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Abstract: The absorption efficiencies of CO2 in hollow-fiber membrane contactors using an ethanolamine
(MEA) solvent under both concurrent- and countercurrent-flow operations were investigated theo-
retically and experimentally. Two-dimensional mathematical modeling was developed by Happel’s
free surface model, and the resultant partial differential equations were solved analytically using
the separated variables method with the use of an orthogonal expansion technique. A simplified
expression of Sherwood number variations was reported by employing the relevant operations con-
ditions and expressed in terms of the computed eigenvalues for predicting concentration distribution
and absorption efficiency. It is emphasized that, in comparing various fiber packing configurations,
both theoretical predictions and experimental results should be compared to find the absorption
flux increment accomplished by the CO2/N2 stream passing through the fiber cells under the same
mass flow rate. The value of the present mathematical treatment is evident to propose a simplified
expression of the averaged Sherwood number variations, and provides the predictions of the ab-
sorption flux, absorption efficiency, average Sherwood number with the absorbent Graetz number,
inlet CO2 concentration, and absorbent flow rates as parameters. The availability of such concise
expressions, as developed directly from the analytical formulations, is the value of the present study.
The experiments of the CO2 absorption using MEA with alumina (Al2O3) hollow fiber membranes
are also set up to confirm the accuracy of the theoretical predictions. The accuracy derivations
between the experimental results and theoretical predictions for concurrent- and countercurrent-flow
operations are 4.10× 10−2 ≤ E ≤ 1.50× 10−2 and 1.40× 10−2 ≤ E ≤ 9.0× 10−1, respectively. The
operations of the hollow-fiber membrane contactor implementing N = 7 fiber cells and N = 19 fiber
cells offer an inexpensive method of improving absorption efficiency by increasing fiber numbers
with consideration of device performance.

Keywords: carbon dioxide absorption; MEA absorbent; hollow-fiber membrane contactor; conjugated
Graetz problem; Sherwood number

1. Introduction

The application of membrane technology to physical/chemical gas absorption is
the most common purification technology for gas separation in removing CO2 from fos-
sil fuel combustion to reduce greenhouse gas emissions [1]. Membrane technology has
been extensively applied to liquid/liquid and gas/liquid systems and is widely used in
many separation processes, such as gas absorption and metal ion removal [2], due to
the advantages of lower energy consumption [3], a larger mass transfer area, continuous
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operations, and the flexibility to scale up [4]. Some membrane materials, such as PMSQ
(polymethylsilsesquioxane) and hybrid silica aerogel, were used to be durable and reusable
to enhance the CO2 absorption flux considerably [5,6]. The membrane is in contact with
gas/liquid on each side, as solvent absorption is operated with a microporous membrane
module. The distribution coefficient of gas solute in the two-phase system existing a
gradient composition in between plays an important role in the separation efficiency of
the membrane of physical absorption. Chemical absorbents of monoethanolamine (MEA)
solutions on the membrane surface of the liquid phase in the hydrophobic microporous
membrane module as a more efficient absorption process could enhance CO2 being selec-
tively absorbed. Currently, chemical absorption by amine solutions is the most advanced
technology for the mechanisms of CO2 absorption from gas mixtures, as confirmed by a
previous study [7,8]. The advantage of chemical absorption technology is that it has been
commercialized for many decades with various amines and mixed amines [9] used widely
to enhance CO2 capture efficiency and reduce regeneration costs [10]. The most commonly
used hollow fiber membrane contactors were designed in a shell/tube configuration with
the shell side (absorbent) parallel to the fiber cells (CO2), which were either in concurrent-
or countercurrent-flow operations. The microporous hydrophobic membrane device acts
as a gas absorber, while the amine solution flowing on the other side directly contacts the
membrane surface. Rongwong et al. [11] provided a better understanding of membrane
gas-absorption operations than conventional gas-absorption processes, and the separation
efficiency was determined on the distribution coefficient of gas solutes in both gas and
liquid phases [12]. The advantages of combining chemical absorption and membrane
separation techniques in membrane absorption modules with a higher specific area offer
selective absorption of the desired gas mixture component [13]. The alkanolamine-based
CO2 absorption processes have been used widely and commercially. Successful process
intensifications for CO2 absorption processes have been investigated by employing selec-
tive membrane materials [14] and using MEA as an absorbent. The membrane absorption
efficiency depending on the distribution coefficient was carried out with the properties
of absorbents [15], and thus, was obtained by combining both chemical absorption and
separation techniques simultaneously according to the diffusion-reaction model [13]. The
one-dimensional steady-state modeling equation was successfully applied to predict the
CO2 absorption flux under various operational conditions associated with occurring reac-
tions by using amines as absorbents [16]. Moreover, an effective strategy was investigated
to capture CO2 in turbulent flow conditions [17] in the one-dimensional steady-state mod-
eling equation [16,18] as compared to considering the laminar flow velocity of the liquid
profile. The implementation of membrane contactors in the gas absorption process aims
to allow the soluble gas mixture components to be selectively absorbed in hollow-fiber
gas/liquid membrane contactors [19,20] by the solvent on the membrane surface of the
liquid phase [11,13]. Experimental studies [21,22] on shell-side mass transfer performance
in hollow-fiber membrane modules were reviewed recently by Lipnizki and Field [23].
The fiber spacing, fiber diameters, and inlet and outlet effects were examined, and the
device performance varied significantly. The fiber distribution and flow distribution in
randomly packed fiber bundles were investigated [24,25], and the analytical solution and
the experimental runs for shell side mass transfer with fluid flowing axially between fiber
cells were studied by Zheng et al. [26].

A two-dimensional mathematical statement was developed theoretically and experi-
mentally in a hollow-fiber membrane gas/liquid absorption module [27], with the gas and
liquid flow rates regulated independently. It is believed that the availability of such a sim-
plified mathematical formulation as developed here for hollow-fiber membrane absorption
module is the value in the present work and will be a significant contribution to design
and model multi-stream separation devices associating mutual conditions at the boundary.
The chemical absorption of CO2 by MEA was carried out and illustrated to validate the
theoretical predictions, and theoretical treatment on the assumption based on the shell side
mass transfer of an ordered fiber arrangement was developed in the present study. The
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resultant partial differential equations, referred to as conjugated Graetz problems [28,29],
were solved analytically using the separated variable method associated with an orthogonal
expansion technique [30,31]. The absorption efficiency was evaluated using the absorbent
flow rate (Graetz number) and the inlet CO2 concentration in the gas feed as parameters.
The theoretical predictions show that the effect of the inlet CO2 concentration in the gas
feed plays an important role in absorption efficiency [32], and the absorption efficiency
improvement of the hollow-fiber membrane contactor is obtained by implementing more
fiber cells under various absorbent flow rates. The influences of operating and design
parameters on absorption flux and absorption efficiency are also delineated.

