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Abstract: At present, it is customary to consider the overlimit operating modes of electromembrane
systems to be effective, and electroconvection as the main mechanism of overlimiting transfer. The
breakdown of the space charge is a negative, “destructive” phenomenon, since after the breakdown
the size and number of electroconvective vortices are significantly reduced, which leads to a decrease
in mass transfer. Therefore, electromembrane desalination processes must be carried out before space
charge breakdown occurs. Thus, the actual problem arises of determining at which potential jumps a
breakdown of the space charge occurs at a given concentration of the solution. Electromembrane
systems are used for desalination at electrolyte solution concentrations ranging from 1 to 100 mol/m3.
In a theoretical study of increasing the efficiency of the desalination process, mathematical modeling
is used in the form of a boundary value problem for the system of Nernst–Planck and Poisson (NPP)
equations, which refers to “hard” problems that are difficult to solve numerically. This is caused by
the appearance of a small parameter at the derivative in the Poisson equation in a dimensionless
form, and, correspondingly, a boundary layer at ion-exchange membranes, where concentrations
and other characteristics of the desalination process change exponentially. It is for this reason that
the numerical study of the boundary value problem is currently obtained for initial concentrations
of the order of 0.01 mol/m3. The paper proposes a new numerical–analytical method for solving
boundary value problems for the system of Nernst–Planck and Poisson equations for real initial
concentrations, using which the phenomenon of space charge breakdown (SCB) in the cross section
of the desalination channel in potentiostatic and potentiodynamic modes is studied. The main
regularities of the appearance and interaction of charge waves, up to their destruction (breakdown),
are established. A simple formula is proposed for engineering calculations of the potential jump
depending on the concentration of the solution, at which the breakdown of the space charge begins.

Keywords: breakdown; space charge; desalination; membrane; electromembrane system

1. Introduction

In works [1–7], it is shown that the use of overlimiting currents in electrodialyzers is
effective. At overlimiting currents, the structure of the region of the space charge region
becomes more complicated. The structure of the diffusion layer in the stationary case was
first studied in [8] and later in the works of many authors [9–12]. Non-stationary problems
were studied in [13–16]. In all these works, the numerical solution was obtained at initial
concentrations much lower than in real electrodialyzers. This is due to the fact that the
boundary value problems of mathematical models are “hard” problems, and the “hardness”
increases with increasing initial electrolyte concentration. The reason is the appearance of a
small parameter at the derivative in the Poisson equation, when passing to a dimensionless
form using characteristic parameters, i.e., boundary value problems become singularly
perturbed, which means the appearance of narrow boundary layers, where the desired
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functions of concentrations, electric field strength, etc., change exponentially. Moreover,
the greater the initial concentration, the smaller the small parameter, and the more “rigid”
the boundary value problem becomes and the more difficult it is to solve it numerically.
Therefore, the main numerical results were obtained at initial concentrations of the order of
0.01 mol/m3, while the real initial concentration is of the order of 10 mol/m3 and more.

This paper proposes a new numerical–analytical method for solving boundary value
problems for the system of Nernst–Planck and Poisson equations, which is a generalization
of both works [17,18] and models [10,19–22]. This new method made it possible to study the
non-stationary phenomenon of space charge breakdown in the desalination channel cross-
section at real initial concentrations used in electrodialysis desalination apparatuses and to
establish under these conditions the main patterns of interaction of charge waves, up to their
destruction (breakdown) in potentiostatic and potentiodynamic modes. In [22], we applied
the considered method to study breakdown at high concentrations in the galvanostatic
mode. The essence of the work lies in the theoretical study of a new phenomenon—the
breakdown of a space charge. It is for this reason that all equations and boundary conditions,
as well as mathematical transformations, are displayed in the appendix.

