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Abstract: Rechargeable Li-metal/Li-ion all-solid-state batteries due to their high safety levels and high
energy densities are in great demand for different applications ranging from portable
electronic devices to energy storage systems, especially for the production of electric vehicles. The
Li1.5Al0.5Ge1.5(PO4)3 (LAGP) solid electrolyte remains highly attractive because of its high ionic
conductivity at room temperature, and thermal stability and chemical compatibility with electrode
materials. The possibility of LAGP production by the glass-ceramic method makes it possible
to achieve higher total lithium-ion conductivity and a compact microstructure of the electrolyte
membrane compared to the ceramic one. Therefore, the crystallization kinetics investigations of the
initial glass are of great practical importance. The present study is devoted to the parent glasses for
the production of Li1.5+xAl0.5Ge1.5SixP3−xO12 glass-ceramics. The glass transition temperature Tg is
determined by DSC and dilatometry. It is found that Tg decreases from 523.4 (x = 0) to 460 ◦C (x = 0.5).
The thermal stability of glasses increases from 111.1 (x = 0) to 188.9 ◦C (x = 0.3). The crystallization
activation energy of Si-doped glasses calculated by the Kissinger model is lower compared to that of
Si-free glasses, so glass-ceramics can be produced at lower temperatures. The conductivity of the
glasses increases with the growth of x content.

Keywords: all-solid-state batteries; solid electrolyte membrane; glasses; glass-ceramics; crystallization
kinetics; Li1.5Al0.5Ge1.5(PO4)3

1. Introduction

Lithium-ion batteries are in demand in all spheres of human activity, from portable
electronics to electric vehicles and spacecraft due to their high safety levels and high energy
density [1–3]. Commercially produced lithium-ion batteries present an inherent hazard of
liquid electrolyte leakage, and, when damaged, they are prone to swelling due to changes
in temperature. Switching from liquid electrolytes to solid electrolyte membranes can
decide the safety issues of lithium-ion power sources [3,4].

Among the numerous classes of oxide conductors reported in recent years, lithium-
conducting glasses and glass-ceramics are the most promising solid electrolytes for all-solid-
state batteries [2,5–7]. Moreover, similar glass-forming systems have a wider application
both in optical materials and in nuclear technologies [8,9]. The Li2O–Al2O3–GeO2–P2O5
glass-forming system is of particular interest since it can be used as a basis for producing
NASICON-structured glass-ceramic electrolytes of the Li1+xAlxGe2−x(PO4)3 series, which
have a high conductivity (10−4 S cm−1 at room temperature (RT)), thermal stability, compact
microstructure, and chemical compatibility with electrode materials [7,10,11]. All-solid-
state batteries with Li1.5Al0.5Ge1.5(PO4)3 (or LAGP) solid electrolyte (LiFePO4 cathode and
Li anode) demonstrate a cycling capacity of 131.3 mAh g−1 after 1000 cycles and a high
rate cycling stability of 75 mAh g−1 at 5 C, 50 ◦C [12].
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It should be pointed out that the electrical properties of glass-ceramics are considerably
dependent on the chemical composition and thermal history [11,13,14]. Thus, the conduc-
tivity of lithium-germanium-phosphate glass-ceramics increases with an increase in Al2O3
content from 2.25·10−8 S cm−1 (LiGe2(PO4)3 composition) to 5.03·10−4 S cm−1 (LAGP) at
25 ◦C [11]. In [14], the effect of the microstructure of the crystallized LAGP glass on the
conductivity is discussed. Controlled glass crystallization result in the glass-ceramics with
a homogenous microstructure, which leads to higher conductivity compared to ceramics of
the same composition. In [15], the effect of the crystallization temperature on the conduc-
tivity of LAGP was studied, which increased from 1.61·10−3 S cm−1 to 2.91·10−3 S cm−1 at
heat treatment temperatures of 750 and 800 ◦C, respectively. It has been found that to obtain
highly conductive LAGP glass-ceramics with the dense microstructure, heat treatment is
required at temperatures significantly higher than the crystallization peak temperature,
since the activation energy for crystallization (Ec) is quite high (~400 kJ mol−1) [10,11,16].
Crystallization kinetics is often studied using a non-isothermal model [17,18]. It has been
established that doping Li2O–GeO2–P2O5 glass with Al2O3 leads to decrease in Ec from
328 to 300 kJ mol−1 [10]. The Ec of 20Li2O–6Al2O3–35GeO2–38P2O5 glass is reported to be
442 kJ mol−1 [19]. Previously, we demonstrated that Al2O3 facilitates the processes of glass
crystallization and that Ec obtained by the Kissinger model decreases from 435 to 400 kJ mol−1