The primary aims in this study are to develop the two-dimensional mathematical
formulation of a hollow-fiber membrane contactor in an MEA absorbent system and
to obtain the solutions analytically to be validated with experimental data under both
concurrent- and countercurrent-flow operations. The theoretical predictions are presented
graphically with the packing density (ϕ), absorbent Graetz number (volumetric flow rate),
and flow pattern as parameters. The effects of the MEA absorbent flow rate and inlet
CO2 concentration on the averaged Sherwood number, absorption flux, and absorption
efficiency were investigated theoretically and experimentally.

2. Theoretical Formulation

Happel’s free surface appeared in the imaginary outer boundary of the cell [26,33].
A fiber cell model with an imaginary free surface was developed to describe the mass
transport between the shell side with one fiber in each cell of the hollow fiber module. The
model building was assumed to be uniformly packed, with the bundle’s porosity equal to
the fluid’s envelope porosity, no friction on the shell side, and ignoring the velocity profile
across the module radius direction. The outside radius of the fiber cell and free surface are
r0 and r f , respectively, as shown in Figure 1 for being simplified into a circular-tube module.
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Figure 1. A scheme for the free surface model.

The module was assumed to be regularly packed, and the velocity profile in the
radial direction was ignored. Comparing with the radius r f of imaginary free surface, the
thickness of the hydrophobic microporous membrane δ is negligible (δ << r f ). The overall
mass transfer regions, including (a) CO2 gas transfers into the membrane surface from
the fiber cell; (b) CO2 diffuses through the membrane pores; (c) CO2 transfers into the
liquid stream via the membrane/liquid interface; (d) CO2 reacted by MEA liquid solutions.
The mathematical formulations of the transport phenomena of the laminar mass transfer
problem for this small fiber cell belong to the conjugated Graetz problem category, which
was derived at a steady state with negligible axial diffusion. The velocity distributions and
conservation equations were formulated according to the following assumptions:

(1) Steady state and fully developed flow in each flowing channel;
(2) Negligible axial diffusion and conduction, entrance length, and end effects;
(3) Happel’s surface model used to characterize the velocity profile in the fiber cell;
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(4) Isothermal operation and constant physical properties;
(5) The applicability of thermodynamic equilibrium and Henry’s law;
(6) The chemical reaction is very fast and the equilibrium state is reached;
(7) The hollow fiber membrane thickness can be neglected as compared to the hollow

fiber radius.

2.1. Concurrent-Flow Operations

The hollow fiber module can be reduced to a circular-tube module according to
Happel’s free surface model [26,33], as indicated in Figure 2 of the hollow-fiber membrane
contactor. The four regions considered for modeling CO2 absorption in hollow-fiber
membrane contactors are shown in Figure 3. The convective velocity in the radial direction
is neglected, and the axial velocity distributions are derived by applying the continuity
equation and Navier-Stokes relations to obtain the hydro-dynamical equation for laminar
flow. Thus, the dimensionless equations derived by the conservation equations of mass
with specified velocities may be written in terms of the dimensionless variables as

va(ηa) = 2va

[
1−

(
ηa

ηi

)2
]

(1)

vb(ηb) =
2vb[(

2
η2

m
− 3
)
+ η2

o

][η2
o − (1− ηb)

2 + 2ln
(

1− ηb
ηo

)]
(2)

and [
var2

f

LDa

]
∂ψa(ηa, ξ)

∂ξ
=

1
ηa

[
∂

∂ηa

(
ηa

∂ψa(ηa, ξ)

∂ηa

)]
(3)

[
vbr2

f

LDb

]
∂ψb(ηb, ξ)

∂ξ
=

1
(1− ηb)

[
∂

∂ηb

(
(1− ηb)

∂ψb(ηb, ξ)

∂ηb

)]
− kCO2 ψb(ηb, ξ) (4)

in which ro is the fiber outside radius, r f is the free surface radius, L channel length, and ϕ
is the packing density of the hollow fiber module with the following dimensionless groups

ηa =
ra
r f

, ηb = rb
r f

, ηi =
ri
r f

, ηo =
ro
r f

, ξ = z
L , r f = ϕ−0.5ro,

ψa =
Ca

Cai−Cbi
, ψb = Cb

Cai−Cbi
, Gza =

var2
f

LDa
, Gzb =

vbr2
f

LDb
, ηm =

√
1−η2

o
2ln( 1

ηo)
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The boundary conditions required for solving Equations (3) and (4) are

ψa(ηa, 0) = ψai (6)

ψb(ηb, 0) = ψbi (7)

∂ψa(0, ξ)

∂ηa
= 0 (8)

∂ψb(0, ξ)

∂ηb
= 0 (9)

− ∂ψa(ηi, ξ)

∂ηa
=

ε r f

δ

[
ψa(ηi, ξ)− K

′
ex

H
ψb(1− ηo, ξ)

]
(10)

− ∂ψa(ηi, ξ)

∂ηa
=

ηoDb
ηiDa

∂ψb(1− ηo, ξ)

∂ηb
(11)

where Da is ordinary diffusion coefficient of CO2 in N2, Db is ordinary diffusion coefficient
of CO2 in MEA, ε is the porosity of membrane, and H = 0.73 is dimensionless Henry’s
law constant [8]. The reduced equilibrium constant K

′
ex is derived to fit in the modeling

equation as
K
′
ex = Kex

[
MEA]/[H+

]
(12)

in which the equilibrium constant Kex =
[
MEACOO−

][
H+
]
/{[CO2][MEA]} = 1.25× 10−5

at T = 298 K [34] in the CO2 absorption from gas phase by aqueous MEA absorbent, and
can be expressed as follows:

CO2 + MEA↔ MEACOO − + H+ (13)

The present work is actually the extension of our previous work [35] by following the
similar general solution form except instead of the hollow-fiber membrane contactors, but
the mathematical formulation is more complicated with using the Happel’s free surface
model than that in the parallel-plate module. The analytical solutions of dimensionless
concentration distributions of both phases, ψa and ψb, may be obtained by the use of an
orthogonal expansion technique with the eigenfunction expanding in terms of an extended
power series. By following the same mathematical procedure performed in previous
works [30,36], the variables are separated in the form:

ψa(ηa, ξ) = ∑∞
m=0Sa,mFa,m(ηa)Gm(ξ) (14)

ψb(ηb, ξ) = ∑∞
m=0Sb,mFb,m(ηb)Gm(ξ) (15)

