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Abstract: In this study, it is aimed to investigate the potential of electrodialysis bipolar membrane
(EDBM) systems for the recovery of the concentrate originating from an organized industrial estate
(OIE) wastewater treatment system with reverse osmosis (RO). Acids and bases were obtained from a
pilot-scale treatment plant as a result of the research. Furthermore, the sustainability and affordability
of acids and bases obtained by EDBM systems were investigated. Six cycles were carried out in
continuous-flow mode with the EDBM system as batch cycles in the disposal of the concentrate
and the production of acids and bases with the EDBM system. For each cycle, the EDBM system
was operated for 66, 48, 66, and 80 min, respectively, and the last two cycles were operated for
a total of 165 min (70 + 90) with 5 min of waiting. In the EDBM system, a working method was
determined such that the cycle flow rate was 180 L/hour, energy to be given to the system was 25 V,
and the working pressure was in the range of 0.8–2.5 bar. In the six cycles with the EDBM system,
the concentrate, acid and base, conductivity, pH, and pressure increase values were investigated
depending on time. Throughout all these studies, the cycles were continued over the products formed
in the acid and base chamber. As a result of all the cycles, acid (HCl) production at a level of 1.44%
and base (NaOH) production at a level of 2% were obtained.

Keywords: electrodialysis bipolar membrane; concentrate; acid recovery; base recovery; membrane

1. Introduction

Expansions of population and economic development have led to an increasing fresh-
water deficit [1]. Water and wastewater treatment efficiency, including recovery of resources,
has become a top factor in the emergence of sustainable procedures for effective brine re-
covery and valorization [2]. This should result in the creation of new or better innovative
water-treatment methods in real-world settings. Desalination technologies have received
significant attention in recent years as a vital option to address water scarcity challenges all
over the world [3]. For the time being, the widely known and used desalination technolo-
gies are reverse osmosis (RO), nanofiltration (NF), electrodialysis (ED), multistage flash
distillation, and multiple-effect distillation. RO contributes about 65% of total installed
desalination capacity worldwide [4]. The handling/treatment of the concentrated brine
byproduct, on the other hand, is a key challenge in the use of RO desalination. The recovery
rate of industrial RO desalination systems is normally about 50%. Therefore, over half of the
feed water is released as saline into the sea or adjacent regions, with serious environmental
consequences [5]. Membrane clogging is another issue with RO desalination. This problem
occurs as a result of all strong acids (e.g., HCl or H2SO4) and bases (e.g., NaOH) utilized
to adjust pH values or reagents used for cleaning [6]. Electrodialysis bipolar membrane
(EDBM) is a technology that integrates bipolar membranes with traditional electrodialy-
sis [7]. EDBM is a promising method for treating and valorizing desalination brines by
producing acids and bases, which are valuable compounds in almost any desalination plant.
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EDBM has also been effectively utilized to produce or purify acids, as well as to adjust
pH during fermentation or chemical synthesis in biochemical and food processing [8–10].
Furthermore, there are some applications in the removal of heavy metals and exhaust
emissions [11–13].

Electrochemical processes such as ED and EDBM can contribute to soft-water produc-
tion and the evaluation of waste fluxes [14]. EDBM is a new technology that combines
the separation function of electrodialysis with water separation at the bipolar membrane
interface, which can convert salts into corresponding acids and bases without adding
external components [15]. In this system, anions and cations are separated from wastewater
separately and combined with H+ and OH− ions via bipolar membranes to form acidic
and alkaline solutions [16].

Briefly, the advantages of the ED system are: a small and simple pre-treatment is
sufficient before the process; low operating pressure; no need for antiscalant (membrane
protector); long membrane life; low operating and maintenance costs; effective on many
ion forms; efficacious in waters with high ion content (10,000 mg/L TDS); obtaining
output product in the order of 90% of the input-product water; 10% concentrate formation
(advantage over RO); it is approximately 5 times longer-lasting than reverse osmosis
(reverse osmosis, 1–2 years; ED, 8–10 years); two separate collections of concentrated
products and ease of recovery; high selectivity for charged compounds. In addition to these
huge benefits of EDBM, it has some cons, such as: electricity consumption; the need for
expertise, qualified and trained personnel; ineffectiveness on microorganisms and most
anthropogenic organic pollutants [17].