for 12.5Li2O–50GeO2–37.5P2O5 and 20.63Li2O–8.12Al2O3–33.75GeO2–37.50P2O5 glasses, re-
spectively [16]. It has also been found that both the glass transition temperature and the
crystallization temperature decrease with the introduction of alumina. In addition, the
lithium-ion conductivity was increased by 18 times compared to undoped glass.

Doping of LAGP glass with SiO2 reduces Ec down to 264 kJ mol−1 [20] or 199 ± 22 kJ mol−1

for Li1.5Al0.5Ge1.5P2.5Si0.5O12 glass [21], while the lithium-ion conductivity of the glass-
ceramics crystallized at 750 ◦C is 2.45·10−4 S cm−1 at RT [22]. Partial substitution of P5+ ions
by Si4+ should result in the formation of sites for Li+ ions, which is expected to improve the
electrical properties of NASICON-structured glass-ceramics. However, systematic studies
of the thermal and structural properties of glasses in the Li2O–Al2O3–GeO2–SiO2–P2O5
system for further production of Li1.5+xAl0.5Ge1.5SixP3−xO12 glass-ceramics have not yet
been carried out.

In this paper, we report the effects of P2O5/SiO2 substitution on the thermal, electrical,
and structural properties of Li2O–Al2O3–GeO2–P2O5 glasses for the creation of a promising
solid electrolyte membrane for all-solid state batteries.

2. Experimental

Bulk glass samples of the Li1.5+xAl0.5Ge1.5SixP3−xO12 (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) series
were prepared by the standard melt quenching method using Li2CO3 (>99.4%, Reakhim,
Moscow, Russia), Al2O3 (>99.9%, Reakhim, Moscow, Russia), GeO2 (>99.9%, Reakhim,
Moscow, Russia), SiO2 (>98.0%, Reakhim, Moscow, Russia), and NH4H2PO4 (≥98.0%,
Reakhim, Moscow, Russia). Table 1 shows the compositions of Li1.5+xAl0.5Ge1.5SixP3−xO12
glass samples. The starting components were thoroughly mixed together. The charge was
heated stepwise up to 500 ◦C with exposure at the final temperature for 2 h to remove volatile
components. The resulting mixture was melted in a Pt crucible at 1250 ◦C for 1 !h in air. To
obtained glasses, the melt was quenched between preheated steel plates with cooling rate
~102 ◦C min−1. Then all obtained samples were annealed at 420–500 ◦C for 2 h depending
on the composition and cooled slowly to RT in a furnace at a rate of 1 ◦C min−1. As a result,
transparent colorless parallel-sided plates without any impurities were obtained.
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Table 1. Compositions of Li1.5+xAl0.5Ge1.5SixP3−xO12 glasses in mole percent and sample density (ρ).