Substitution of Equations (14) and (15) into Equations (3) and (4) gives

Gm(ξ) = eλmξ (16)
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F′′a,m(ηa) +
1
ηa

F
′
a,m(ηa)−

[
va(ηa)r2

f

LDa

]
λmFa,m(ηa) = 0 (17)

F′′b,m(ηb)−
1

(1− ηb)
F
′
b,m(ηb)−

[
vb(ηb)r2

f

LDAC

]
λmFb,m(ηb)− kCO2 Fb,m(ηb) = 0 (18)

and the boundary conditions in Equations (6)–(9) can be rewritten as

F
′
a,m(0) = 0 (19)

F
′
b,m(0) = 0 (20)

− Sa,mF
′
a,m(ηi) =

ε r f

δ

[
Sa,mFa,m(ηi)−

K
′
ex

H
Sb,mFb,m(1− ηo)

]
(21)

− Sa,mF
′
a,m(ηi) =

ηoDb
ηiDa

Sb,mF
′
b,m(1− ηo) (22)

where the primes on Fa,m(ηa) and Fb,m(ηb) denote the differentiations with respect to ηa and
ηb, respectively. The eigen-functions Fa,m(ηa) and Fb,m(ηb) were assumed to be polynomials
to avoid the loss of generality as follows:

Fa,m(ηa) = ∑∞
n=0dmnηn

a , dm0 = 1 (selected), dm1 = 0 (23)

Fb,m(ηb) = ∑∞
n=0emnηn

b , em0 = 1 (selected), em1 = 0 (24)

Equation (21) can be rearranged to acquire the relationship between expansion coeffi-
cients Sa,m and Sb,m as

Sb,m =
H
[
δ F

′
a,m(ηi) + ε r f Fa,m(ηi)

]
ε r f K′exFb,m(1− ηo)

Sa,m (25)

Moreover, rearranging and deleting Sa,m and Sb,m in Equations (21) and (22) to calculate
the eigenvalue λm (λ1,λ2, . . . ., λm, . . . .) in the following equation

− F
′
a,m(ηi) =

ε r f

δ

[
Fa,m(ηi) +

ηiK
′
exDa

HηoDb

F
′
a,m(ηi)Fb,m(1− ηo)

F′b,m(1− ηo)

]
(26)

Substituting Equations (23) and (24) into Equations (21) and (22), all the coefficients
dmn and em,n may be expressed in terms of eigenvalues λm after using Equations (8) and (9).
The term ln[(1− ηb)/ηo] in velocity distributions of Equation (2) can be approximated
using the six-term Taylor series for acceptable tolerance as follows:

ln(1− ηb) = −ηb −
η2

b
2
−

η3
b

3
−

η4
b

4
−

η5
b

5
−

η6
b

6
(27)

Combining Equations (17)–(20), (23)–(24), and (27), all the coefficients dmn and em,n
can be expressed in terms of eigenvalue λm as

dm2 =
Gzaλm

2
, dm 3 = 0, dmn =

2Gzaλm

n(n− 1)

[
dm(n−2) −

1
η2

i
dm(n−4)

]
, n = 4, 5, 6, . . . (28)

and
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em,2 = 1
2
(
kCO2 + STGzbλm

)
, em,3 = 1

6
(
kCO2 + STGzbλm

)
,

em,n = n−1
n em,n−1 +

SGzbλm
n(n−1) (Tem,n−2 − Tem,n−3 + 2em,n−4 +

3
4 em,n−5

+ 1
6 em,n−6 +

1
10 em,n−7 +

1
15 em,n−8 +

1
3 em,n−9) + kCO2(em,n−2 − em,n−3), n = 4, 5, 6, . . .

(29)

in which S = 2/
[(

2
η2

m
− 3
)
+ η2

o

]
, T = η2

o − 2lnηo − 1.
These eigenvalues λm were calculated in Equation (26), resulting in both positive and

negative sets under concurrent and countercurrent-flow operations. Table 1 shows that the
calculation results of the first five eigenvalues and their associated expansion coefficients are
illustrated to meet the convergence requirement within the acceptable truncation error with
the series terms n = 400 for Qa = 3.33× 10−6 m3/s and Qb = 10.0× 10−6 m3/s. The eigen-
functions associated with the corresponding eigenvalues are also well defined by Equations
(23) and (24), once all eigenvalues were obtained from Equation (26). These eigenvalues
λm include a negative set, which is required for both concurrent- and countercurrent-flow
operations; the eigenvalues indicated in Table 1 are the dominant set in the system.

Table 1. The dimensionless outlet concentrations and the associated eigenvalues and expansion
coefficients under countercurrent-flow operations with 19 fiber cells.

m λ0 λ1 λ2 λ3 λ4 λ5 Sa,0 Sa,1 Sa,2 Sa,3×103 Sa,4×104 Sa,5×105 ψae

n = 300

3 0.0 −0.199 −4.113 −13.814 - - 0.063 0.021 −0.080 7.06 - - 0.1719

4 0.0 −0.199 −4.113 −13.814 −29.453 - 0.063 0.021 −0.080 7.06 −0.296 - 0.1620

5 0.0 −0.199 −4.113 −13.814 −29.453 −51.063 0.064 0.021 −0.080 7.06 −0.296 −0.927 0.1620

n = 400

3 0.0 −0.132 −3.857 −13.455 - - 0.457 0.106 −0.082 9.98 - - 0.0181

4 0.0 −0.132 −3.857 −13.455 10.206 - 0.457 0.106 −0.082 9.98 −3.11 - 0.0199

5 0.0 −0.132 −3.857 −13.455 10.206 29.023 0.457 0.106 −0.082 9.98 −3.11 −4.20 0.0199

The mathematical treatment is similar to that in the previous works [30,36]. The
orthogonality condition in the double-flow gas-liquid membrane contactor system of the
case with λm 6= λn is verified as follows:

ηoDa

∫ ηi

0

[
var f

2

LDa

]
Sa,iSa,iηaFa,jFa,jdηa +

ηiDb
H

∫ 1−ηo

0

[
vbr2

f

LDb

]
Sb,iSb,j(1− ηb)Fb,iFb,jdηb = 0 (30)

The dimensionless inlet and outlet stream concentrations expanded to the sum of an
infinite series according to Equations (14) and (15) with the use of boundary conditions as

ψa(η, 0) = ∑∞
m=0Sa,mFa,m(η) = ψai (31)

ψb(η, 0) = ∑∞
m=0Sb,mFb,m(η) = ψbi (32)