The EDBM process has been widely used for many years in the recovery of process
water [18,19]. Xu et al. (2022) used EDBM to produce acids and bases from brine-industry
wastewater. The maximum desalination, acid, and alkali production rates obtained in this
study were 0.304 mol/h, 0.114 mol/h, and 0.136 mol/h, respectively [20]. Yuzer et al. (2021)
used EDBM for wastewater and salt recovery in biologically treated textile wastewater.
They found that the acid, base, and wastewater produced by the EDBM process can be
reused in wet textile processes. [21]. Jiang et al. (2021) tested a combination of RO, ED,
and EDBM for salt recovery and acid/base production for the treatment of cold-rolling
wastewater. As a result of EDBM application, ED concentrated solution containing Na2SO4
was successfully desalinated for acid/base production and pure water production [22].
Rózsenberszki et al. (2021) used the bipolar membrane electrodialysis technique for itaconic
acid (IA) recovery from fermentation wastewater. Experimental results indicated that the
IA recovery rate/current efficiency was 74%/77% and 63/41% under the initial pH of 3.0
and 7.4, respectively [23]. Gössi et al. (2020) focused on the in situ recovery of carboxylic
acids from fermentation liquors via membrane-assisted reactive extraction using membrane
modules with enhanced stability [24]. Gao et al. (2021) used EDBM technology to treat
waste sodium sulfate containing lithium carbonate to convert low-value sodium sulfate
to high-value sulfuric acid and sodium hydroxide [25]. With EDBM, it is possible not
only to recover acid-base but also to recover many different compounds with economic
value. For example, Saabas et al. (2021) aimed to recover ammonia from simulated
membrane-contactor wastewater using EDBM. They recovered up to 68% of ammonia [26].
Kuldeep et al. (2021) used EDBM for sulfate recycling in metallurgical industries [27].

Sustainable production of pure chemicals is one of the main goals of EDBM today.
Based on this idea, Virag et al. demonstrated the development and optimization of a
continuous and simultaneous isolation process for three biophenols based on temperature-
shift adsorption. They concentrated the product and waste streams, recycled the solvent
in-line, and investigated their impact on the E factor, carbon footprint, and economic
sustainability of the process. As a result, they stated that the application of the hybrid
process consisting of printing technology and nanofiltration can be extended from complex
mixtures to the isolation of other natural compounds [28]. Carla et al., in their study, aimed
to isolate the mixture of enantiomers by means of a membrane electrodialysis cell as the
final step of a new technology to obtain dex-ibuprofen-enriched ibuprofen. They developed
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an electrodialysis cell consisting of four compartments separated by cation, anion, and
cation exchange membranes, allowing selective migration of ibuprofen by preventing its
dissociation on the electrodes. In fact, stainless-steel electrodes immersed in ammonium-
formate solutions were separated by cation exchange membranes from chambers containing
prophene (~200 ppm in ethanol, pH 6.81–6.34). The best separation performance was
achieved after 6 h of operation at 60 V with an anion exchange membrane that resulted in
up to 57% extraction of ibuprofen from the products of enzymatic esterification in ethanol
medium. The membrane allowed selective migration of both stereoisomers and negligible
amounts of ethyl esters. They argued that the presented approach of this research is
innovative as the electrodialysis process allows the design of an environmentally friendly
technology to be completed [29]. Levente et al. reported the characterization and an
easy fabrication method of nanocomposite anion exchange membranes (AEM) based on
modified graphene oxide (GO) and quaternized polybenzimidazole (PBI). PBI was chosen
for its outstanding thermal and mechanical stability and good film-forming properties.
They expected GO-polybenzimidazolium nanocomposite AEMs prepared in their study
to have improved mechanical and electrochemical properties. GO-polymer interactions,
the effects of filler loading (0.25–2.5%), GO distribution, and membrane morphology were
systematically investigated to reveal structure-property relationships. They also proposed
a Robeson-type plot for AEMs to compare commercial and published AEMs [30].

In this study, acid and base production studies were carried out from the concentrate
originating from the RO system by using an electrodialysis bipolar membrane (EDBM). It
was aimed to produce acids and bases with an economic value by disposing the concentrate
formed from the reverse-osmosis system, which is harmful to the environment. Thus,
the concentrate, which should be disposed of as hazardous waste, will be recycled in
order to approach zero waste. Thus, there will be a great economic gain for industries.
At the same time, by using the EDBM system for concentrate disposal, natural resources
will be preserved, and an environmentally friendly approach will be displayed. The
feasibility, sustainability, and economy of the concentrate, which is first disposed of with an
innovative technology, such as EDBM, and then the re-use of the acids and bases obtained
as a product in treatment plants or by transforming them into products used in the industry
will be demonstrated.

