. [26]. A linear model is, thus, presented and 
expects to linearly fit the critical velocities as a function of the aspect ratio; in which m and 
b are linear regression coefficients. 
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uୡ୰୧୲ = m ൬L଴dୡ൰ + bL଴  

The critical bed compression φc can be calculated as being: φୡ = εୡ − ε଴εୡ − 1  

Which, for any given velocity lower than ucrit, the bed compression can be calculated 
as φ = φୡ uuୡ 

For which, m and b are linear coefficient parameters, and L0 as the initial gravity-
settled bed height. 

Though pressure drop vs. flow curves are often obtained by the manufacturer, which 
can be used to estimate the maximum pressure a particular medium can hold, the opera-
tion conditions in columns may impose lower limits, especially because of wall effects.  

Theoretical and empirical considerations on the competitive anion exchange process 
Marcus and Howery [31] presented an equilibrium selectivity ratio, in which zA and 

zB are the charge numbers, [I±] represents the molar scale applied to the solution phase 
concentration. The mean molar coefficient, y±IC is also portrayed in the equation below: kୠ,ୟ = xതୠ ଵ୸ౘሾA±ሿ ଵ୸౗y±୅େxതୟ ଵ୸ౘሾB±ሿ ଵ୸ౘy±୆େ 

Considering a constant kb,a as the equilibrium selectivity ratio per equivalent of ions 
A and B, and xB as the equivalent fraction of the B ion in the exchanger, a constant k0 can 
be calculated as: log K଴ = න log kୠ,ୟdxതୠଵ

଴  

K0 represents, thus, a dimensionless equilibrium constant for the ion exchange reac-
tion. -ΔH ̊ represents the negative of the standard integral enthalpy. From a qualitative 
point of view, a summary of the anions present in thin stillage to which thermodynamic 
calculations were presented is reported on table. The anions selected herein are those 
found in thin stillage, to which thermodynamic data was reported in the literature. 
Though a thorough analysis cannot be done with these results, it can be easily noted that 
increasing crosslinkage of the resin, an increase in exchange capacity of the ion B is in-
creased, as seen by log K ̊. Considering IRA 900 is a heavily crosslinked resin [32] with a 
highly porous surface [6], we assume such factors to be potentially significant in explain-
ing the phytate preference over the other anions. Table S1 presents a summary of similar 
resin media applied to different exchange systems. 

  



Membranes 2022, 12, 230 8 of 8 
 

 

Table S1. Literature data on Cl-, NO3-, and SO42- ion exchange thermodynamic properties. Adapted 
from [15]. 

Ion A Ion B Crosslinkage 
(%) Medium Exchanger log  K 

 ̊  
-ΔH ̊ 
(kcal) 

OH- Cl- 8 NR [-R-N(CH3)3
+-]n 0.38 NR 

OH- Cl- 2 NR [-R-N(CH3)3
+-]n 1 NR 

OH- Cl- 4 NR [-R-N(CH3)3
+-]n 1.26 1.8 

OH- Cl- 10 NR [-R-N(CH3)3
+-]n 1.73 NR 

Fl- Cl- 10 NR [-R-N(CH3)3
+-]n 0.9 NR 

Fl- Cl- 1 0.1M Na+ [-R-N(CH3)3
+-]n 0.57 1.55 

Fl- Cl- 0.1M K+ [-R-N(CH3)3
+-]n 0.43 1.6 

Cl- NO3
- ~8 NR [-R-N(CH3)3

+-]n 0.56 0.27 
Cl- NO3

- 3 NR [-R-N(CH3)3
+-]n 0.36 NR 

Cl- 1/2  
SO4

2- 

~8 

NR [-R-N(CH3)3
+-]n 0.06 NR 

Cl- 1/2  
SO4

2- NR [-R-N(CH3)3
+-]n 0.02 NR 

Cl- 1/2  
SO4

2- NR [-R-N(CH3)3
+-]n 0.02 -1.1 

Cl- 1/2  
SO4

2- NR [-R-N(CH3)3
+-]n 0.02 -0.92 

Fl- Cl- 8 0.01-0.1M Na+ or K+ [-R-N(CH3)2(C2H4OH)+
-]n 1.09 NR 

Cl- NO3
- 8 0.01-0.1M Na+ or K+ [-R-N(CH3)2(C2H4OH)+

-]n 0.43 NR 
Br- NO3

- 8 0.01-0.1M Na+ or K+ NR 0.02 NR 
NR: Not reported” 

 