2. Formation and Properties of a Quasi-Equilibrium Layer (QEL)

In [14], the process of the appearance of a space charge region in the potentiodynamic
mode in the diffusion layer near the cation-exchange membrane (CEM) was considered,
assuming that the potential jump increases linearly with time, starting from zero. As
can be seen from Figure 1a, most of the diffusion layer is occupied by the region of
electrical neutrality (REN)—I(t, x), at which C1 = C2 or ε = 0. In the region I(t, x),
the electromigration and diffusion fluxes are exactly equal, therefore the concentrations of
ions of opposite signs at each point at any time are equal, and therefore the conditions of
local electroneutrality are observed. It follows from Figure 1 that the formation of a quasi-
equilibrium region of the space charge (I I I(t, ξ)) adjacent to the ion-exchange membrane
begins at the initial moment of time, its thickness increases nonlinearly with time (Figure 1b)
and at some point practically stops changing (Figure 1a). The transfer of salt ions in this
region is practically independent of time and, accordingly, of the potential jump and,
consequently, of the current. Therefore, this region of space charge (I I I(t, ξ)) is called a
quasi-equilibrium region or layer (QEL) [23] . The reason for the formation of QEL is that,
at short times, the migration flow near the membrane in the (I I I(t, ξ)) region is not much
greater than the diffusion flow, and the flows themselves are directed oppositely, as a result
of which counterions accumulate near the membrane. As time increases, the predominance
of the electromigration flow over the diffusion one increases. This leads to the fact that
with a further increase in time, at some tlim, i.e., when the potential jump becomes large
enough and the current corresponding to it becomes greater than the limiting diffusion
current, then counterions begin to accumulate at the boundary between the electroneutrality
region and the QEL, since diffusion does not have time to blur their accumulation (because
the diffusion flux is less than the electromigration flux). Thus, an extended region of
space charge (I I(t, x)) appears. The thickness of the QEL is practically independent of
time, i.e., the quasi-equilibrium layer is simultaneously quasi-stationary (Figure 1). In the
cross section of the desalination channel formed by anion-exchange and cation-exchange
membranes, quasi-equilibrium layers appear at each of the membranes, and are also
quasi-stationary [23,24] and Section 4.
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Figure 1. Formation and structure of the space charge region at cation-exchange membrane
(CEM) (a) diffusion layer diagram (not to scale): I(t, x)—the region of electrical neutrality (REN),
I I(t, x)—extended space charge region (SCR), I I I(t, ξ)—QEL, IV(t, x)—intermediate region, and
(b)—graph of the function ρ(t, x) = F(C1(t, x)− C2(t, x)).

3. Formation of an Extended Space Charge Region and Local Extrema of the Space Charge

Numerical experiments [25] and analytical calculations show that, at a fixed value of
the exchange capacity of an ion-exchange membrane, a local extremum of the space charge
appears at a certain potential jump corresponding to the overlimiting current density. If a
potential jump is fixed, then at a certain sufficiently large value of the exchange capacity of
the membrane, the local extrema disappear. Based on this, it was suggested in [26] that the
reason for the occurrence of local extrema is the limited exchange capacity of membranes.

Let us consider the dependence of the local maximum on the C1m parameter, which
characterizes the exchange capacity of the membrane. The point of the local maximum
shifts to the right, but the value practically does not change (Figure 2). At the same time,
the local minimum gradually fills up with an increase (the value of the local minimum
increases). Thus, we can conclude that the local maximum of the space charge appears due
to the limited exchange capacity of the membrane at a given potential jump, i.e., the local
maximum of the space charge appears due to the presence of a local minimum of the space
charge at the surface of the cation exchange membrane. In the potentiodynamic regime,
when the potential jump increases linearly with a certain sweep rate, as shown in [27],
the existence of local extrema of the plot of current density vs. potential jump (time) is
related to the potential sweep rate. If the sweep rate is low, then there are no local extrema.
Both in the first and in the second case, everything is connected with the ratio of diffusion
and electromigration. At large values of the exchange capacity, the concentration gradient
increases and diffusion begins to “prevail” over electromigration. Similarly, with a decrease
in the sweep rate, the electromigration flow decreases and diffusion also “prevails” over
electromigration, and thus, if the potential jump is slowly increased, local maxima and
minima are not formed; however, the extended space charge region will increase.

Thus, the prevalence of diffusion over electromigration does not allow the formation
of local extrema of the space charge, and vice versa, the prevalence of electromigration over
diffusion leads to the formation of local extrema. If the potential jump is taken constant and
small enough, then although the electromigration flux will slightly exceed the diffusion
flux, they will be approximately equal and there will be no accumulation of ions at the
boundary of the electroneutrality region and QEL. At small potential jumps, the QEL
smoothly passes into the region of electrical neutrality, there are no boundaries between
them and, accordingly, there is no extended region of the space charge. If the potential jump
is taken as constant and large enough, then the migration flow will be much larger than the
diffusion flow at the boundary between the electroneutrality and QEL regions, which will
lead to the accumulation of ions in this region and the formation of an extended SCR.
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Figure 2. Dependence of the local maximum on the exchange capacity of the cation-exchange mem-
brane (NaCl, ∆r ϕ = 0.5) (a) C1m = 14, (b) C1m = 350, (c) C1m = 920, (d) C1m = 1335.

