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Abstract: High-fidelity simulations of momentum and mass transfer within a hollow fiber gas sepa-
ration membrane module are here reported. The simulations capture the potential detrimental effects
of poor fiber packing at the bundle–case interface on fluid distribution and performance. Results
are presented for both circular and planar fiber bundles. The length over which bundle–case gaps
affects flow is determined. The length increases dramatically with increasing fiber packing fraction.
As the packing fraction approaches 0.6, the impact extends over the entire bundle diameter for small
modules (<1000 fibers). The results clearly demonstrate the detrimental effect of poor packing along
the case and can be used to develop module manufacturing guidelines. To reduce computational
costs, an equivalent planar bundle module approximation is developed. The approximate simula-
tions agree well with results from full 3-D simulations and can reduce computational costs without
sacrificing fidelity.

Keywords: hollow fiber membrane; membrane modules; post-combustion carbon capture; gas separations

1. Introduction

Carbon capture technology is of growing interest due to greenhouse gas emissions
from fossil fuel-fired power plants, cement plants, and the petrochemical industry. The
growth in CO2 emissions from the burning of fossil fuels has increased since 1960 [1]. While
emissions dropped during the COVID pandemic, growth is expected to continue as the
global economy reopens. Emission growth is predicted to lead to undesirable climate
changes including temperature increases and extreme weather events [2]. Although a
transition from fossil fuels to low-carbon energy is underway, a complete shift of the
existing infrastructure to cleaner alternatives is not expected quickly. Thus, separation
technologies that capture CO2 emissions at concentrated point sources or directly from air
will play a vital role in bridging the gap until the new energy infrastructure is realized.

Membrane gas separation processes are cost-effective options for gas separations due
to reduced energy consumption; the reduction in energy costs is partially offset by an
increase in capital costs relative to competing technologies. Membrane processes offer
other advantages too, including smaller footprints and rapid response times. Membrane
technology for carbon dioxide capture from concentrated carbon dioxide sources, such as
power and cement plants, is being developed and tested at the pilot scale [3,4] and is a
promising option for capture.

Gas separation membranes are commonly produced in a hollow fiber form. Gas
separation modules are formed by creating fiber bundles, embedding bundle ends in
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a tubesheet to permit separating fluid introduction and removal from the fiber lumen
and shell space, and placing the bundle in an enclosing case (see Figure 1). Module
performance is influenced by material and operational design variables including gas
permeance, selectivity, fiber size dimensions, and operating pressures. Ideal performance
models can provide good estimates of performance, but several factors can introduce
inefficiencies that dramatically reduce performance. Attempts to account for module
inefficiency include introducing the effects of: membrane material property variations
(permeance, selectivity, and size); fluid distribution from inlet manifolds into the bundle
and collection from outlet manifolds; and fluid distribution within the module and its
relationship to membrane packing and module aspect ratio. These issues have been
examined for hollow fiber modules to varying degrees [5].
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A significant body of work demonstrates that in hollow fiber modules, fiber size
variation can have a detrimental impact on performance and staging can partially mitigate
the effect [6–8]. The literature also partially addresses fluid distribution in the lumen [9] and
in the shell-side [10–17]. This work focuses primarily on shell-side flows and the impact of
random fiber packing on shell-side mass transfer coefficients for liquid separations.

The effects of design features for introducing and removing fluid from the shell have
also been examined [18–20]. The most common design uses a distribution collar around the
fiber bundle, which communicates through a single port to an external supply or product
line as illustrated in Figure 1. The collar may possess diverters or a series of openings to help
promote uniform flow into or out of the bundle. However, theoretical and experimental
work to characterize the effectiveness of these designs is limited.

Theoretical predictions indicate fluid distribution is uniform if fiber packing is uniform
up to the external case [19,20]. However, experimental measurements [18] and theoretical
simulations [20] suggest fluid bypassing between the periphery of the fiber bundle and the
enclosing case can be detrimental. We are not aware of any work that addresses the impact
of fiber packing adjacent to the case on module performance.

This work quantifies the effect of nonuniform packing at the fiber bundle–case interface
on gas separation module performance. High-fidelity simulations of fluid flow and mass
transfer within a hollow fiber membrane module are developed that capture the potential
detrimental effects of non-ideal fluid distribution on module performance. The results can
be used to inform carbon capture module manufacturing specifications and guidelines.