2. Materials and Methods
2.1. Wastewater Supply and Characteristics

The wastewater used in the study was supplied from the organized industrial estate
wastewater treatment plant (OIE WWTP) based in Bursa, Turkey, which treats 60,000 m3/day
of domestic and 40,000 m3/day of industrial wastewater. A total of 34,000 m3/day of industrial
wastewater originates from the textile industry, while the remaining 6000 m3/day arises from
other industries.

In the study, the wastewater given to the Advanced Pilot Wastewater Treatment Plant
(APWWTP) was obtained from the chlorine-contact tank outlet of the OIE WWTP. The
wastewater was read 3 times, and the average of the analysis results of the wastewater
taken from the outlet point is given in Table 1.

Table 1. Output values of OIE WWTP and pilot-plant processes.

Parameter OIE WWTP
Outlet

PSF
Outlet

MF
Outlet

UF
Outlet

RO
Outlet

pH 6.3 ± 0.15 8.06 ± 0.23 8.18 ± 0.21 8.24 ± 0.26 8.5 ± 0.12

Temperature (◦C) 22.5 ± 0.53 21.4 ± 0.56 24.7 ± 0.85 21.6 ± 0.53 22.4 ± 0.18

Conductivity
(µS/cm) 3906.0 ± 148 2750.0 ± 55.0 2760.0 ± 62.0 2760.0 ± 41.0 4510.0 ± 212.0

SS (mg/L) 48.7 ± 2.93 16.0 ± 0.92 6.0 ± 0.18 4.0 ± 0.13 4.0 ± 0.11

COD (mg/L) 105.1 ± 2.32 85.0 ± 1.54 100.0 ± 2.05 70.0 ± 1.85 106.0 ± 2.20
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2.2. Pilot WWTP Concentrate Production and Disposal System Equipment

Field studies were carried out at the APWWTP, with a capacity of 5 m3/h. APWWTP
used in the study encompasses pressure sand filter (PSF), TF-716 microfiltration (MF),
mini UF-4 ultrafiltration (UF), and TFZ 29000 reverse-osmosis (RO) systems. The concen-
trate resulting from the reverse-osmosis process is fed to the EDBM system for acid-base
production. The flow chart of the pilot plant is illustrated in Figure 1.

Figure 1. Flow chart of the pilot plant where the concentrate from the RO system and the acid-base
are obtained.

2.2.1. Pilot WWTP Concentrate Disposal System Equipment

Afterwards, the investigation of acid-base production with the obtained concentrate
was carried out in a pilot facility that enfolds FILMTEC NF-2540 nanofiltration (NF) and
electrodialysis bipolar membrane (EDBM) systems.

2.2.2. Nanofiltration (NF)

Nanofiltration has a pore diameter of approximately 0.001 µm. The molecular sepa-
ration limit of the membranes is between 180 and 2000 Da. Thus, components with this
molecular weight can be easily isolated from components with higher molecular weights.
The application pressure range is mostly 3–40 Bar. Many multivalent ions (such as sulfate-
carbonate, M+2) are retained in the membrane, owing to the molecular separation between
reverse osmosis and ultrafiltration, while diluted solutions of monovalent ions usually pass
through the membrane unhindered [31].

2.2.3. Electrodialysis Bipolar Membrane System (EDBM)

For the pilot study, the EDBM FT-ED 100 module, the membrane and spacers applied
in electrodialysis, were obtained from FUMA-TECH GmbH (Germany). Glass, tube, and
float-flow meters measuring the flow, as well as SEKO brand mechanical diaphragm dosing
pumps providing the flow, were obtained from a private company. In addition, MCH 34050
model direct-current power supply is used to supply current to the cell. The technical
specifications of the EDBM system are given in Table 2. The working cycle of the EDBM
system is illustrated in Figure 2.
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Table 2. Technical characteristics and specifications of the EDBM system.

Equipment Type Unit Number Specifications

System Capacity L/h/cell 10
180 L/h

(10 cells, 18 L/h)
System Pressure bar - 0.8 bar

Membranes
Membrane Size mm 10 160 × 160

Effective Membrane Area cm2 1 100

Membrane Cover - 20 PVC/PET
10 PE/PVDF

Electrode
- 1 Anode
- 1 Cathode

Figure 2. The operating cycle of the EDBM system [32].

2.2.4. EDBM System Performance Calculation

The formula applied while calculating the performance of the EDBM system is pro-
vided in Equation (1) [33,34].