4. Analytical Solution of the Boundary Value Problem in Quasi-Equilibrium Layers in
the Section of the Desalination Channel

Let us first find the solution on the segment [0, x1], that is, in the quasi-equilibrium
boundary layer near the anion-exchange membrane. Let us put (1) and (2), then we substitute
in the dimensionless Nernst–Planck and Poisson equations (see Appendix A.1), then after a
series of transformations near the anion-exchange membrane, in the first approximation, we
obtain (3) with boundary conditions (4), and also E(t, ∞, ε) = 0—the condition of merging
with the solution inside the channel section, from which follows j1(t) ≡ 0.

ξ =
x√

ε
, E(t, x, ε) =

1√
ε

Ẽ(t, ξ, ε), C1(t, x, ε) = C1(t, ξ, ε) (1)

C2(t, x, ε) = C2(t, ξ, ε), j1(t, x, ε) = j1(t, ξ, ε), j2(t, x, ε) = j2(t, ξ, ε) (2)

ji(t, ξ, ε) = ji(t),
∂Ci(t, ξ, ε)

∂ξ
= ziCi Ẽ(t, ξ, ε), i = 1, 2,

∂Ẽ(t, ξ, ε)

∂ξ
= C1 − C2. (3)

j1(t, 0, ε) = (C1Ẽ− ∂C1

∂ξ
)(t, 0) = 0, C2(t, 0, ε) = C2a = 1, ϕ(t, 0) = dt. (4)

The system of Equations (A17) and (A18) (see Appendix A.1) has the first integral
C1 + C2 = 1

2 Ẽ2 − α, where α = −C1(t, x1, ε)− C2(t, x1, ε) < 0. Using which, one can obtain
an equation for the electric field strength that does not contain concentrations (5) [22].
Integrating which, after a series of transformations, we obtain (6). The condition of merging
with the solution in the REN: Ẽ→ 0 is obviously satisfied; moreover, it is possible to define
the left boundary of the REN in the form x1 = k

√
ε|lnε|, where k > 0 is an arbitrary constant.

∂2Ẽ
∂x2 =

1
2

Ẽ3 − αẼ. (5)
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Ẽ =
4
√

βe−
√
−αξ

1− βe−
√
−4αξ

√
−α. (6)

Thus, we obtain solution (7):

E(x, ε) =
1√

ε

4
√

βe−
√
−α x√

ε

1− βe−
√
−4α x√

ε

√
−α, (7)

where β—some positive number, which is determined from the boundary condition. Know-
ing E(x, ε), and using the ratios C1 + C2 = 1

2 Ẽ2 − α and ∂Ẽ
∂ξ = C1 − C2, it is easy to calculate

C1 and C2. Similarly, the solution is calculated on the segment [x1, 1], that is, in the quasi-
equilibrium layer near the cation-exchange membrane with the necessary changes, namely,
the replacement has the form: ξ = x−1√

ε
, E = 1√

ε
Ẽ(ξ, ε), ξ → −∞, at ε→ +0, which leads

to the solution (8), where α ≈ −C1(t, x2, ε)− C2(t, x2, ε) < 0.

E(x, ε) =
1√

ε

4
√

βe−
√
−α x−1√

ε

1− βe−
√
−4α x−1√

ε

√
−α, (8)

As can be seen from the solutions in quasi-equilibrium layers, in the first approxima-
tion they do not depend on time, that is, the quasi-equilibrium layer is also quasi-stationary.

5. Model Formulation wQEL (without Quasi-Equilibrium Boundary Layer)

As shown above, in the initial approximation, the value of the current density does
not affect the distribution of the potential and concentrations of the quasi-equilibrium
region of the space charge. This influence affects only in the next, first, approximation [14].
In this regard, in the initial approximation, this region can be ignored and a simplified
model can be compiled, and the conditional boundary between the quasi-equilibrium
region of the space charge and the extended region can be considered the point at which
the concentration of counterions reaches its minimum value for ion-exchange membranes,
and the space charge reaches a minimum at CEM and the maximum value of AEM. Since in
the vicinity of these points the values of the concentration of counterions are much higher
than the concentration of coions, then, accordingly, the space charge in these regions is
determined by the concentration of counterions.