Specifically, the effect of packing between the fiber bundle and case is evaluated using
full three-dimensional models to simulate module gas separation performance for a shell-
fed module. The analysis focuses on the axial flow region between the crossflow regions
near the distribution collars by assuming: (1) gas permeation in the crossflow regions is
small relative to that in the axial flow region and (2) the axial flow is well developed before
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entering the axial flow region, as illustrated in Figure 1. Additionally, an equivalent planar
bundle (EPB) method is developed based on a simplified three dimensional geometry for a
planar bundle derived from the full circular bundle. The EPB is validated against full 3-D
circular bundle simulations. Use of the EPB can dramatically reduce computational costs
compared to full three-dimensional simulations.

2. Simulation Methodology
2.1. Theoretical Background
2.1.1. Governing Equations

Module performance is evaluated by solving the governing equations for conservation
of momentum and mass for specific module geometries over a range of feed flow rates.
The conservation of momentum and continuity equations for steady flows are given by
Equations (1) and (2), respectively [21]:

ρ
(→

u ·∇
)→

u = ∇·
[
−p
↔
I +

↔
K
]
+
→
F (1)

∇·
(

ρ
→
u
)
= 0 (2)

where ρ is the density,
→
u is the velocity vector, p is the absolute pressure,

→
F is the volume

force vector,
↔
I is the unit tensor δij and

↔
K is the stress tensor.

The conservation of mass equation is given by Equation (3):

∇·
→
Ji +∇·

(
ρωi
→
u
)
= 0 (3)

where
→
Ji is the relative mass flux vector of component i, and ωi is the mass fraction.

2.1.2. Constitutive Laws

The stress tensor in Equation (1) in the case of a fluid with internal friction only due to
shear stress is given by:

↔
K = µ

(
∇→u +

(
∇→u

)T
)
− 2

3
µ
(
∇·→u

)↔
I (4)

where µ is the dynamic viscosity.

Equations (5)–(8) are used to calculate the mass flux
→
Ji based on the Stefan–Maxwell

diffusion model:
→
Ji = −ρωi

nc

∑
k=1

Dik
→
dk (5)

→
dk = ∇xk +

1
p
[(xk −ωk)∇p] (6)

xk =
ωk
Mk

Mn (7)

1
Mn

=
nc

∑
k=1

ωk
Mk

(8)

where nc is the number of components, Dik are the binary diffusivities for species i and k in

the multicomponent mixture,
→
dk is the diffusional driving force, xk is the mole fraction, Mk

is the molar mass, and Mn is the average molar mass.



Membranes 2022, 12, 1139 4 of 17

2.2. Numerical Setup
2.2.1. Domain Setup and Boundary Conditions

Figure 2 illustrates the domain and boundary conditions used for simulations of
fiber bundles. At the inlet, the velocity and gas composition are specified as the lami-
nar, well-developed axial velocity, u z0(x, y), and a fixed, uniform feed mole fraction, xFi,
respectively:

uz(z = 0) = u z0(x, y); ux(z = 0) = uy(z = 0) = 0 (9)

xi(z = 0) = xFi (10)

where uz is the retentate axial velocity and xi is the mole fraction of component i in
the retentate. No-slip, zero normal flux boundary conditions are applied along the case
(boundary 1), and symmetry boundary conditions are applied to give lines of symmetry
for the planar and circular bundles (boundary 2). For the planar bundle, symmetry reduces
the solution domain to a single column of fibers as shown in Figure 2a. For the circular
bundle, symmetry reduces the solution domain to one-eighth of the bundle as shown
in Figure 2b. For planar bundles, two fiber configurations are considered: square and
equilateral triangular.

Membranes 2022, 12, x FOR PEER REVIEW 4 of 18 
 

 

where 𝑛  is the number of components, 𝐷  are the binary diffusivities for species 𝑖 and 𝑘  in the multicomponent mixture, 𝑑 ⃗ is the diffusional driving force, 𝑥  is the mole 
fraction, 𝑀  is the molar mass, and 𝑀  is the average molar mass. 

2.2. Numerical Setup 
2.2.1. Domain Setup and Boundary Conditions 

Figure 2 illustrates the domain and boundary conditions used for simulations of fiber 
bundles. At the inlet, the velocity and gas composition are specified as the laminar, well-
developed axial velocity, 𝑢 (𝑥, 𝑦) , and a fixed, uniform feed mole fraction, 𝑥 , 
respectively: 𝑢 (𝑧 = 0) = 𝑢 (𝑥, 𝑦); 𝑢 (𝑧 = 0) = 𝑢 (𝑧 = 0) = 0 (9) 𝑥 (𝑧 = 0) = 𝑥  (10) 

where 𝑢  is the retentate axial velocity and 𝑥  is the mole fraction of component 𝑖 in the 
retentate. No-slip, zero normal flux boundary conditions are applied along the case 
(boundary 1), and symmetry boundary conditions are applied to give lines of symmetry 
for the planar and circular bundles (boundary 2). For the planar bundle, symmetry 
reduces the solution domain to a single column of fibers as shown in Figure 2a. For the 
circular bundle, symmetry reduces the solution domain to one-eighth of the bundle as 
shown in Figure 2b. For planar bundles, two fiber configurations are considered: square 
and equilateral triangular. 