Glass
Code x Value Method Li2O,

mol%
Al2O3,
mol%

GeO2,
mol%

SiO2,
mol%

P2O5,
mol%

(Li+Al)/
(Ge+Si+P) O/P ρ ± 0.04,

g cm−3

0Si 0.0
nominal 18.75 6.25 37.50 – 37.50

0.33 4.1 2.98
AES 18.0 7.0 38.1 – 36.9

0.1Si 0.1
nominal 19.51 6.09 36.59 2.44 35.37

0.34 4.2 3.03
AES 18.9 6.9 37.0 2.5 34.7

0.2Si 0.2
nominal 20.24 5.95 35.71 4.76 33.34

0.35 4.3 3.01
AES 20.1 6.0 36.2 4.6 33.1

0.3Si 0.3
nominal 20.93 5.81 34.88 6.98 31.40

0.36 4.5 3.05
AES 20.8 5.9 35.3 7.1 30.9

0.4Si 0.4
nominal 21.59 5.68 34.09 9.09 29.55

0.36 4.6 2.96
AES 20.9 5.6 34.3 9.0 30.2

0.5Si 0.5
nominal 22.22 5.56 33.33 11.11 27.78

0.38 4.7 2.87
AES 22.0 5.6 33.0 11.1 28.3

The amorphous structure of the obtained glasses and the crystalline phases present
after heat treatment were determined by X-ray diffraction method (XRD) on a Rigaku
D/MAX-2200VL/PC diffractometer (Rigaku Corporation, Tokyo, Japan) using Cu Kα

radiation in the range of 10 ≤ 2θ ≤ 80 at RT.
The chemical composition of the glasses was determined by atomic emission spec-

troscopy (AES) with inductively coupled plasma using an Optima 4300 DV (PerkinElmer,
Waltham, MA, USA) spectrometer. The measurement accuracy was 2–3%.

The glass transition temperature (Tg), crystallization onset temperature (Tc), and
crystallization peak temperature (Tp) were established by differential scanning calorimetry
(DSC) on a thermal analyzer Netzsch STA 449 F1 Jupiter (NETZSCH-Gerätebau GmbH,
Selb, Germany) at the rate of 3, 5, 10, 15, and 25 ◦C min−1 in Pt crucibles in the 35–750 ◦C
temperature range in air (20 mL min−1).

Linear thermal expansion was investigated on the samples in the form of rectangu-
lar glass bars in a push-rod quartz dilatometer. The measurements were performed by
Tesatronic TT80 (TESA, Urdorf, Switzerland) digital meter with a high-precision TESA GT
21HP probe (a sensitivity of 0.01 µm) in the temperature range of 25–600 ◦C at a heating
rate of 3 ◦C min−1.

The density of the samples was estimated by Archimedes principle at 25 ◦C in several
parallels.

The electrical resistance of the samples was measured by the electrochemical impedance
method in a two-probe cell with silver metal electrodes in air. An Ellins P-5X potentio-
stat/galvanostat (Elins, Chernogolovka, Russia) was used for resistance measurement. For
this measurement, the samples were polished and coated with Ga-Ag paste to form the
electrodes. The impedance spectra were obtained in the frequency range of 0.025–1000 kHz
and the temperature range of 150–300 ◦C.

Raman spectra were recorded at RT on a Renishaw Ramascope U1000 equipped with a
confocal Leica DML microscope (Renishaw, New Mills, UK) operating on a solid-state laser
(λ = 532 nm) with a power of 5 mW on the sample. Spectral calibration was performed
using the Raman spectrum of silica. The spectral resolution was 1 cm−1. The intensities
were normalized to the maximum value.

Infrared spectra were obtained using a Fourier-transform infrared spectrophotometer
(FT-IR) Tensor 27 Bruker (Bruker Optik GmbH, Ettlingen, Germany) and KBr pellet tech-
nique. IR spectra were recorded in the wavenumber range 400–4000 cm−1 with a spectral
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resolution of 0.9 cm−1 with 32-fold scanning. Sample powders were mixed with KBr (1:200)
and pressed to get a transparent pellet.

3. Results and Discussion
3.1. Characterization and Thermal Behavior of the Glasses

Figure 1 shows powder diffraction patterns of compositions based on the Li2O–Al2O3–
GeO2–SiO2–P2O5 system with different additive contents. It can be seen from the XRD
data that all samples show haloes characteristic of amorphous materials without peaks of
crystalline phases.
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decreases gradually from 523.4 to 460.0 °C with increasing x from 0 to 0.5 (Figure 3d). This 
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Figure 1. XRD patterns of Li1.5+xAl0.5Ge1.5SixP3−xO12 glasses.