Thus, we can conclude that ∂C1
∂x ≈

∂ρ
∂x ≈ 0 at the border of the extended region and

∂C2
∂x ≈

∂ρ
∂x ≈ 0 the quasi-equilibrium region of the cation-exchange membrane and at the

border of the expanded region and the quasi-equilibrium region of the anion-exchange
membrane. Since the width of the quasi-equilibrium region is rather small, the following
boundary conditions can be adopted to simplify the basic model (9):

∂C2(t, 0)
∂x

= 0,
∂C1(t, H)

∂x
= 0. (9)

Adding to these conditions the conditions of impermeability of coions, the same
as in the basic problem, we obtain a new boundary value problem for the system of
Nernst–Planck–Poisson equations, which determines the mathematical model for the
transport of salt ions without a quasi-equilibrium layer (without quasi-equilibrium bound-
ary layer (wQEL)). Thus, the model without a quasi-equilibrium layer is described by
Equations (A1)–(A5) and boundary conditions (9), (A6)–(A14). Since this model differs
from the basic model in the absence of a quasi-equilibrium space charge region, it can
be called a model without a quasi-equilibrium layer. In a number of papers, the authors
investigated this model of salt ion transport in a diffusion layer, and it was shown that it
gives the distribution of concentration, potential, and space charge with good accuracy
everywhere except, of course, the quasi-equilibrium region of the space charge.
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As the calculations performed in this article show, the wQEL model allows one to
numerically study the transfer phenomenon in the cross section of the desalination channel
for an electrolyte solution with higher concentrations than the basic model, for example,
for initial concentrations C0 = 10 mol·m−3.

In [14], the quasi-uniform charge distribution (QCD) condition was proposed, which
generalizes the electrical neutrality condition. As a result of using this condition instead
of the Poisson equation, a finite equation or a differential equation of a lower order is
obtained, and as a result, a solution is obtained outside the quasi-uniform layer. In this
sense, the wQEL model and the QCD condition lead to the same results. The wQEL model
is convenient for numerical solution, since only two boundary conditions change. The QCD
condition was derived using the decomposition method of the system of Nernst–Planck
and Poisson equations, and the model with the QCD condition is convenient for an asymp-
totic solution.

Above, the wQEL model was derived in dimensionless form. However, it is not difficult
to formulate it in dimensional form, since the conditions (9) have the same form in dimensional
form. In addition, it is easy to pass to the dimensional form in Formulas (7) and (8).

6. A New Numerical-Analytical Method for Solving Boundary Value Problems for the
System of Nernst-Planck and Poisson Equations

6.1. Algorithm of the Numerical-Analytical Method of Solution

1. We numerically solve the boundary value problem (A15)–(A24) of the wQEL model,
and find, among other things, C1(t, x2, ε), C2(t, x1, ε);

2. We find the potential jump for the base model. For this, we use the ratio

ϕ0 =
1∫

0
E(x, ε) dx =

x1∫
0

E(x, ε) dx +
x2∫

x1

E(x, ε) dx +
1∫

x2

E(x, ε) dx,

ϕ0 =
1∫

0
E(x, ε) dx = −

x1∫
0

dC2
C2

+
x2∫

x1

E(x, ε) dx+
1∫

x2

dC1
C1

= ln C2AC1K
C2(t,x1,ε)C1(t,x2,ε) +

x2∫
x1

E(x, ε) dx.

Taking into account that x1 ≈ 0, x2 ≈ 1, we obtain

ϕ0 ≈ ln C2AC1K
C2(t,x1,ε)C1(t,x2,ε) +

x2∫
x1

E(x, ε) dx,

ϕ0 = ϕQEL + ϕwQEL.
Here, the first term ϕQEL is the potential jump in the quasi-equilibrium layers of the
anion-exchange and cation-exchange membranes, and the second potential jump is
ϕwQEL, calculated using the wQEL model. Let us estimate the potential jump ϕQEL,
assuming that the minimum value of the concentration has decreased by 100 and
105 times.
Then, in the first case, we obtain C2A

C2(t,x1,ε) = C1K
C1(t,x2,ε) = 102 , and in the second

C2A
C2(t,x1,ε) =

C1K
C1(t,x2,ε) = 105.