 
Figure 2. Boundary conditions used in the model: (a) planar bundle; (b) circular bundle. 

Assuming a solution–diffusion transport mechanism [22], the membrane is treated 
as a boundary condition (boundary 3) in the simulation at which the total gas flux across 
the membrane is calculated from: 

𝑞 = 𝑞 = 𝑄 (𝑥 𝑝 − 𝑦 𝑝 ) (11) 

where 𝑞  is the transmembrane molar flux of component 𝑖, 𝑄  is the permeance, 𝑦  is 
the permeate mole fraction, 𝑝  is the retentate (high) absolute pressure, and 𝑝  is the 
permeate (low) absolute pressure. Along the outer diameter of each fiber, the normal wall 
velocity 𝑢 = 𝑀 𝑞 𝜌⁄  and the normal total mass flux (convective plus diffusive) of 
component 𝑖 = (𝑗 + 𝜌𝜔 𝑢) =  𝑀 𝑞 . To focus on the effects of flow distribution in the 
shell only and reduce computational complexity, the lumen pressure is assumed to be 
sufficiently low to neglect 𝑦 𝑝  relative to 𝑥 𝑝  in Equation (11). 

Figure 2. Boundary conditions used in the model: (a) planar bundle; (b) circular bundle.

Assuming a solution–diffusion transport mechanism [22], the membrane is treated as
a boundary condition (boundary 3) in the simulation at which the total gas flux across the
membrane is calculated from:

qT =
nc

∑
i=1

qi =
nc

∑
i=1

Qi(xi ph − yi pl) (11)

where qi is the transmembrane molar flux of component i, Qi is the permeance, yi is the
permeate mole fraction, ph is the retentate (high) absolute pressure, and pl is the permeate
(low) absolute pressure. Along the outer diameter of each fiber, the normal wall velocity
un = MnqT/ρ and the normal total mass flux (convective plus diffusive) of component
i = (ji + ρωiu)n = Miqi. To focus on the effects of flow distribution in the shell only and
reduce computational complexity, the lumen pressure is assumed to be sufficiently low to
neglect yi pl relative to xi ph in Equation (11).

2.2.2. Numerical Methodology

COMSOL Multiphysics® (CFD and TCS modules) was used to solve the governing
continuity, conservation of momentum, and conservation of mass equations for the steady,
laminar, isothermal flow of a Newtonian fluid. The length of the fiber is 15 cm and the
radius of the fiber is 150 µm. Triangular and quadrilateral finite elements were generated in
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our model. The local grid densities near the inlet and outlet are higher than other sections.
A direct solver was used to solve those equations.

2.2.3. Mesh Independence Studies

COMSOL utilizes the finite element method to discretize the solution domain, using a
polygonal mesh, and obtains an approximate numerical solution to the governing partial
differential equations. Mesh independence studies are required to ensure that the results
are not affected by the chosen spatial discretization of the computational domain. Typically,
they consist of calculating quantities of interest in the problem at hand with different mesh
resolutions, and identifying a resolution that is computationally feasible and bounds devia-
tions from more refined (but computationally costly) mesh resolutions by an acceptable
amount, e.g., 1–5%. Figure 3 illustrates the change in the calculated retentate recovery
(R) with increasingly finer meshes and associated degrees of freedom. The results change
by less than 1% when the degrees of freedom exceed 6,000,000 for each circular model or
500,000 for each planar model.
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2.2.4. Darcy’s Permeability

To validate the calculations of fluid flow through axial fiber bundles, the axial Darcy’s
permeability in the absence of gas permeation is calculated from:

κ =
−µuz〈

R f
2
〉

dp/dz
(12)

and compared to values reported in the literature [15], where uz is the superficial axial fluid
velocity,

〈
R f

2
〉

is the mean-squared radius of the fibers, and dp/dz is the pressure gradient.