Ie =
96500 ×

(
Vi × Ci − Vf × C f

)
Id × S × t

(1)

Ie: Available current efficiency)
Vi: Inlet volume of acid or base (Liters)
Ci: Concentration of input acid and base (equivalents/ L)
Vf: Final acid and base volume (Liters)
Cf: Final acid and base concentration (equivalents/ L)
Id: Current density (A/m2)
t: Times (s)
S: Active membrane area (m2).

2.3. Measurement and Analysis Methods

Some anions and cations in the concentrate prevent the EDBM system from working
efficiently. The results of the concentrate analysis and the scientific studies revealed that the
concentrate has M+2 valence ions, and these ions (especially Ca+2, Mg+2, and Ba+2) were
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determined to cause pressure rise and blockages in the EDBM system [35,36]. In addition,
it is known that anions (NO3

−, SO4
−2, and Cl−) in the concentrate, which are effective in

acid production, cause the formation of different acids.
In order to remove the M+2 valent metals contained in the obtained concentrate, while

the monovalent anions (NaCl, CaCl2) are removed by 20–80%, the nanofiltration (NF)
system, which removes the divalent anions (such as MgSO4) by 90–98%, has been added
to the pilot plant. Within the scope of this study, analyses were made to determine the
inlet wastewater characteristics, the efficiency of the plant by running the pilot plant, the
efficiency of the NF system, and the M+2 removal efficiency. Na+2, Ca+2, Mg+2, NO3

−,
SO4

−2, Si+2, Cl−, Fe+2, and Ba+2 analyses are made in accredited laboratories within
the scope of relevant standards in order to reveal the M+2 removal efficiency of the NF
system [35,36]. The analyses and related standards made within the scope of all studies are
given in Table 3.

Table 3. Wastewater analyses and methods made within the scope of the study.

Parameter Unit Method
RO Outlet Reinforced

with NaCl
NF System

Output
NF System

Output

(Concentrate) (8000 µS/cm) (Filtrate) (Concentrate)

pH SM 4500 H+B 8.85 - 8.22 8.34

Conductivity µS/cm SM 2510.B 4100 8000 7300 20,940

Na+2 mg/L * ISO 11885 ICP 686 1463 1211 3271.5

Ca+2 mg/L * ISO 11885 ICP 60 49.95 20,4 189

Mg+2 mg/L * ISO 11885 ICP 38.7 44.8 20.6 212

NO3
− mg/L * TS 6231 38.5 36.5 37.4 43.7

SO4
−2 mg/L * TS 5095 593 703.25 31.7 3699

Si+2 mg/L S.M 4500 SiO2.C 22.7 16.125 12 48.05

Cl− mg/L * SM 4500 Cl− B 689 2972.4 2927.5 3231.5

Fe+2 mg/L * ISO 11885 ICP - 0.84 0.04 4.5

Ba+2 mg/L * ISO 11885 ICP - <0.1 <0.1 <0.1

Colour Pt-Co SM 2120C - - 16.9 -

* Analyses made in accredited laboratories.

The conductivity value of the RO sourced concentrate was read in the range of about
4000 µS/cm. This value is not sufficient to enter the EDBM system. By adding synthetic
NaCl to the RO concentrate, the conductivity value was ameliorated from 4000 µS/cm to
8000 µS/cm, and 200 L NF filtrate was obtained by passing it through the NF system.

Samples of the concentrate originating from RO, the concentrate with NaCl added
(given to the NF system), the NF outlet concentrate originating from the NF system, and
the samples belonging to the NF outlet filtrate were analyzed in accredited laboratories,
and the analysis results are given in Table 3. Analyses were performed according to the
standart methods specified in Table 3.

Conductivity and pH parameters are the main variable parameters to reveal the
performance of the system [37,38]. Therefore, in the study, instantaneous conductivity,
pH, and pressure changes were measured at certain intervals after the EDBM system was
started. pH and conductivity measurements were made with the Hach HQ40D protractive
pH and conductivity meter. In the vicinity of the main reading module of the device,
there are CDC401033 conductivity probes with cables and a liquid-filled pH probe with
a PHC301033 cable. The monitoring of pressure changes was carried out with pressure
gauges on the system.
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In the pilot plant studies, approximately 1 ton of water treated with conventional
treatment methods was taken from the WWTP chlorination unit outlet by means of a sub-
mersible pump and given to the pilot WWTP. After the pilot plant was run, samples were
taken from the inputs and outputs of the PSF, MF, UF, and RO systems in order to demon-
strate the efficiency of all equipment in the system, and pH, temperature, conductivity, SS,
and COD analyses were carried out.