Multiplying both sides of Equations (31) and (32) at ξ = 0 by Sa,nFa,nηoηaDa(var2
f /LDa)

and Sa,nFa,n[ηi(1− ηb)DbK
′
ex/H](vbr2

f /LDb), respectively, and integrating summing to-
gether to obtain the general expression for the expansion coefficients in the following
relationship accordingly

ηoDa
∫ ηi

0 ηa

[
var2

f
LDa

]
Sa,nFa,nψaidηa +

ηi DbK
′
ex

H
∫ 1−ηo

0 (1− ηb)

[
vbr2

f
LDb

]
Sb,nFb,nψbidηb

= ηoDa
∫ ηi

0 ηa

[
var2

f
LDa

]
Sa,nFa,n ∑∞

m=0 Sa,mFa,mdηa +
ηi DbK

′
ex

H
∫ 1−ηo

0 (1− ηb)

[
vbr2

f
LDb

]
Sb,nFb,n ∑∞

m=0 Sb,mFb,mdηb

(33)
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The summation terms in Equation (33) were dropped out due to using the orthogonal-
ity condition

ηoDa
∫ ηi

0 ηa

[
var2

f
LDa

]
Sa,nFa,nψaidηa +

ηi DbK
′
ex

H
∫ 1−ηo

0 (1− ηb)

[
vbr2

f
LDb

]
Sb,nFb,nψbidηb

= ηoDa
∫ ηi

0 ηa

[
var2

f
LDa

]
S2

a,nF2
a,ndηa +

ηi DbK
′
ex

H
∫ 1−ηo

0 (1− ηb)

[
vbr2

f
LDb

]
S2

b,nF2
b,ndηb

(34)

Substitution of Equation (25) to replace Sb,n into Equation (34) and dividing Sa,nηoDa
result in

∫ ηi
0 ηa

[
var2

f
LDa

]
Fa,nψaidηa +

ηi Db

[
δ F
′
a,n(ηi)+ε r f Fa,n(ηi)

]
ηo Daε r f Fb,n(1−ηo)

∫ 1−ηo
0 (1− ηb)

[
vbr2

f
LDa

]
Fb,nψbidηb

= Sa,n

{∫ ηi
0 ηa

[
var2

f
LDa

]
F2

a,ndηa +
ηi Db H

[
δ F
′
a,n(ηi)+ε r f Fa,n(ηi)

]2

ηo DaK′exε2r2
f F2

b,n(1−ηo)

∫ 1−ηo
0 (1− ηb)

[
vbr2

f
LDb

]
F2

b,ndηb

} (35)

The expansion coefficient was thus obtained at ξ = 0 as follows:

Sa,n =

∫ ηi
0 ηa

[
var2

f
LDa

]
Fa,nψaidηa +

ηi Db

[
δ F
′
a,n(ηi)+ε r f Fa,n(ηi)

]
ηo Dbε r f Fb,n(1−ηo)

∫ 1−ηo
0 (1− ηb)

[
vbr2

f
LDb

]
Fb,nψbidηb

∫ ηi
0 ηa

[
var2

f
LDa

]
F2

a,ndηa +
ηi Db H

[
δ F′a,n(ηi)+ε r f Fa,n(ηi)

]2

ηo DaK′exε2r2
f F2

b,n(1−ηo)

∫ 1−ηo
0 (1− ηb)

[
vbr2

f
LDb

]
F2

b,ndηb

(36)

Similarly, the boundary conditions at ξ = 1 were expressed in terms of infinite series
with the use of Equations (14) and (15)

ψa(ηa, 1) = ∑∞
m=0Sa,mFa,meλm (37)

ψb(ηb, 1) = ∑∞
m=0Sb,mFb,meλm (38)

Manipulating both sides of Equations (37) and (38) at ξ = 1 and performing the same
procedure at the boundary condition at ξ = 0 gives the following relationship of the general
expression for the expansion coefficients as∫ ηi

0 ηa

[
var2

f
LDa

]
Fa,nψa(ηa, 1)dηa +

ηi Db

[
δ F
′
a,n(ηi)+ε r f Fa,n(ηi)

]
ηo Daε r f Fb,n(1−ηo)

∫ 1−ηo
0 (1− ηb)

[
vbr2

f
LDb

]
Fb,nψb(ηb, 1)dηb

= Sa,n

{∫ ηi
0 ηa

[
var2

f
LDa

]
F2

a,ndηa +
ηi Db H

[
δ F
′
a,n(ηi)+ε r f Fa,n(ηi)

]2

ηo DaK′exε2r2
f F2

b,n(1−ηo)

∫ 1−ηo
0 (1− ηb)

[
vbr2

f
LDb

]
F2

b,ndηb

} (39)

or the expansion coefficient at ξ = 1 was given by

Sa,n = e−λn

∫ ηi
0 ηa

[
var2

f
LDa

]
Fa,nψa(ηa, 1)dηa +

ηi Db

[
δ F
′
a,n(ηi)+ε r f Fa,n(ηi)

]
ηo Daε r f Fb,n(1−ηo)

∫ 1−ηo
0 (1− ηb)

[
vbr2

f
LDb

]
Fb,nψb(ηb, 1)dηb

∫ ηi
0 ηa

[
var2

f
LDa

]
F2

a,ndηa +
ηi Db H

[
δ F′a,n(ηi)+ε r f Fa,n(ηi)

]2

ηo Daε2r2
f F2

b,n(1−ηo)

∫ 1−ηo
0 (1− ηb)

[
vbr2

f
LDb

]
F2

b,ndηb

(40)

Both numerators of the expansion coefficients Sa,n are equal, and equating
Equations (36) and (40) at both inlet and outlet of the feed stream in the gas-liquid mem-
brane contactor to give∫ ηi

0 ηa

[
var2

f
LDa

]
Fa,nψaidηa +

ηi Db

[
δ F
′
a,n(ηi)+ε r f Fa,n(ηi)

]
ηo Daε r f Fb,n(1−ηo)

∫ 1−ηo
0 (1− ηb)

[
vbr2

f
LDb

]
Fb,nψbidηb

= e−λn

{∫ ηi
0 ηa

[
var2

f
LDa

]
F2

a,ndηa +
ηi Db H

[
δ F
′
a,n(ηi)+ε r f Fa,n(ηi)

]2

ηo DaK′exε2r2
f F2

b,n(1−ηo)

∫ 1−ηo
0 (1− ηb)

[
vbr2

f
LDb

]
F2

b,ndηb

} (41)
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Now, the outlet concentrations on the right-hand side of Equation (41) may be ex-
pressed according to Equations (14) and (15) for concurrent-flow operations as follows:

ψa(η, 1) = ∑∞
q=0Sa,qFa,qe−λq (42)