2.2.5. Ideal Counter-Current Module

The 3-D module performance simulations are compared on the performance of an
ideal counter-current (ICC) module [5]. The ICC model represents the benchmark against
which module performance is compared when evaluating the effect of non-idealities as
it assumes ideal flow distribution in the lumen and shell and uniform membrane proper-
ties. Figure 4 illustrates a mass balance for a differential module length used to develop
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the ICC performance analysis. ICC performance is calculated from the following mass
balance equations:

d
.
Ri

dz
= −aqi = −aQi(xi ph − yi pl) (13)

d
.
Pi

dz
= −aqi (14)

Membranes 2022, 12, x FOR PEER REVIEW 6 of 18 
 

 

The 3-D module performance simulations are compared on the performance of an 
ideal counter-current (ICC) module [5]. The ICC model represents the benchmark against 
which module performance is compared when evaluating the effect of non-idealities as it 
assumes ideal flow distribution in the lumen and shell and uniform membrane properties. 
Figure 4 illustrates a mass balance for a differential module length used to develop the 
ICC performance analysis. ICC performance is calculated from the following mass balance 
equations: 𝑑𝑅𝑑𝑧 = −𝑎𝑞 = −𝑎𝑄 (𝑥 𝑝 − 𝑦 𝑝 ) (13) 

𝑑𝑃𝑑𝑧 = −𝑎𝑞  (14) 

With the boundary conditions: 𝑅 (𝑧 = 0) = 𝐹  (15) 𝑥 (𝑧 = 0) = 𝑥  (16) 𝑃(𝑧 = 𝐿) = 0 (17) 

𝑦 (𝑧 = 𝐿) = 𝑞 (𝑧 = 𝐿)∑ 𝑞 (𝑧 = 𝐿) (18) 

where 𝑅  is the molar flow rate of component 𝑖 in the retentate, 𝐹  is the feed flow rate, 𝑃  is the permeate flow rate, 𝑎 is the active membrane area per unit length, and 𝐿 is the 
length of the module. 

 
Figure 4. Schematic of ideal counter-current module. 

2.2.6. Design Space Explored 
Table 1 and Figures 5 and 6 indicate the nomenclature used here to describe fiber 

packing in planar and circular fiber bundles. In this work, the effects of D/Rf and ɸ are 
studied. The first variable, D/Rf, is a measure of the distance between the case and the 
outside of the fiber bundle. The second variable, ɸ, is a measure of the distance between 
fiber centers, d. Equation (19) indicates the relationship between the two and reflects the 
fractional volume occupied by fibers in an infinite bundle: 

𝑑 = 𝜋𝑅ɸ  (19) 

The effects of packing are more readily evaluated for planar bundles due to a 
reduction in computational requirements. It is anticipated planar bundles will provide a 
good approximation of circular bundles for sufficiently large bundles where the effects of 
case curvature can be neglected. 

Table 1. Nomenclature for planar and circular fiber bundle domain geometry. 

Figure 4. Schematic of ideal counter-current module.

With the boundary conditions:

.
Ri(z = 0) =

.
Fi (15)

xi(z = 0) = xFi (16)
.

Pi(z = L) = 0 (17)

yi(z = L) =
qi(z = L)

∑nc
k=1 qk(z = L)

(18)

where Ri is the molar flow rate of component i in the retentate,
.
Fi is the feed flow rate,

.
Pi is

the permeate flow rate, a is the active membrane area per unit length, and L is the length of
the module.

2.2.6. Design Space Explored

Table 1 and Figures 5 and 6 indicate the nomenclature used here to describe fiber
packing in planar and circular fiber bundles. In this work, the effects of D/Rf and φ are
studied. The first variable, D/Rf, is a measure of the distance between the case and the
outside of the fiber bundle. The second variable, φ, is a measure of the distance between
fiber centers, d. Equation (19) indicates the relationship between the two and reflects the
fractional volume occupied by fibers in an infinite bundle:

d =

√
πR f

2

φ
(19)

Table 1. Nomenclature for planar and circular fiber bundle domain geometry.

Symbol Definition

R f fiber radius
Rbundle fiber bundle radius

d distance between fibers
D distance from wall to center of fiber closest to wall

φ = πR f
2/d2 fiber packing fraction [21]
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The effects of packing are more readily evaluated for planar bundles due to a reduction
in computational requirements. It is anticipated planar bundles will provide a good
approximation of circular bundles for sufficiently large bundles where the effects of case
curvature can be neglected.