After the concentrate production and demonstrating system efficiency in the pi-
lot plant, acid and base production was started from the concentrate with the NF and
EDBM system.

2.4. Determination of EDBM System Operating Conditions

The EDBM system was operated in an intermittent cycle for the disposal of the
concentrate and the production of acids and bases. In the EDBM system, a working method
was determined such that the cycle flow rate was 180 L/hour, the energy to be given to
the system was 25 V, and the working pressure was in the range of 0.8–2.5 bar. In addition,
in the studies conducted with the EDBM system, it was attempted to keep the average
conductivity of the feed water in the range of 6000–7400 µS/cm at the beginning of the
cycles. The experiments were carried out at ambient temperature.

In the study, 6 cycles were performed in continuous flow mode in a three-chamber
electrodialysis cell with a bipolar membrane. The EDBM system for each cycle was 66, 48,
66, 80, 70, and 90 min, respectively.

In the experiments, conductivity, pH, pressure, and current values were considered as
variables. The conductivity and pH values of acids, bases, salts, and Na2SO4 formed during
the pilot plant studies with the whole EDBM system were measured instantaneously at
certain time intervals (between 5 and 10 min). Pressure changes were instantly measured
and recorded with the pressure gauge on the system. In addition, current changes from the
top of the direct current source were read and recorded at the same time intervals.

3. Results and Discussion
Concentrate Disposal Studies and Analysis Results with EDBM System

A total of six cycles were made with the intermittent EDBM system from RO-sourced
concentrate. The main target is to convert the ions in the concentrate into acid-base ions
via cationic, anionic, and bipolar membranes. In the first cycle, the acid-base-forming
ions in the concentrate transferred to acid-base units, and when the conductivity value
in the concentrate reached 732 µS/cm, the concentrate was discharged, but the acid-base
units continued to cycle with the same volume. At the end of each run, concentrate, acid
and base, Time-pH change, time-conductivity change, time-pressure change, and time-
conductivity-ampere change graphs were obtained. The data of the study results are given
in Figures 3–8 from the first to the sixth trial. In the experiments, the energy given to the
system is 25 V, and the cycle flow rate is 180 L/s.

In the first trial, acid-base production was made from the concentrate passed through
the NF system with the EDBM system for 66 min, and the concentrate, acid and base,
conductivity, pH, and pressure increase values were investigated depending on time.
When the results obtained in the studies are examined, while the conductivity values in the
concentrate decrease, the produced acid—base conductivity values increase. Since Na2SO4
is used to protect the electrodes, no change in conductivity values is observed. However, the
increase in conductivity in base production is lower than in acid production. This is thought
to be due to the M+2 valence ions still present in the concentrate. It has been demonstrated
by other studies that M+2 valence ions can accumulate in the system and cause an increase
in resistance on the membrane surface, causing concentration polarization and clogging [39].
Blockages in the system both reduce product quality and increase operating time. In the
preliminary study with the concentrate, it was determined that the concentrate causes
pressure rise and blockages in the base tank due to the M+2 valence ions it contains. When
the time-dependent pressure changes are examined, it is observed that there is no big
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difference for this experiment. When the time-dependent pH change graph is examined, it
is observed that it is at pH 12 levels in base production and at 0 levels in acid production.
In the EDBM system, the first 30 min. of the amperage change against time. A decrease
is observed at the end of the 30th minute. In EDBM systems, the voltage supplied to the
system is constant. When the conductivity value of the concentrate decreases, since the
voltage supplied to the system is constant and the resistance changes with the conductivity,
the current passing through the system also changes (V = I × R) [19].

Figure 3. NaCl–NaOH–HCl–Na2SO4 (a) conductivity, (b) pressure, (c) pH, and (d) conductivity and
ampere change between 0 and 66 min.
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Figure 4. Between 0 and 48 min, NaCl–NaOH–HCl–Na2SO4 (a) conductivity, (b) pressure, (c) pH,
and (d) conductivity and ampere change.
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Figure 5. NaCl–NaOH–HCl–Na2SO4 (a) conductivity, (b) pressure, (c) pH, and (d) conductivity and
ampere change between 0 and 66 min.
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Figure 6. Between 0 and 80 min, NaCl–NaOH–HCl–Na2SO4 (a) conductivity, (b) pressure, (c) pH,
and (d) conductivity and ampere change.
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Figure 7. NaCl–NaOH–HCl–Na2SO4 (a) conductivity, (b) pressure, (c) pH, and (d) conductivity and
ampere change between 0 and 70 min.
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Figure 8. Between 0 and 90 min, NaCl–NaOH–HCl–Na2SO4 (a) conductivity, (b) pressure, (c) pH,
and (d) conductivity and ampere change.