ψb(η, 1) = ∑∞
q=0Sb,qFb,qe−λq (43)

Substitutions of Equations (42) and (43) into Equation (41) with the use of
Equation (25) give

ψai
∫ ηi

0 ηa

[
var2

f
LDa

]
Fa,ndηa +

ηi Db

[
δ F
′
a,n(ηi)+ε r f Fa,n(ηi)

]
ψbi

ηo Daε r f Fb,n(1−ηo)

∫ 1−ηo
0 (1− ηb)

[
vbr2

f
LDb

]
Fb,ndηb

= ∑∞
q=0 Sa,qeλq−λn

{∫ ηi
0 ηa

[
var2

f
LDa

]
Fa,nFa,qdηa

+
ηi Db H

[
δF
′
a,n(ηi)+εr f Fa,n(ηi)

] [
δF
′
a,q(ηi)+εr f Fa,q(ηi)

]
ηo DaK′exε2r2

f Fb,n(1−ηo)Fb,q(1−ηo)

∫ 1−ηo
0

[
vbr2

f
LDb

]
(1− ηb)Fb,nFb,qdηb

} (44)

The expansion coefficients Sb,q are obtained by following the same derivation proce-
dure [37] with integrating Equation (44) with the aid of Equations (14) and (15) once Sa,n
was calculated as shown in Equation (25) by acquiring the relationship between Sa,n and
Sb,n as follows:

(I) When n = 0

Gzaη2
i ψai

2 + Gzbηi Daψbi
2ηo Db

= Sa,0

(
Gzaη2

i
2 + Gzbηi Da H

2ηo DbK′ex

)
+∑∞

q=1 Sa,q
ηie

λq

λq

{
F
′
a,q(ηi) +

Da H
[
δF
′
a,q(ηi)+εr f Fa,q(ηi)

]
DbK′exεr f

F
′
b,q(1−ηo)

Fb,q(1−ηo)

} (45)

(II) When n 6= 0, n = q

ψai
λn

ηiF
′
a,n(ηi) +

ψbiηi Db

[
δF
′
a,n(ηi)+εr f Fa,n(ηi)

]
F
′
b,n(1−ηo)

λnDaεr f Fb,n(1−ηo)

= ∑∞
q=1 Sa,qηi

{[
∂F
′
a,n

∂λn
(ηi)Fa,n(ηi)−

∂Fa,n
∂λn

(ηi)F
′
a,n(ηi)

]
+

Db H
[
δF
′
a,n(ηi)+εr f Fa,n(ηi)

]2

DaK′exε2r2
f F2

b,n(1−ηo)

[
∂F
′
b,n

∂λn
(1− ηo)Fb,n(1− ηo)−

∂Fb,n
∂λn

(1− ηo)F
′
b,n(1− ηo)

]} (46)

(III) When n 6= 0, n 6= q

ψai
λn

ηiF
′
a,n(ηi) +

ψbiηi Db

[
δF
′
a,n(ηi)+εr f Fa,n(ηi)

]
F
′
b,n(1−ηo)

λnDaεr f Fb,n(1−ηo)

= Sa,0
ηie−λn

λn

{
F
′
a,n(ηi) +

Db H
[
δF
′
a,n(ηi)+εr f Fa,n(ηi)

]
DaK′exεr f

F
′
b,n(1−ηo)

Fb,n(1−ηo)

}

+∑∞
q=1 Sa,q

ηie
λq−λn

λn−λq

{[
F
′
a,n(ηi)Fa,q(ηi)− Fa,n(ηi)F

′
a,q(ηi)

]
+

Db H
[
δF
′
a,n(ηi)+εr f Fa,n(ηi)

] [
δF
′
a,q(ηi)+εr f Fa,q(ηi)

]
DaK′exε2r2

f

[
F
′
b,n(1−ηo)

Fb,n(1−ηo)
−

F
′
b,q(1−ηo)

Fb,q(1−ηo)

]}
(47)

2.2. Countercurrent-Flow Operations

The governing equations of mass transfer for describing countercurrent-flow opera-
tions are exactly the same as that in concurrent-flow operations of Equations (3) and (4), ex-
cept for the velocity distribution of Equation (2) and the boundary condition of Equation (7)
being replaced by
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vb(ηb) =
−2vb[(

2
η2

m
− 3
)
+ η2

o

][η2
o − (1− ηb)

2 + 2ln
(

1− ηb
ηo

)]
(48)

ψb(ηb, 1) = ψbi (49)

By following the same derivation performed in the previous section of concurrent-
flow operations, the results of the expansion coefficient of Sa,n and Sb,n can be obtained
as follows:

(I) When n = 0

Gzaη2
i ψai

2 + Gzbηi Daψbi
2ηo Db

= Sa,0

[
Gzaη2

i
2 + Gzbηi Da H

2ηo DbK′ex

]
+∑∞

q=1 Sa,q
ηi
λq

{
F
′
a,q(ηi)−

eλq Da H
[
δF
′
a,q(ηi)+εr f Fa,q(ηi)

]
DbK′exεr f Fb,q(1−ηo)

F
′
b,q(1− ηo)

} (50)

(II) When n 6= 0 and n = q

e−λn ψai
λn

ηiF
′
a,n(ηi)−

ψbiηi Db

[
δF
′
a,n(ηi)+εr f Fa,n(ηi)

]
F
′
b,n(1−ηo)

λnDaεr f Fb,n(1−ηo)

= ∑∞
q=1 Sa,qηi

{[
∂F
′
a,n

∂λn
(ηi)Fa,n(ηi)−

∂Fa,n
∂λn

(ηi)F
′
a,n(ηi)

]
−

Db H
[
δF
′
a,n(ηi)+εr f Fa,n(ηi)

]2

DaK′exε2r2
f F2

b,n(1−ηo)

×
[

∂F
′
b,n

∂λn
(1− ηo)Fb,n(1− ηo)−

∂Fb,n
∂λn

(1− ηo)F
′
b,n(1− ηo)

]} (51)

(III) When n 6= 0 and n 6= q

e−λn ψai
λn

ηiF
′
a,n(ηi)−

ψbiηi Db

[
δF
′
a,n(ηi)+εr f Fa,n(ηi)

]
F
′
b,n(1−ηo)

λnDaεr f Fb,n(1−ηo)

= Sa,0
ηi
λn

{
F
′
a,n(ηi)−

e−λn Db H
[
δF
′
a,n(ηi)+εr f Fa,n(ηi)

]
DaK′exεr f Fb,n(1−ηo)

F
′
b,n(1− ηo)