Then, the dimensionless jumps will be ϕQEL = ln C2AC1K
C2(t,x1,ε)C1(t,x2,ε) ≈ 9.2 and

ϕ0 = ln C2AC1K
C2(t,x1,ε)C1(t,x2,ε) ≈ 23.

Taking into account that ϕ0 = 0.02566 V, we obtain that in dimensional form the total
potential jump in quasi-equilibrium layers is approximately equal to 0.24 V and 0.6 V.
Taking into account the fact that the potential jump in the desalination chamber can
reach 1 V–3 V, the potential jump in quasi-equilibrium layers can make a significant
contribution with an increase in the degree of desalination.

3. We find an analytical solution in quasi-equilibrium layers using Formulas (7) and (8).
4. Using (1) and (3), we obtain the solution of the basic problem.

Remark 1. As C0 increases, the asymptotic solution becomes more accurate ε, since the accuracy of
analytical formulas decreases and, accordingly, increases, and the thickness of the quasi-equilibrium
layer decreases (see Table A1). Thus, in contrast to the numerical solution of the boundary value
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problem of the base model, the accuracy of the proposed numerical-analytical method of the solution
practically does not change with increasing C0.

6.2. Verification of Calculations

To verify the calculations, numerical experiments were carried out with grids with
different numbers of elements 200,000, 330,000, and 400,000. The calculation results in the
first two cases differed, although slightly. The results of calculations for grids of 400,000 and
330,000 coincided with the accuracy of the calculations. Therefore, calculations with a grid
of 400,000 can be considered quite accurate.

6.3. Comparison of the Results of Calculations of the Base Model and the wQEL Model

At low initial concentrations, the basic model and the wQEL model can be used for
calculations simultaneously. Such a comparison is made below for C0 = 0.01 mol·m−3 at
the same potential jumps. As can be seen from Figure 3, the distribution of the space charge
calculated by the wQEL model coincides quite accurately everywhere, except, of course, for the
quasi-equilibrium region of the space charge. The exclusion of this region leads to some
delay in the values of the space charge calculated by the simplified model in comparison
with the base one. This delay depends on the potential jump in the quasi-equilibrium region
of the space charge, which in turn depends on the initial concentration (A12) and (A13),
for example, for the concentration C0 = 0.01 mol·m−3 the delay is 15 s or, which is the same,
15 s·0.005 V/s = 0.075 V. If this shift is taken into account, the results differ by less than
1%. From Appendixes A.2.1–A.2.3 it follows that the wQEL model in combination with
the analytical solution in the quasi-equilibrium region and taking into account the jump
in this region, i.e., the proposed numerical–analytical method can be used to calculate the
transfer of ions in the cross section of the desalting channel, including the phenomenon
of space charge breakdown at the real initial solution concentrations used for desalting in
electrodialysis apparatuses.

Figure 3. Calculations at different time intervals: before breakdown (a), on the eve of breakdown and
after breakdown (b).
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7. Patterns of Space Charge Breakdown at High Initial Concentrations

The concept of space charge breakdown and the main patterns of breakdown in non-
stationary membrane systems at fixed potential jumps corresponding to the overlimiting
current density were studied in [25] at small values of the initial concentration of the order
of C0 = 0.01 mol·m−3, which, as noted above, is due to the fact that boundary value prob-
lem (A15)–(A24) is a singularly perturbed problem due to the small parameter ε, and therefore
ill-conditioned. Moreover, with an increase in C0, the value ε decreases (see Table A1).

Below, the breakdown phenomenon and its regularities for the potentiodynamic mode
are studied using the wQEL model in the cross section of the desalination channel for
C0 = 10 mol·m−3. As time increases, two waves of a positive (for CEM) and a negative
(for AEM) space charge are formed in the channel cross section, which move towards
each other (Figures 4a and 5). These waves are caused by the predominance of migration
flows over diffusion ones (see Figure 6a–d).

Figure 4. Breakdown phenomenon for a KCl solution with initial concentration C0 = 10 mol·m−3.
Space charge graphs normalized to Faraday numbers at different time intervals: (a) before breakdown,
and (b) before and after breakdown.

In this case, the concentration of cations is higher than the concentration of anions in
the area adjacent to the cation-exchange membrane and, accordingly, the concentration of
anions is higher than the concentration of cations in the area adjacent to the anion-exchange
membrane (Figure 5a). Accordingly, the space charge in the region adjacent to the cation
exchange membrane is positive, and in the region adjacent to the anion exchange membrane
it is negative. In the middle part of the channel, there is a region where the concentrations
of cations and anions are equal with a high accuracy, and in this region the condition of
local electrical neutrality is satisfied. In the areas of the space charge, the intensity is very
high, the convexity and concavity of its graph at the extremum points of the space charge
change (Figure 5b).