Sample two-dimensional axial velocity distributions for planar bundles with reg-
ular square and equilateral triangular configurations in the absence of permeation are
shown in Figure 7. Fluid bypass at the fiber bundle–wall interface is evident from the
higher velocities.
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Sample three-dimensional CO2 mole fraction distributions for a square fiber packing
in planar and circular bundles are illustrated in Figures 8 and 9, respectively.



Membranes 2022, 12, 1139 8 of 17

Membranes 2022, 12, x FOR PEER REVIEW 8 of 18 
 

 

Sample three-dimensional CO2 mole fraction distributions for a square fiber packing 
in planar and circular bundles are illustrated in Figures 8 and 9, respectively. 

 
Figure 8. Simulation geometry and sample CO2 mole fraction distribution for planar module with 
square configuration (ɸ =  0.6, D/Rf = 4.6). Concentration decreases from red to blue. 

 
Figure 9. Simulation geometry and sample CO2 mole fraction distribution for circular bundle with 
square configuration (ɸ =  0.6, D/Rf = 3). Concentration decreases from red to blue. 

The EPB approximation is illustrated in Figure 10 where the flow domain is divided 
into two sections: (1) center and (2) wall. The fiber closest to the wall in each horizontal 
layer is assigned to the wall section and all other fibers to the center. The value for 𝐷 , 
the distance from the wall to the closed fiber, in the EPB is calculated from Equation (20) 
and NP1, the number of fibers in the region P1, from Equation (21): 𝐴 ,𝐴 = 𝐴 ,𝐴 = 𝜋 ∗ 𝑅𝑑 ∗ 𝑑2 + 𝐷  (20) 

𝑁𝑁 = 𝑁𝑁 = 1 (21) 

where 𝐴 ,  is the total area occupied by fibers in section C2, 𝐴  is the total area of 
section C2, 𝐴 ,  is the total area occupied by fibers in section P2, 𝐴  is the total area of 
section P2, 𝐷  is the distance from the wall to the center of the closest fiber, and 𝑁  is 
the total numbers of fibers in section 𝑖. 

Figure 8. Simulation geometry and sample CO2 mole fraction distribution for planar module with
square configuration (φ = 0.6, D/Rf = 4.6). Concentration decreases from red to blue.

Membranes 2022, 12, x FOR PEER REVIEW 8 of 18 
 

 

Sample three-dimensional CO2 mole fraction distributions for a square fiber packing 
in planar and circular bundles are illustrated in Figures 8 and 9, respectively. 

 
Figure 8. Simulation geometry and sample CO2 mole fraction distribution for planar module with 
square configuration (ɸ =  0.6, D/Rf = 4.6). Concentration decreases from red to blue. 

 
Figure 9. Simulation geometry and sample CO2 mole fraction distribution for circular bundle with 
square configuration (ɸ =  0.6, D/Rf = 3). Concentration decreases from red to blue. 

The EPB approximation is illustrated in Figure 10 where the flow domain is divided 
into two sections: (1) center and (2) wall. The fiber closest to the wall in each horizontal 
layer is assigned to the wall section and all other fibers to the center. The value for 𝐷 , 
the distance from the wall to the closed fiber, in the EPB is calculated from Equation (20) 
and NP1, the number of fibers in the region P1, from Equation (21): 𝐴 ,𝐴 = 𝐴 ,𝐴 = 𝜋 ∗ 𝑅𝑑 ∗ 𝑑2 + 𝐷  (20) 

𝑁𝑁 = 𝑁𝑁 = 1 (21) 

where 𝐴 ,  is the total area occupied by fibers in section C2, 𝐴  is the total area of 
section C2, 𝐴 ,  is the total area occupied by fibers in section P2, 𝐴  is the total area of 
section P2, 𝐷  is the distance from the wall to the center of the closest fiber, and 𝑁  is 
the total numbers of fibers in section 𝑖. 

Figure 9. Simulation geometry and sample CO2 mole fraction distribution for circular bundle with
square configuration (φ = 0.6, D/Rf = 3). Concentration decreases from red to blue.

The EPB approximation is illustrated in Figure 10 where the flow domain is divided
into two sections: (1) center and (2) wall. The fiber closest to the wall in each horizontal
layer is assigned to the wall section and all other fibers to the center. The value for DEPB,
the distance from the wall to the closed fiber, in the EPB is calculated from Equation (20)
and NP1, the number of fibers in the region P1, from Equation (21):

AF, C2

AC2
=

AF, P2

AP2
=

π ∗ R f
2

d ∗
(

d
2 + DEPB

) (20)

NC1

NC2
=

NP1

NP2 = 1
(21)

where AF, C2 is the total area occupied by fibers in section C2, AC2 is the total area of section
C2, AF, P2 is the total area occupied by fibers in section P2, AP2 is the total area of section
P2, DEPB is the distance from the wall to the center of the closest fiber, and Ni is the total
numbers of fibers in section i.
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3. Results and Discussion

The axial Darcy permeability, as a function of packing fraction, was calculated and
compared with prior work [15,23]. Simulations were performed for a single unit cell
representative of an infinite fiber bundle. The results are presented in Table 2. The agree-
ment between the axial Darcy permeabilities is excellent and helps validate the simulation
approach for flow through the bundle.