DSC analysis at different heating rates (3, 5, 10, 15, and 25 ◦C min−1) was performed to
understand the crystallization kinetics and thermal stability of glasses. Figure 2 shows the
DSC-curves of 0.1Si glass at 10 ◦C min−1. Bends around 500–530 ◦C depending on the heating
rate for 0.1Si glass are related to the glass transition temperature (Tg), while exothermic
reactions indicate the crystallization process. As can be seen, Tg increases from 505 ◦C to
523.4 ◦C with an increase in the heating rate from 3 to 25 ◦C min−1 (Figures 2 and 3a). On
the DSC curves of SiO2-contained glasses at a heating rate of 10 ◦C min−1, Tg decreases
gradually from 523.4 to 460.0 ◦C with increasing x from 0 to 0.5 (Figure 3d). This is probably
due to the substitution of P–O bonds (589 kJ mol−1) [23] by Si–O bonds (452 kJ mol−1) [24]
with a lower bond enthalpy.
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and the crystallization peak onset temperatures (Tc) of Li1.5+xAl0.5Ge1.5SixP3−xO12 glasses at different
heating rates (b) and at the rate of 10 ◦C min−1 (c,d).

The values of Tg correlated with the average single bond enthalpy (EB) of glasses
(Figure 3c), which was calculated as:

EB =
x · ELi−O + y · EAl−O + z · EGe−O + a · ESi−O + b · EP−O

100
(1)

where x, y, z, a, b are the content of the corresponding oxides in mol%; ELi−O, EAl−O,
EGe−O, and EGe−O are single bond dissociation energies for Li–O (341 kJ mol−1) [25], Al–O
(512 kJ mol−1) [25], Ge–O (343 kJ mol−1) [26], Si–O (452 kJ mol−1) [24], and P–O
(589 kJ mol−1) [23], respectively.

Figure 3c shows the change in Tg depending on the EB of the compositions. As can
be seen, Tg increases with increasing EB. Similar dependences were also obtained for other
oxide glasses [25]. It is well-known that Tg depends on the cross-link density and closeness of
the packing of the glass [27–29], which will be considered in Section 3.4. Another reason for
these changes in Tg is probably in reducing the glass network connectivity as the SiO2/P2O5
ratio increases. It is noteworthy that an increase in the x content is accompanied by the
increase in the ratio of the dopants (Li2O + Al2O3) to the glass formers (GeO2 + SiO2 + P2O5)
in the studied series of glasses (Table 1). Modifiers destroy the chains in the glass network,
causing a decrease in Tg with increasing x (Figure 3d).

In addition, the glass transition point (Tg) was determined by push-rod quartz dilatom-
etry to compare the results with DSC data. The glass transformation temperature was
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determined from the change in the slope of the elongation versus temperature plot (Figure 4).
The Tg from thermal expansion was found to be 520 ◦C compared to 519.7 ◦C for 0Si glass
at the same heating rate (3 ◦C min−1). Figure 4 shows that Tg decreases while the thermal
expansion coefficient increases with the additive content.
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3.2. Crystallization Behavior

The crystallization peak onset temperatures (Tc) and the crystallization peak temper-
atures (Tp) shift toward higher values (Figure 3b, Table 2) as the heating rate increases.
A similar behavior is also characteristic of other glassy systems [30]. An increase in x is
accompanied by a gradual increase in Tc from 623 ◦C (x = 0) to 659.7 ◦C (x = 0.3) followed
by a considerable decrease to 598.5 ◦C (x = 0.5) at a constant heating rate (5 ◦C min−1),
which should be related to structural changes in the glass network.

The thermal stability of glasses was determined as ∆T = Tc − Tg and is given in Table 2
for different heating rates. It has been established that ∆T increases from 111.1 ◦C (x = 0)
to 188.9 ◦C (x = 0.3), and then decreases to 163 ◦C (x = 0.5) at the rate of 10 ◦C min−1. An
extremum in the plot of thermal stability vs. concentration at x = 0.3 is observed for all
heating rates. An increase in the thermal stability of the glasses up to x = 0.3 indicates
an increase in the glass formation temperature range to obtain the desired membrane
geometry.