Figure 5. Graphs of concentrations (a) and intensity (b) at different points in time.

Calculations show that at first the space charge waves move with almost constant
speed and do not interact. Over time, they approach each other and begin to attract
each other, the speed of movement gradually increases. At some point in time (Figure 4b),
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the waves of negative and positive space charge come into contact and the discharge process
begins, when the value of both negative and positive charges decreases rather quickly and
over time, the space charge in the middle part of the channel practically disappears, that is,
the breakdown process is completed (Figure 4b).

As can be seen from Figure 4, the breakdown occurs at 700–720 s. Since the sweep
rate is d = 0.005 V·s−1, we find that the breakdown occurs at approximately 3.5–3.6 V.

After the breakdown, the flows become almost equal to zero (Figure 6), and, accord-
ingly, the current becomes equal to zero, equilibrium is established in the entire section of
the channel, and the concentration and tension in the middle part of the channel become
constant (Figure 5). The quasi-equilibrium layers of the membranes are retained [14].

Figure 6. Graphs of diffusion (a,b) and migration (c,d) fluxes of K+ and Cl− ions at different points
in time.

8. Dependence of the Time (Potential Jump) of the Onset of Breakdown on the Initial
Concentration of the Solution

The equation of the straight line in Figure 7 has the form

ϕn = alg(C0) + b,

where a = 0.54, b = 3.07, R2 = 0.9973. Assuming a = 0.5, b = 3, we obtain a simple
approximate dependence for a preliminary estimate of the critical value of the potential
jump at which the breakdown begins:

ϕnew =
1
2

lg(C0) + 3.

It follows from Table 1 that this formula is quite accurate and can be used in engineer-
ing calculations to estimate the potential jump when the breakdown of the space charge
begins for a solution with an initial concentration C0.
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Table 1. Breakdown start time tn (potential jump, ϕn) depending on the initial concentration of the
KCl solution.

C0, mol/m3 0.01 0.1 1 10 100

tn 400 500 620 720 820
ϕn, V, numeric 2 2.5 3.1 3.6 4.1

ϕnew, V 2 2.5 3 3.5 4

Figure 7. Dependence of the jump in the breakdown start potential ϕn for a KCl solution on the
logarithm of the initial concentration C0 at a channel width of 1 mm.

9. Conclusions

This paper proposes a new mathematical model for the transfer of salt ions in the
cross section of the desalination channel with the exception of quasi-equilibrium layers
near ion-exchange membranes, called the wQEL model. Asymptotic solutions are found in
quasi-equilibrium layers of ion-exchange membranes. Using a combination of the analytical
solution and the numerical solution of the wQEL model, a numerical–analytical method for
solving the basic model was developed, using which the breakdown phenomenon in the
cross section of the desalination channel was theoretically studied at real concentrations of
the initial electrolyte solution. The main patterns of breakdown are determined, which can
be used to select effective technological parameters for the operation of an electrodialysis
desalination apparatus:

(1) For the first time, a study of a quasi-equilibrium layer in a non-stationary case was
carried out and it was shown that its thickness is practically independent of time, i.e., the
quasi-equilibrium layer is also quasi-stationary.

(2) It is shown that at overlimiting current densities (potential jumps) in the po-
tentiostatic mode, space charge waves arise at ion-exchange membranes with local ex-
trema, which move towards each other and at the moment of meeting they are discharged,
i.e., breakdown of the space charge occurs. It is shown for the first time that the cause of
local extrema is the predominance of the electromigration flow over the diffusion one.

(3) For the first time for the potentiostatic mode, a simple and fairly accurate formula
for engineering calculations has been derived, the formula for the dependence of the
jump in the breakdown start potential for a KCl solution on the logarithm of the initial
concentration C0, which allows you to determine in advance the potential jump acceptable
for desalination at a given concentration.

(4) It has been shown for the first time that in the potentiodynamic regime with a linear
sweep rate of the potential, space charge waves with local extrema arise at sweep rates
greater than a certain threshold value, which depends on the concentration of the solution.