Table 2. Variation of axial Darcy permeability with φ for square configuration.

φ κ Bao [15] Sangani [23]

0.3 0.234 0.235 0.235
0.4 0.0984 - -
0.5 0.0445 0.0444 0.0445
0.6 0.0203 - -
0.7 0.0095 0.0094 0.0094

Table 3 contains membrane properties and module operating conditions used in the
simulations. The values for carbon dioxide and nitrogen permeance correspond to values
reported in the literature for commercial carbon capture membranes, and are within the
region of desired membrane properties for carbon capture [3]. Module performance is
characterized by the dependence of retentate recovery R (fraction of the feed recovered as
the retentate product) and F (dimensionless feed flow rate) defined by:

R =

.
R
.
F

(22a)

F =

.
F

QCO2 ∗ a ∗ L ∗ pF
(22b)

where QCO2 is the CO2 permeance, a ∗ L is the total surface area and pF is the absolute feed
pressure. R is a measure of the process energy requirements (operating costs) while F is a
measure of membrane area (capital costs). The values of both are determined as a function
of the CO2 mole fraction in the retentate product. The effect of the wall gap is quantified by
comparing module performance to that for an ideal counter-current model corresponding
to an infinite, uniformly packed fiber bundle.
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Table 3. Module properties and operation conditions.

Parameter Value

Feed CO2 mole fraction 0.2
Fiber length (L) 0.15 m

Fiber outside diameter, OD 3.00 × 10−4 m
Selectivity (α) 75

CO2 permeance, QCO2 1500 GPU
N2 permeance, QN2 20 GPU

pF 2 atm
pl 0 atm

Diffusivity, DCO2, N2 1.60 × 10−5 m2s−1

Operating temperature, T 298 K

3.1. Planar Square Configuration (Velocity Distribution)

<u>/<u>∞ is used to evaluate the effect of poor packing near the case on flow dis-
tribution within the bundle. <u> is the superficial velocity (flow rate divided by total
cross-section area) through a region extending from the fiber wall through a specified
number of fibers (N) as shown in Figure 5. <u>∞ is the superficial velocity through an
infinite fiber bundle without a wall for the same pressure drop. <u>/<u>∞ reflects the
increase in flow rate that occurs due to the gap between the fiber bundle and the case. The
ratio is highest near the wall where the effect of the wall gap is largest and decreases toward
a value of unity as N increases. Values are calculated as a function of fiber packing fraction
and D/Rf for the square configuration.

The results are presented in Figures 11 and 12, along with values for the average
velocity in the flow channel adjacent to the wall (the region corresponding to

.
Qwall in

Figure 5). Figure 11 indicates that the velocity ratio for the entire flow channel approaches
unity when the number of fibers included in the simulation domain increases, while the
ratio in the wall flow channel does not change significantly. The fiber numbers needed for
the velocity ratio to be in the range 1 ± 0.05 (i.e., with 5% of the value for an infinite bundle)
varied from 10 to 50. The number of fibers increases as the packing fraction increases for a
fixed D/Rf or as D/Rf increases for a fixed packing fraction. The velocity ratios for domains
containing 10 fibers as a function of packing fraction and D/Rf are illustrated in Figure 12.
The results indicate both <u>total/<u>∞ and <u>wall/<u>∞ increase with either increasing
D/Rf for fixed packing fraction or increasing packing fraction for fixed D/Rf.

These results show that the contribution of the bypass flow to the total flow decreases
as the number of fibers increases. The magnitude of the bypass flow depends strongly on
the distance between the case and the outer fibers of the bundle (D/Rf). The ratio of the
bypass flow to the flow through the fiber bundle also depends on fiber packing fraction—
for a given D/Rf, as the fiber packing increases the resistance to flow through the interior,
the bundle increases, and a greater fraction of the total flow will occur in the bypass region
adjacent to the case.