The activation energy for crystallization (Ec) of glasses is an important parameter in
the analysis of the crystallization process of glasses for the glass-ceramics production. Ec
was calculated by the Kissinger equation:

ln(
α

T2
p
) =

(
− Ec

RTp

)
+ const (2)

where R is the ideal gas constant and α is the heating rate.

Figure 5 shows plots of the dependence ln
(

α
T2

p

)
versus 1/Tp for the glasses obtained.

The Ec calculated from the slope of the linear curve shown in Figure 5 is 400 kJ mol−1 for 0Si
glass (Li1.5Al0.5Ge1.5(PO4)3 composition) and is in good agreement with the data of [16,31],
confirming the correctness of our data. Ec initially decreases with increasing x content
and reaches a minimum at x = 0.4 (Figure 6). A similar trend in Ec with SiO2 doping was
obtained in [20,21]. The introduction of SiO2 was found to decrease Ec down to 128 kJ mol−1;
therefore, less energy is required for incorporating crystals into the Li2O–Al2O3–GeO2–
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SiO2–P2O5 glass matrix. Hence, a Si-containing glass-ceramic membrane can be obtained
at temperatures below 820 ◦C, which is optimal for obtaining Li1.5Al0.5Ge1.5(PO4)3 solid
electrolyte [11].

Table 2. The values of characteristic temperature of Li1.5+xAl0.5Ge1.5SixP3−xO12 glasses: glass transi-
tion temperatures (Tg), crystallization peak onset temperatures (Tc), crystallization peak tempera-
tures (Tc) and thermal stability (∆T) at different heating rates (α). The measurement accuracy of the
characteristic temperatures was ±1.5 ◦C.

x α,
◦C min−1 Tg, ◦C Tc, ◦C Tp, ◦C ∆T, ◦C

0

3 519.7 613 616.9 93.3

5 523 623 625.4 100

10 523.4 634.5 636.0 111.1

0.1

3 505 616.9 619.6 111.9

5 510 626.1 629.9 116.1

10 513.3 642.9 646.6 129.6

15 527.6 652.9 657.8 125.3

25 523.4 665.2 672.8 141.8

0.2

3 495.6 626 632.1 130.4

5 498.4 638.1 645.3 139.7

10 498 658.5 667.9 160.5

0.3

3 472 640.5 646 168.5

5 485.1 659.7 667.1 174.6

10 488 676.9 701.9 188.9

0.4

3 458.7 617.8 631.9 159.1

5 475.7 634.8 655 159.1

10 474.9 641.2 692.5 166.3

0.5

3 440 580 631.2 140

5 462 598.5 653.7 136.5

10 460 623 683.8 163
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where R is the ideal gas constant and α is the heating rate. 
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low frequency tail characterized the electrode polarization (an additional constant phase 
element CPE2) [16,34]. It should be noted that the formation of a single arc emerging from 
the origin is typical for single-phase systems. An increase in the additive content leads to 
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The phase composition of the glass-ceramic samples after heat treatment at 820 ◦C
for 2 h was determined. According to XRD data, LiGe2(PO4)3 with a NASICON-type
structure is formed together with the impurity phases of AlPO4, Li4P2O7, SiO2, and
Li9Al3(P2O7)3(PO4)2, which appear at x > 0.1.