(5) A new mathematical model of ion transport in the cross section of the desalination
channel has been proposed, using which a hybrid numerical–analytical solution method
has been developed. This method can be used to solve other problems of membrane
electrochemistry, where the appearance of a quasi-equilibrium layer makes it difficult to
use only numerical methods.
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Abbreviations
The following abbreviations are used in this manuscript:

NPP Nernst-Planck and Poisson
SCB Space charge breakdown
QEL Quasi-equilibrium layer
CEM Cation-exchange membrane
AEM Anion exchange membrane
REN Region of electrical neutrality
SCR Space charge region
wQEL Without Quasi-equilibrium boundary layer
QCD Quasi-uniform charge distribution

List of Symbols
The following list of symbols is used in this manuscript:

C0 The initial concentration of the solution
C1 The concentration of cations
C2 The concentration of anions
H The distance between membranes (Channel width)
j1 The flux of cations
j2 The flux of anions
D1 The duffusion of cations
D2 The duffusion of anions
ϕ The electric field potential (Potential jump)
d1 The initial value of the potential
d2 The speed of the potential sweep
εα The absolute permittivity of the solution
F The Faraday constant
R The gas constant
T The absolute temperature
t The time
tn The space charge breakdown start time
ϕn The space charge breakdown start potential jump

Appendix A

Appendix A.1. Basic Mathematical Model

The basic mathematical model of one-dimensional unsteady transfer of salt ions into
the section of the desalination channel [6] formed by anion-exchange and cation-exchange
membranes in the potentiodynamic mode in a dimensional form is determined by the
boundary value problem formulated below.

Appendix A.1.1. System of Equations

∂C1

∂t
= −∂j1

∂x
(A1)
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∂C2

∂t
= −∂j2

∂x
(A2)

j1 = − F
RT

D1C1
∂ϕ

∂x
− D1

∂C1

∂x
(A3)

j2 =
F

RT
D2C2

∂ϕ

∂x
− D2

∂C2

∂x
(A4)

∂2 ϕ

∂x2 =
F
εα
(C1 − C2) (A5)

where j1, j2, C1, C2 are the fluxes and concentrations of cations, anions in the solution,
respectively, D1, D2 are the diffusion coefficients of cations and anions, ϕ is the electric field
potential, εα is the absolute permittivity of the solution, F is the Faraday constant, R is the
gas constant, T is the absolute temperature, and t is the time.

Appendix A.1.2. Boundary Conditions

At x = 0: (
− F

RT
D1C1

∂ϕ

∂x
− D1

∂C1

∂x

)∣∣∣∣
x=0

= 0 (A6)

C2(t, 0) = C2A (A7)

ϕ(t, 0) = d1 + d2 · t, (A8)

where d1—the initial value of the potential, d2—the speed of the potential sweep.
At x = H: (

F
RT

D2C2
∂ϕ

∂x
− D2

∂C2

∂x

)∣∣∣∣
x=0

= 0 (A9)

C1(t, H) = C1K (A10)

ϕ(t, H) = 0 (A11)

Initial conditions (t = 0):

C1(0, x) = C10 (A12)

C2(0, x) = C20 (A13)

ϕ(0, x) = 0 (A14)

The boundary value problem depends on the following 7 variable input parameters:
H, C10, C20, C1K, C2A, d1 and d2. To make the numerical results more visible, we set
C10 = C20 = C1K = C2A = C0, where C0 is the initial concentration of the solution. It
is precisely the use of the method proposed below that makes it possible not to lose the
generality of the formulation.
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Appendix A.2. Characteristic Quantities and Transition to Dimensionless Form

Let us move on to dimensionless quantities using the formulas, where (u) is the index
of the dimensionless quantity, the subscript (0) indicates the characteristic quantities:

x(u) =
x
H

, t(u) =
t
t0

, C(u)
i =

Ci
C0

, j(u)i =
ji
j0

, D(u)
i =

Di
D0

ϕ
(u)
i =

ϕ

ϕ0
, ε

(u)
i =

εα

b0
, I(u) =

I
I0

, d(u)1 =
d1

ϕ0
, d(u)2 =

d2

d0

Appendix A.2.1. Characteristic Quantities, Their Physical Meaning

Two characteristic quantities are obvious. This is the initial concentration of the
solution C0, which really varies from 10−2 mol/m3 to 102 mol/m3 and the channel width
H = 1 mm, the remaining characteristic values must be chosen so that the boundary value
problem has the simplest form. Let us take as D0 = 2D1D2

z1D1−z2D2
is the diffusion coefficient of

the electrolyte, ϕ0 is the thermal potential [28], I0 = 2FD0C0
H is the limiting diffusion current,

j0 = 2D0C0
H is the ion flux corresponding to the limiting current, t0 = C0 H

j0
is the time of

diffusion of ions through the channel cross section, d0 = ϕ0
t0

= ϕ0D0
H2 is the characteristic

value of the potential sweep rate, and b0 = H2FC0
ϕ0

is a characteristic value having the
dimension of an electric constant.