}

+∑∞
q=1 Sa,q

ηi
λn−λq

{[
F
′
a,n(ηi)Fa,q(ηi)− Fa,n(ηi)F

′
a,q(ηi)

]
−

eλq−λn Db H
[
δF
′
a,n(ηi)+εr f Fa,n(ηi)

] [
δF
′
a,q(ηi)+εr f Fa,q(ηi)

]
DaK′exε2r2

f

[
F
′
b,n(1−ηo)

Fb,n(1−ηo)
−

F
′
b,q(1−ηo)

Fb,q(1−ηo)

]}
(52)

2.3. Absorbent Efficiency in the Gas/Liquid Membrane Absorption System

The local Sherwood number in the absorbent stream is defined by

Shbξ =
kbξ Deq,b

Db
(53)

in which and Deq,b = 2(r f − ro) is the equivalent diameter of the shell side and the local
mass transfer coefficient kbξ of gas stream is defined by

kbξ =
Db
r f

∂ψb(1− ηo, ξ)/∂ηb

ψb(1− ηo, ξ)− ψb(ξ)
(54)

The final expression of the local Sherwood number is obtained in Equation (55)

Shbξ =
kbξ Deq,b

Db
=

2(1− ηo)∑∞
m=1 Sb,mF

′
b,m(1− ηo)eλmξ

∑∞
m=1 Sb,m

[
Fb,m(1− ηo)− 2ηo

Gzbλm
F′b,m(1− ηo)

]
eλmξ

(55)
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Therefore, the average Sherwood number can be obtained as

Shb =
∫ 1

0
Shbξ dξ =

∫ 1

0

2(1− ηo)∑∞
m=1 Sb,mF

′
b,m(1− ηo)eλmξ

∑∞
m=1 Sb,m

[
Fb,m(1− ηo)− 2ηo

Gzbλm
F′b,m(1− ηo)

]
eλmξ

dξ (56)

The absorption flux J and absorption efficiency IM are defined by the total amount of
the CO2 transferred from the fiber cell to the shell side per unit area, and the percentage
of the initial CO2 left in the initial gas phase, respectively, which can be determined using
Equations (57) and (58) as follows

J = Qa
(
Cai − Cae

)
/N(2πroLb) (57)

IM =
Cai − Cae

Cai
× 100% (58)

3. Membrane Modularization and Experimental Setup

The experimental results were monitored to validate the theoretical predictions derived
from the mathematical models derived in previous section. A photo of a more detailed
configuration of the concentric-tube membrane contactor module is presented in Figure 4.
A gas mixture containing CO2 and N2 was introduced from the well gas mixing tank,
where N2 and CO2 feed in through the tube side, while 30 wt% MEA (5.0× 10−3 mol/ cm3)
solution was chosen and regulated by a flow meter (MB15GH-4-1, Fong-Jei, New Taipei,
Taiwan) between 5.0~10.0 cm3/s (5.0, 5.67, 8.33, 10.0 cm3/s) to supply the liquid absorbent
flowing into the shell side from the reservoir. The positive pressure difference of the MEA
solution side was kept higher than that of the CO2/N2 gas mixture side to avoid bubbling.
The CO2/N2 gas feed flow rates introduced from the gas mixing tank (EW-06065-02, Cole
Parmer Company, Vernon Hills, IL, USA) and regulated by using the mass flow controller
(N12031501PC-540, Protec, Brooks Instrument, Hatfield, PA, USA) were controlled at
3.33 cm3/s with three inlet CO2 concentrations of 30%, 35%, and 40%, respectively. The CO2
concentration in the inlet and outlet streams was collected and measured for comparisons
using gas chromatography (Model HY 3000 Chromatograp, China Corporation, New Taipei,
Taiwan). The experimental apparatus of the CO2 absorption using MEA absorbent flowing
into the hydrophobic alumina hollow-fiber membrane modules with a porosity of ε = 0.55,
a thickness of δ = 250 µm, and a nominal pore size of 0.2 µm as illustrated in Figure 5.
Figure 5a,b illustrates schematic representations of the hollow-fiber gas-liquid membrane
contactor systems for concurrent- and countercurrent-flow operations, respectively, in
which the MEA solution passes through the shell side and the gas feed flows into the
tube side.
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Figure 5. Schematic diagram of the experimental setup for CO2 absorption with MEA by hollow-
fiber gas–liquid membrane contactors. (a) Concurrent-flow operation; (b) Countercurrent-flow
operation. (A) Hollow fiber membrane module; (B) Flow meter; (C) Pump; (D) Mass flow controller;
(E) Mixer; (F) Gas cylinder; (G) Thermostatic tank; (H) Chromatograph; (I) Beaker; (J) Monitor;
(K) Temperature indicator.

The parameters that include the volumetric flow rate of both the gas feed and liquid
absorbent (Qa and Qb ), membrane contactor module (rs , ri , ro , L and N), permeability of
membrane (ε), solute diffusivity both in gas feed and liquid absorbent (Da and Db ), and
Henry’s law constant (H ) were provided in this study. The inner radius of the module
shell is of rs = 0.0075 m, and the inner and outer radius of the fiber cell are ri = 0.0004 m
and ro = 0.00065 m, respectively. The inorganic hydrophobic membrane was used in the
experiments ro = 0.00065 m for its superior chemical resistance and thermal stability. The
alumina hollow fiber membranes were prepared in a combined dry-wet spinning and
phase inversion method followed by a sintering process. The hollow fiber precursors were
fabricated by spinning alumina slurry comprised of alumina powders (0.7 µm, α-Al2O3,
Alfa Aesar, 99.9% metal basis), N-Methyl-2-pyrrolidone (NMP, TEDIA, Echo Chemical,
Taiwan, purity > 99%), polyethersulfone (PES, Veradel A-301, SOLVAY, Trump Chemical,
Taiwan, amber color), and polyethyleneglycol 30-dipolyhydroxystearate (Arlacel P135,
Croda Taiwan, Taiwan, molecular weight: 5000 g mol−1), which are used as the main
ceramic materials, solvent, binder, and dispersant, respectively. The Al2O3:NMP:PES:P135
molar ratio in the slurry was 5:4:1:0.1. Briefly, the P135 paste was first added to the NMP
solution and vigorously stirred until a homogenous solution was formed. Next, the alumina
powder was gradually added to the solution and stirred well. Subsequently, PES pellets
were added to the solution and stirred until the PES was completely dissolved. Finally, a
homogenous spinning slurry was obtained. In our spinning process, deionized water (DI)
was used as a non-solvent for phase inversion purposes.
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The as-prepared slurry and DI water were coextruded through a tube-in-orifice spin-
neret with an inner diameter of 0.7 mm and an outer diameter of 2.0 mm. The orifice side
and tube side were for slurry with a flow rate of 15 mL/min and DI water with a flow
rate of 10 mL/min, respectively. The nascent fiber passed through an air gap of 10 cm and
went into a coagulation bath of DI water for external solvent exchange. The air gap was to
allow the phase inversion to occur first from the inner surface of the nascent fiber. Rapid
precipitation occurs at the inner fiber surface, resulting in long fingers. Usually, the opening
pores of finger-like structures are larger than the voids (pores for ceramic membranes) of
particle packing. Those larger pores were not favored in this study. Thus, by introducing
the air gap, most solvents were exchanged, and the solidification of the slurry phase was
almost done before entering the coagulation bath. This could greatly reduce the formation
of finger-like structures of fibers starting from the outer surface. A coagulation bath was
used to make sure all solvents were exchanged and the precipitation of the polymer of
the slurry was completed. The membrane precursors were obtained after 2-day water
immersion for completed polymer precipitation and were then debinded at 480 ◦C for 12 h
(ramp rate of 1.6 ◦C min−1) and sintered at 1400 ◦C for 2 h (ramp rate of 2 ◦C min−1) to
form porous alumina hollow fiber membranes in a shell-and-tube type glass module. The
as-prepared porous alumina hollow fiber membranes were first cut to 0.17 m in length. The
alumina hollow fiber membrane sets with different packing densities can be obtained by
encapsulating different numbers of fibers. Three membrane sets with implementing 7 fiber
cells and 19 fiber cells, respectively, were fabricated in this work. The fiber cells were fixed
with a particular arrangement in the module by sealing both ends of the tube side using
thermoset epoxy. The pinch clamps and tubing for the membrane module are shown in
Figure 6.
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Figure 6. Details of the configuration of the hollow fiber membrane module. (a) Fiber cell; (b) A bunch
of fiber cells in a circular tube; (c) Wrapped cap; (d) Circular hollow-fiber module.