3.3. Transport Properties of Glasses

Figure 7 shows typical impedance spectra of the glasses obtained. The impedance
spectra have a shape characteristic of ion-conducting glasses and are fitted according to
the equivalent circuit (Figure 7 inset). A similar equivalent circuit was applied in the
works [32,33]. The high-frequency semicircle corresponds to bulk response (R) and the
low frequency tail characterized the electrode polarization (an additional constant phase
element CPE2) [16,34]. It should be noted that the formation of a single arc emerging from
the origin is typical for single-phase systems. An increase in the additive content leads to a
decrease in the resistance.
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Taking into account the fitted values of the resistance according to the equivalent
circuit and the geometry of the samples, the specific conductivity of the glasses (σ) was
calculated at different temperatures (Figure 8a). It has been found that the conductivity
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of all compositions demonstrates an Arrhenius temperature dependence, which indicates
the absence of phase transitions in the temperature range studied and agrees with the
DSC data. According to the Arrhenius equation [16], the activation energy for conduction
(Ea) was calculated from the temperature dependences of conductivity. Ea decreases
from 80.4 ± 0.5 kJ mol−1 (0.83 ± 0.01 eV) to 71.5 ± 0.9 (0.74 ± 0.01 eV) kJ mol−1 for
x = 0 and x = 0.5, respectively, as the conductivity increases (Figure 8b). The electrical
conductivity of the parent glasses for glass-ceramics production at room temperature is
<10−10 S·cm−1, however, heat treatment of these glasses under optimal conditions increased
the conductivity by several orders of magnitude up to ~10−4 S·cm−1 (Figures 8b and 9).
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3.4. Short-Range Structure of the Glasses

The changes in the crystallization behavior, thermal and transport properties of the
glasses investigated due to short-range structural changes were studied by Raman and IR
spectroscopy. Figure 10 shows the evolution of the Raman spectra with x content.
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Figure 10. Raman spectra for 0Si–0.5Si glasses at room temperature.

The multicomponent glasses under study contain PO4, GeO4, and SiO4 tetrahedra,
which form various types of connections between themselves and groups with bridging
and non-bridging oxygen atoms. At the stoichiometric ratio O/P = 4, orthophosphate
groups (Q1) should prevail in the glass network, which was pointed out in [35].

The Raman bands near 600–1400 cm−1 are due to phosphate units, and the bands
at 400–1000 cm−1 range are due to germanate units introduced into phosphate chains.
The correlation of bands with vibration modes is given in Table 3. The shoulder around
1255 cm−1 is related to the P=O vibrations [36–38] and the symmetric stretching vibra-
tions of the P–O–P bond [39]. The peak at 1115 cm−1 is associated with the asymmetric
stretching vibrations of the P–O–P bond [39,40] and symmetric stretching vibrations of
the Q2 phosphate tetrahedra [36–39]. In addition, this band indicates the formation of
non-bridging oxygen associated with Q3 SiO4 tetrahedra [40–42]. The band at 775 cm−1 is
due to the symmetric and asymmetric stretching vibrations of the P–O–P bond [37–40,42]
and symmetric stretching vibrations of the Si–O–Si bond [42,43]. The bands around 460
and 575 cm−1 are related to symmetric stretching vibrations of the Ge–O–P bond [11]
and also the vibrations of the phosphate and silicate tetrahedra [42,44], respectively. With
increasing x content, the most intense band at 460 cm−1 shifts to 490 cm−1 for x = 0 and
x = 0.2, respectively. Then the band at 490 cm−1 moves to 460 cm−1 up to x = 0.5, while
some bands remain unchanged. This should be due to the destruction of Ge–O–P bonds
and the appearance of new Ge–O–Si or Ge–O–Ge bonds [11,45,46]. The Raman spectra
are difficult to interpret due to the overlap of the bands related to phosphate and silicate
units. Additional information about the molecular structure of the glasses under study was
obtained using IR-spectroscopy.

The IR-spectra of undoped and SiO2-doped glasses are shown in Figure 10. All IR-
spectra consist of five relatively broad bands, which indicate a strong modification of the glass
network [16]. The bands appearing in the 1100–1200 cm−1 region are associated with the
vibrations of terminal (Q1) phosphate tetrahedra, namely the O–P–O asymmetric stretching
vibrations [16,47,48] and asymmetric stretching vibrations of the P–O- bond [36,37,49]. The
shoulder at around 950 cm−1 results from the asymmetric stretching vibrations of both P–O–P
and Ge–O–Ge bonds [16,50–52]. The band centered at 775 cm−1 is due to symmetric Ge–O–P
or P–O–P stretching vibrations [16,50,52]. The shoulder around 1260 cm−1, related to the
P=O vibrations [50,53], is very weak because stronger P–O–Ge or P–O–Si bonds are formed.
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Table 3. Assignments of various vibrational bands from Raman spectra of the glasses obtained.