The physical meaning of the quantity b0 can be seen, for example, by rewriting the
formula εα

b0
in the form εα

b0
= εαS

H : b0S
H = Ck

CT
, where Ck is the capacitance of a flat capacitor

with the area of the plates S and the thickness of the dielectric H, and CT = b0S
H = HFC0S

ϕ0
is the capacitance a channel for desalination of an electrolyte solution with a width of H,
with an area of membranes S and with a concentration of C0, considered as an ionistor
(supercapacitor). Another physical interpretation of the small parameter ε(u) is defined in [29]
as the square of the ratio of the Debye length to the characteristic linear size, in this case,
to the channel width.

Appendix A.2.2. Estimation of Characteristic Quantities

ϕ0 =
RT
F

= 0.02566[V],

b0 : 3.8594× 10−2[
Kl

mV
] ≤ b0 ≤ 3.8594× 102[

Kl
mV

].

The value D0, and therefore I0, j0, t0 depend on the salt. For example, for a KCl solution,
we have:

D0 =
2D1D2

z1D1 − z2D2
≈ 2.003× 10−9[

m2

s
], d0 = 5 · 10−5[V/s], 4.9 ≤ t0 ≤ 4.9× 103[s],

4.007× 10−8[
mol
m2s

] ≤ j0 ≤ 4.007× 10−4[
mol
m2s

],

0.3865× 10−2[A/m2] ≤ I0 ≤ 0.3865× 102[A/m2].

Appendix A.2.3. Trivial Similarity Criteria, Their Physical Meaning and Estimation of Values

The boundary value problem depends only on three dimensionless parameters ε(u), d(u)1 ,

d(u)2 . Let us estimate their values: 1.859× 10−12 ≤ ε(u) ≤ 1.859× 10−8, 5 ≤ d(u)2 ≤ 5× 103[V].
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Table A1. Specific values of trivial similarity criteria from C0. The last line shows the order of the
dimensionless thickness of the quasi-equilibrium region of the space charge at a dimensionless width
of the desalination channel equal to 1.

C0, mol/m3 0.01 0.1 1 10 100

I0 = Ilim, A/m2 0.003865 0.03865 0.3865 3.865 38.65
ε(u) 1.859× 10−8 1.859× 10−9 1.859× 10−10 1.859× 10−11 1.859× 10−12

√
ε(u)|lnε(u)| 2.426× 10−3 8.6× 10−4 3.0× 10−4 1.0× 10−4 3.7× 10−5

Appendix A.3. Basic Mathematical Model in Dimensionless Form

Appendix A.3.1. System of Equations in Dimensionless Form

Taking into account non-trivial similarity criteria, the dimensionless boundary value
problem can be written in the form (the index “u” is omitted for simplicity):

∂Ci
∂t

= −∂ji
∂x

, i = 1, 2 (A15)

ji = −ziDiCi
∂ϕ

∂x
− Di

∂Ci
∂x

, i = 1, 2 (A16)

ε
∂2 ϕ

∂x2 = −(C1 − C2) (A17)

Appendix A.3.2. Boundary Conditions

At x = 0: (
−C1

∂ϕ

∂x
− ∂C1

∂x

)∣∣∣∣
x=0

= 0 (A18)

C2(t, 0) = C2A = 1 (A19)

ϕ(t, 0) = d1 + d2 × t, (A20)

At x = 1: (
C2

∂ϕ

∂x
− ∂C2

∂x

)∣∣∣∣
x=0

= 0 (A21)

C1(t, 1) = C1K = 1 (A22)

ϕ(t, 1) = 0 (A23)

Initial conditions (t = 0):

Ci(0, x) = Ci(x) = 1, i = 1, 2, ϕ(0, x) = 0 (A24)

As can be seen from the system of equations and boundary conditions, there are only
three parameters: ε, d1 and d2.
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