4. Results and Discussion
4.1. Outlet Concentration Distributions

Following the mathematical treatment performed in the previous works [26,36], the
procedure for calculating the theoretical values of the dimensionless outlet average con-
centration, absorption rate, and absorption efficiency are described as follows. First, for
concurrent-flow operations, the eigenvalues λm (λ1,λ2, . . . ., λm, . . . .) in the membrane
contactor are solved from Equation (26), the associated eigen-functions the associated eigen-
functions (Fa,m(ηa) and Fb,m(ηb), m = 0, 1, 2, . . . .) obtained from Equations (23) and (24)
with the coefficients in Equations (28) and (29). Next, combined with the expansion co-
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efficients (Sa,m and Sb,m, m = 0, 1, 2, . . . .), as shown in Equations (40) and (45)–(47),
the concentration distribution of gas feed or liquid absorbent, ψa(ηa, ξ) and ψb(ηb, ξ), are
readily obtained in Equations (14) and (15). Lastly, the radially averaged concentrations
for absorbent and gas streams of both concurrent- and countercurrent-flow operations are
calculated from Equations (53) and (54), while the absorption rate and absorption efficiency
are calculated from Equations (44), (57), and (58), respectively. Some results for using the
19 fiber cell module under countercurrent-flow operations as well as the dimensionless
outlet concentration are shown in Table 1. Only the first three eigenvalues, as well as
their corresponding eigenfunctions, are necessary to be included during the calculation
procedure due to rapid convergence, as indicated in Table 1. Figure 7a,b shows the dimen-
sionless averaged outlet CO2 concentration ψae profiles for various inlet CO2 concentrations
and the mass-transfer Graetz number Gzb of MEA absorbent under both concurrent- and
countercurrent-flow operations with implementing N = 7 fiber cells as an illustration. Note
that the dimensionless averaged outlet concentration distribution increased with the inlet
CO2 concentration. The comparison reveals that the higher the absorbent Graetz number
Gzb of MEA absorbent, the lower the averaged outlet CO2 concentration found in both
calculation and measurement, as predicted. The results show that a higher driving-force
concentration gradient is kept between two phases under a larger inlet CO2 concentration,
leading to a higher absorption rate for both flow patterns. One can find that the dimen-
sionless average outlet concentration of the countercurrent-flow operations is lower than
that of concurrent-flow operations. Thus, the descending absorption flux along the flowing
channel for the concurrent-flow operations is thus confirmed compared to a higher total
absorption rate in the countercurrent-flow operations.
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Figure 7. Effects of Gzb and inlet CO2 concentration on outlet CO2 concentration (Gza = 710).
(a) Concurrent-flow operations; (b) Countercurrent-flow operations.

Figure 8 presents the dependence of the Sherwood number Shb on the absorbent
Graetz number Gzb. The averaged Sherwood number Shb plays a significant role in deter-
mining the CO2 absorption rate when considering mass transfer behavior. The theoretical
average Sherwood numbers with the absorbent Graetz number Gzb in MEA absorbent as a
parameter, as shown in Figure 8.

The theoretical prediction Shb increases with an increase in the absorbent Graetz num-
ber for both concurrent- and countercurrent-flow operations, as presented in Figure 8. The
results show that the averaged Sherwood number Shb in countercurrent-flow operations is
higher than that in concurrent-flow operations. This result also confirms that the higher
mass-transfer coefficient is obtained in countercurrent-flow operations that come up with a
lower outlet CO2 concentration ψae. The value of the averaged Sherwood number Shb in
the countercurrent-flow configurations with a larger significant concentration gradient is
higher than that in the concurrent-flow configurations due to utilizing the driving-force
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concentration gradient more effectively. Notably, the implementing fibers significantly
increased the averaged Sherwood number Shb and the absorption rate for both modules
with implementing N = 7 fiber cells and N = 19 fiber cells, respectively. Despite the effect
on the number of fiber cells, the change in the flow patterns only led to a moderate effect
on the change in the Sherwood number.
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4.2. Absorption Flux and Absorption Efficiency

Theoretical predictions for the CO2 absorption flux versus the MEA absorbent Graetz
number with inlet CO2 concentration and flow pattern as parameters under Qa = 3.33 cm3/s,
as indicated in Figure 9. The experimental results of the absorption flux shown in Figure 9
prove the validity by defining the accuracy deviation E of the theoretical predictions from
the experimental results are within an acceptable range, as indicated in Table 2, with the
definition as follows:

E(%) =
1

Nexp
∑Nexp

i=1

∣∣∣∣∧Ji − Ji

∣∣∣∣
∧
Ji

(59)

where
∧
Ji indicates the theoretical prediction of J while Nexp and Ji are the number of the

experimental measurements and the experimental data of J, respectively. The accuracy
derivations between the experimental results and theoretical predictions for concurrent-
and countercurrent-flow operations in Figure 9 are 4.10× 10−2 ≤ E ≤ 1.50× 10−2 and
1.40 × 10−2 ≤ E ≤ 9.0 × 10−1, respectively, as presented in Table 2. Both qualitative
and quantitative agreements were achieved between the theoretical predictions and the
experimental results of this study.