3.2. Planar Equilateral Triangular Configuration (Velocity Distribution)

Figure 13 illustrates the effect of fiber number on the results over a broad range of D/Rf
values for a packing fraction of 0.4. As for square configuration, the fiber number required
for the average velocity ratio to be in the range 1 ± 0.05 increases with D/Rf. The value
increases from 10 for D/Rf less than 2 to over 500 for D/Rf greater than 6.
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Figure 11. <u>/<u>∞ as a function of fiber number for the whole flow channel (Total) and the channel
adjacent to the wall (Wall): (top, left) φ = 0.4, D/Rf = 2, (top, right) φ = 0.6, D/Rf = 2, and (bottom)
φ = 0.4, D/Rf = 3.
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Figure 12. <u>/<u>∞ as a function of fiber packing fraction or D/Rf for square packing; left (D/Rf = 2,
and fiber number = 10), right (φ = 0.4, and fiber number = 10).
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The values for <u>wall/<u>∞ as a function of packing fraction (from 0.3 to 0.7) and
D/Rf (from 1 to 8) for an equilateral triangular configuration are illustrated in Figure 14.
The values depend weakly on fiber number (results not shown) and increase with either
increasing D/Rf or packing fraction due to an increasing relative contribution to the total
flow from the wall gap region.
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3.3. Planar Square Configuration

Gas separation module performance as a function of fiber number, packing fraction,
and D/Rf for regular packings was evaluated for a module with the membrane properties,
operating conditions, and feed specified in Table 3. Figure 15 shows the full 3-D module
performance results. For D/Rf = 8 and φ = 0.4, the calculated module performance is
poorer than ICC performance, as the retentate recovery (R) is lower for a given retentate
product composition—this implies the captured CO2 in the permeate will have a lower
composition. Additionally, a reduction in recovery implies an increase in operating costs as
more pressurized N2 is depressurized through permeation and lost to the permeate. This
precludes partial recovery of the associated compression energy through an expander as
proposed in most carbon capture processes [3].
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Figure 15. R or F as a function of CO2 mole fraction for module with different fiber numbers (3-D)
(D/Rf = 8, φ = 0.4).

As expected, the differences become smaller as the fiber number increases from 25
to 200. For sufficiently large bundles, the flow through the bundle will be much larger
than the flow through the wall gap, and the effect of the bypass flow will not be significant.
Additionally, for sufficiently large bundles, the performance will not depend strongly on
the size of the gap created by removing fibers near the wall.
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However, for smaller bundles, the impact of poor wall packing is greater as the bypass
flow is a greater fraction of the total shell-side flow. The flow through the gap will depend
on the fourth power of the equivalent hydraulic diameter of the gap, so small changes in
gap size can have a large effect.

The methodology reported in this manuscript provides the quantification of the
relative flow through the bundle and the wall gap as a function of fiber number, fiber
packing, and gap size. This in turn is used to evaluate module performance and determine
how performance is degraded relative to ICC performance for given module properties.

Changes in the dimensionless feed flow rate (F) are more significant than the changes
in recovery. For a given retentate CO2 composition, F can decrease by a factor of 10 or more.
Such a decrease will necessitate an increase in the membrane area and associated capital
costs for treating a fixed feed flow.

The effect of D/Rf on performance for 25 fibers and φ = 0.6 is illustrated in Figure 16.
Performance decreases as D/Rf increases from 1 to 8, suggesting gaps should be minimized.
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Figure 16. R or F as a function of CO2 mole fraction for module with different D/Rf (3-D, N = 25,
φ = 0.6).

3.4. Circular Square Bundle

The performance of full circular fiber bundles is evaluated as a function of fiber
number, packing fraction, and D/Rf for regular packings for the conditions in Table 3.
Figure 17 illustrates the full 3-D circular square configuration bundle module performance
results. Results are presented as retentate recovery versus CO2 composition. The results
in Figure 17 correspond to D/Rf = 3, φ = 0.4 or 0.6, and the number of fibers in the entire
bundle is 405. For fixed D/Rf, the module performance improves as the fiber bundle packing
fraction becomes smaller and approaches ideal ICC module performance. As observed
for planar bundles, the impact of poor packing is greater for compact bundles (larger fiber
packing fraction) because the resistance to flow between fibers increases as the inter-fiber
distance decreases, while the resistance to flow in the gaps between the bundle and case
does not change significantly.
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Figure 17. R or F as a function of CO2 mole fraction for module with different packing fraction (3-D)
(N = 405, D/Rf = 3; circle: φ = 0.4; up triangle: φ = 0.6; solid line: ICC).
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The effect of D/Rf on performance is illustrated in Figure 18. The results in Figure 18
correspond to D/Rf = 1 or 3, φ = 0.4 or 0.6, and number of fibers in the entire bundle equals
405, with the same bundle size and same packing fraction. Module performance improves
as D/Rf decreases and the size of the bypass region and its detrimental effect on module
performance decrease.
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Figure 18. R or F as a function of CO2 mole fraction for module with different D/Rf. Top (N = 405,
φ = 0.4), bottom (N = 405, φ = 0.6). Circle, D/Rf = 1; up triangle, D/Rf = 3; solid line, ICC.