Band Position, cm−1 Band Assignments References

1255
νs (P–O–P) [39]
νs (P=O) [36–38]

1115
νs (PO2)− [36–39]
νas (P–O–P) [39,40]
νas (Si–O−) [40–42]

775
νas (P–O–P) [38–40]
νs (P–O–P) [37,42]
νs (Si–O–Si) [42,43]

575
νs (O–Si–O) [42,44]
νs (O–P–O) [42]
νs (Ge–O–P) [11]

460–490
νs (O–P–O) [41,42]
νs (Ge–O–Ge) [11,45,46]

340 δ (O–P–O) [37]

As the x content increases, several main features are observed: (i) the band at
958 cm−1 (x = 0) shifts to 940 cm−1 (x = 0.5), (ii) the intensity of the band at 775 cm−1

becomes smaller up to x = 0.4, (iii) the 510 cm−1 band moves toward a lower wavenumber
reaching 490 cm−1 in the spectrum of x = 0.2, and then shifts to 507 cm−1 for x = 0.5.
These changes indicate the gradual depolymerization of the phosphate network with the
formation of a mixed complex silicon-phosphate-germanate glass network, which results
in a decrease in the density of the samples (Table 1). The loosening of the glass network is
due to the growing number of the modifiers (Li2O + Al2O3) and the decrease in the number
of the glass-formers (GeO2 + SiO2 + P2O5).

The decrease of Tg and the increase of the thermal expansion coefficient may be related
to the loosening of the glass network, i.e., to the growing number of Q1 phosphate units.
As can be seen from Figure 11, the IR-spectra of 0Si and 0.1Si compositions, as well as
those for 0.3Si and 0.4Si compositions, have a similar appearance and, as can be seen from
Figure 8a,b, their conductivity values are close. The growth of lithium-ion conductivity of
SiO2-doped glasses is due to two factors: an increase in the number of non-bridging oxygen
atoms, which are sites for the migration of Li+ ions, and the increase in the concentration of
charge carriers (Li+).
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4. Conclusions

The effect of P2O5/SiO2 substitution on the Li2O–Al2O3–GeO2–P2O5 glasses examined
by DSC shows that Tg decreases from 523.4 to 460 ◦C as the x content increases from 0 to 0.5,
respectively, due to the substitution of P–O bonds (589 kJ mol−1) for Si–O (452 kJ mol−1)
with the lower bond enthalpy. The change in Tg is consistent with the results of dilatom-
etry. A correlation between Tg and EB was established. It was found that the thermal
stability of glasses increases up to x = 0.3, which indicates the increase in the temperature
range for the formation of SiO2-containing glasses in order to obtain the desired mem-
brane geometry. The activation energy of glass crystallization significantly decreases from
400 to 128 kJ mol−1 for x = 0 and x = 0.4, respectively. Thus, the Si-containing glass-ceramic
membrane can be obtained at temperatures below 820 ◦C, which is optimal for obtaining
SiO2-undoped glass-ceramics. The Li+ conductivity of the glasses increases as a function
of x. The changes in the thermal and electrical properties with the change in the content of
x are related to short-range structural changes in the glasses. The infrared spectra show
the formation of the Q1 phosphate groups as x increases. The results of structural studies
demonstrate the gradual depolymerization of the phosphate network. So, the decrease
in the connectivity of the glass network, which accompanies the increase in SiO2/P2O5
ratio, is the reason for the decrease in Tg and the enhancement in conductivity. It should be
noted that the conductivity of the glass-ceramics obtained from SiO2-doped glasses has
high values (>10−4 S cm−1 at RT). Therefore, they can be considered as promising solid
electrolytes for all-solid-state batteries.
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