Table 2. The accuracy of the experimental results.

CO2 (%) E (%)

N = 7 N = 19

Concurrent Countercurrent Concurrent Countercurrent

30 1.90 1.30 4.10 0.90
35 2.30 1.00 1.50 1.10
40 1.40 1.40 1.50 0.90
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Figure 9. Effects of inlet CO2 concentration, flow pattern and Gzb on CO2 absorption flux.

The increase of the absorbent Graetz number creates the positive effect not only en-
hancing the absorption flux but also reducing the outlet CO2 concentration in the fiber cells,
as indicated from Figure 9. This absorption flux may be attributed to the increasing MEA
absorbent Graetz number and thus the convective mass-transfer coefficient to suppress
the disadvantage effect of concentration polarization on the membrane surface. A lower
mass-transfer resistance and a larger driving-force concentration gradient between both
sides of the membrane surfaces were achieved.

Comparisons were made on theoretical predictions of absorption efficiencies between
the hollow fiber modules with implementing N = 7 fiber cells and N = 19 fiber cells under
both concurrent- and countercurrent-flow operations, respectively, as shown in Figure 10.
The results show that the absorption efficiency increases with the increase of the MEA
absorbent Graetz number but decreases with the inlet CO2 concentration, and the extent of
the absorption efficiency increment is more significant in countercurrent-flow operations.
Notice that the effect of the number of fiber cells on absorption efficiency concludes that
there is a larger absorption efficiency with implementing more fiber cells into hollow fiber
modules. The absorption efficiency of gas/liquid contactor is improving when Gzb is
increasing, as confirmed in Figure 10 as well as in the reported gas absorption processes.
The present work extends the existing study, except for using hollow-fiber membrane
contactors instead of parallel-plate membrane contactors [36] under the same inlet CO2
concentrations (30%, 35%, and 40%). The comparison of absorption efficiencies in both
modules indicated that the present design of using hollow-fiber membrane contactors is
preferred. Overall, the performance of the hollow fiber membrane absorption module is
enhanced by implementing fiber cells into the shell tube. In other words, inserting more
fiber cells into the shell tube gives a higher value of absorption efficiency, which reflects
that a more effective device performance in increasing the total absorption rate is expected.
Although the absorption flux of the operations with a 40% inlet CO2 concentration in
Figure 9 is higher than that of a 30% inlet CO2 concentration, the absorption efficiency with
an inlet CO2 concentration is in reverse order. The results also indicate that the absorption
efficiency in the countercurrent-flow configuration with a more significant concentration
gradient is higher than in the concurrent-flow configuration.
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5. Conclusions

A hollow-fiber membrane module for CO2 absorption that implemented various
numbers of fiber cells to enhance the absorption flux was investigated theoretically and
experimentally. The theoretical predictions of concentration distributions of CO2 absorption
were developed in the form of mathematical formulations by making mass balances of both
gas feed stream and MEA absorbent with the absorbent Greatz number as a parameter.
This study further examines device performance by evaluating the absorption flux J and
absorption efficiency IM of the hollow fiber module by implementing the fiber cells into the
MEA absorbent stream, which reached a significant achievement under both concurrent-
and countercurrent-flow operations, as demonstrated in Figures 9 and 10, respectively. The
theoretical predictions of the averaged Sherwood number and absorption efficiency accom-
plished in the present study were predicted analytically without the aid of experimental
runs, as shown in Equations (56) and (58), respectively. The comparisons of the absorption
efficiency were drawn to the following conclusions:

• The absorption increases with the increase of the MEA absorbent Graetz number.
• The absorption efficiency is obtained by implementing fiber cells where the absorption

rate enhancement of N = 19 fiber cells is higher than that of N = 7 fiber cells but
increases with decreasing the inlet CO2 concentration.

• The absorption flux increases with an increase in the number of fiber cells and the
inlet CO2 concentration.

• A more considerable absorption flux is achieved in countercurrent-flow operations
than that in concurrent-flow operations due to utilizing the driving-force concentration
gradient more effectively.

• Fore eigenvalues were used in the calculation procedure, and a good approximation
was obtained, as indicated in Table 1. The results show that the agreement is fairly
good in predicting the theoretical predictions, with an accuracy of 4.10× 10−2 ≤ E ≤
9.0× 10−1 for the absorption flux.

It is worth noting that this theoretical modeling may also be applied to other hollow
fiber modules in membrane separation processes that have not previously been studied
and verified by experimental results.
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Abbreviations

C concentration in the stream (mol/m3)
Da ordinary diffusion coefficient of CO2 in N2 (m2/s)
Db ordinary diffusion coefficient of CO2 in MEA (m2/s)
Deq,b the equivalent diameter of channel b (m)
dmn coefficients in the eigenfunction Fa,m
E the accuracy of the experimental results
emn coefficient in the eigenfunction Fb,m
Fm eigenfunction associated with eigenvalue λm
Gm function defined during the use of orthogonal expansion method
Gza Graetz number of gas feed stream
Gzb absorbent Graetz number
H Henry’s law constant
IM absorption efficiency
kbξ local mass transfer coefficient for liquid phase (m/s)
L channel length (m)
N the number of fiber cells
Nexp the number of experimental measurements
Q volumetric flow rate (m3/s)
r transversal coordinate (m)
rf free surface radius (m)
ri fiber inside radius (m)
ro fiber outside radius (m)
rs shell outside radius (m)
Sm expansion coefficient associated with eigenvalue λm
Shbξ local Sherwood number
Shb averaged Sherwood number
v velocity distribution of fluid (m/s)
v averaged velocity of fluid (m/s)
z longitudinal coordinate (m)
Greek letters
δ thickness of the porous membrane (m)
ε membrane porosity
ϕ packing density
η dimensionless transversal coordinate, r/rf
λm eigenvalue
ξ dimensionless longitudinal coordinate, z/L
ψ dimensionless concentration
ψ averaged dimensionless concentration
J absorption flux (mol/m2 s)
Jj experimental data of J (mol/m2 s)
Ĵj theoretical prediction of J (mol/m2 s)
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Superscripts and Subscripts
a in the gas feed flow channel
b in the liquid absorbent flow channel
i at the inlet
e at the outlet
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