To reduce computational costs, an equivalent planar bundle module was introduced
previously. Figures 19–21 show the module performance comparison between a circular
bundle and an equivalent planar bundle for the conditions in Table 3. The results for the
circular and equivalent planar bundles agree well despite the differences in the geome-
try. The result proves that the EPB can be used to simulate performance with reduced
computational costs and without sacrificing fidelity.
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Figure 19. R or F as a function of CO2 mole fraction for full 3-D circular module and EPB module
(N = 405, D = Rf, φ = 0.6. Circle, circular bundle; up triangle, EPB; solid line, ICC).
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Figure 20. R or F as a function of CO2 mole fraction for full 3-D circular module and EPB module
(N = 405, D/Rf = 3, φ = 0.6. Circle, circular bundle; up triangle, EPB; solid line, ICC).
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Figure 21. R or F as a function of CO2 mole fraction for full 3-D circular module and EPB module
(N = 405, D/Rf = 3, φ = 0.4. Circle, circular bundle; up triangle, EPB; solid line, ICC).

3.5. Circular Triangular Bundle

The performances of circular bundles with equilateral triangular configuration are
compared to the square configuration for the conditions in Table 3. Figure 22 compares the
results for D/Rf = 3, φ = 0.6, and 405 fibers. The performances of bundles with equilateral
triangular configurations are the same as for square configurations for the same conditions.
This suggests the packing geometry does not affect module performance significantly for
similar operating conditions.
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Figure 22. R or F as a function of CO2 mole fraction for full 3-D circular square configuration
module and equilateral triangular configuration module (N = 405, D/Rf = 3, φ = 0.6. Circle, square
configuration; up triangle, triangular configuration; solid line, ICC).
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4. Conclusions

The performance of shell-fed hollow fiber membrane modules is simulated accounting
for poor fiber packing between the fiber bundle and the case. Results are presented for both
planar and circular bundles with regular square and equilateral triangular configurations.

Simulations of flow through the bundle clearly indicate the potential for significant
bypass between the bundle and the case. The magnitude of the bypass flow depends
strongly on how close the bundle is to the case (the distance between the case and the
nearest fiber) and the fiber packing fraction. Changes in flow through the bundle arising
from the wall gap can extend across thousands of fibers (equivalent to a 35 cm bundle
with 1000 fibers and packing fraction of 0.6). The bypass contribution increases as either
the fiber packing fraction or distance between the closest fiber and the wall increase. As
expected, the contribution of the bypass flow to the total flow decreases as the number of
fibers increases.

For both planar and circular bundle modules, significant reductions in module perfor-
mance can arise relative to an ICC module. These changes are evident in how the module
recovery (retentate product flow/feed flow) and dimensionless feed flow change relative
to that expected for the ICC. For a fixed retentate product composition, both performance
measures are lower than for an ICC. The decrease in recovery implies higher operating
costs as more N2 is depressurized and lost to the permeate due to permeation, and the
associated compression energy cannot be recovered through an expander. The decrease
in dimensionless feed flow implies greater capital costs as the membrane area required to
process a given feed flow is larger.

The detrimental effects increase as the packing fraction increases, D/Rf increases and
module size decreases, as expected due to the relative contribution of the bypass flow to the
total flow. Changes in module performance for regular square and equilateral triangular
configurations are comparable for the same operating conditions.

An equivalent planar bundle module is also proposed for circular fiber modules.
Performance predictions for the EPB are in good agreement with full 3-D circular module
predictions. This suggests the EPB can be used to simulate performance with reduced
computational costs without sacrificing fidelity.

This work does not address bundle defects except at the wall. One would expect
some effect on performance when removing fibers from the middle of the bundle, or other
non-uniformities in fiber packing, but the impact of such bundle defects is beyond the
scope of the present work.

The methodology reported here can be used to evaluate the impact of poor wall
packing on gas separation module performance for other gas separations. While specific
results are not provided, similar trends are expected and the impact of poor packing can
be quantified.
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