In the second trial, acid-base production was made from the concentrate passed
through the NF system with the EDBM system for 48 min, and the concentrate, acid and
base, conductivity, pH, and pressure increase values were investigated depending on time.
When the results obtained in the studies are investigated, as in the first trial study, the
conductivity values in the concentrate decrease, while the produced acid-base conductivity
values increase. Since Na2SO4 is used to protect the electrodes, no change in conductivity
values is observed. However, the conductivity increase in base production is lower than
in acid production. This is esimated to be due to the M+2 valence ions still present in the
concentrate. The effect of ions has been demonstrated by previous studies [40]. When
the time-dependent pressure changes are examined, it is observed that there is no big
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difference for this experiment. When the time-dependent pH change graph is investigated,
it is observed that it is stable at pH 12 levels in base production and at 0 levels in acid
production. In the EDBM system, during the first 15 min of the amperage change against
time, it is observed that a decrease starts at the end of the 15th minute.

In the third trial, acid-base production studies were carried out with EDBM systems
from the concentrate passed through the RO and NF systems, and acid-base production
was carried out for 66 min. The concentrate, acid and base, conductivity, pH, and pressure
increase values were investigated depending on time. When the results obtained in the
studies are examined, as in the first and second trial studies, the conductivity values in the
concentrate decrease, while the produced acid-base conductivity values increase. Since
Na2SO4 is used to protect the electrodes, no change in conductivity values is observed.
However, the conductivity increase in base production is lower than in acid production.
This is appraised to be due to the M+2 valence ions still present in the concentrate. When
the time-dependent pressure changes are investigated, it is observed that there is no big
difference for this experiment. When the time-dependent pH change graph is examined,
it is observed that it is stable at pH 12 levels in base production and at 0 levels in acid
production. In the EDBM system, it is observed that the amperage change against time
increases in the first 20 min, and a decrease begins at the end of the 20th minute.

In the fourth trial, acid-base production was made from the concentrate passed through
the NF system with the EDBM system for 80 min, and the concentrate, acid and base,
conductivity, pH, and pressure increase values were investigated depending on time. In this
experiment, work was continued with the concentrate with a conductivity of 7200 µS/cm
on the acid-base obtained in the third trial. When the time-dependent pressure changes are
investigated, it is observed that there is no big difference until the 70th minute for this trial.
When the time-dependent pH change graph is examined, it is observed that it is stable at
pH 12 levels in base production and at 0 levels in acid production. In the EDBM system,
during the first 10 min. of the amperage change against time, it is observed that a decrease
starts at the end of the 10th minute.

In the fifth trial, the studies were continued with the concentrate passed through the
NF system. The EDBM system was operated for 70 min. When the concentrate conductivity
reached 747 µS/cm, acid conductivity reached 79,400 µS/cm, and base conductivity reached
47,800 µS/cm, the concentrate was discharged, and the sixth trial was started.

In the sixth trial, the concentrate conductivity was again entered as 7400 µS/cm, and
the EDBM system was operated for 90 min. When the concentrate conductivity reached
850 µS/cm, the system was stopped. Stopping the system at the 90th minute was due
to the decrease in conductivity at certain times. Since the acid conductivity is around
89,700 µS/cm and the base conductivity is around 60,800 µS/cm, the acid-base formation
time from the concentrate has increased, and an increase in pressure was observed in the
base formation unit in the EDBM system.

The acids and bases produced as a result of all cycles were determined using the
calculation method in Equation (1). As a result of all cycles, acid (HCl) production of 1.44%
and base (NaOH) production of 2% were realized. Wisniewski et al. have obtained similar
results in their studies [36,41]. In light of these data, the study was terminated after the
sixth trial due to the pressure increase in the system at the end of the sixth trial and the
decrease in conductivity in the acid tank.

4. Conclusions

In the studies, it was observed that the maximum acid-base conductivity (90,000 µS/cm
in acid, 60,000 µS/cm in base) was reached with the EDBM system using only the salt in
the concentrate. Relating concentrations correspond to approximately 1.44% acids and 2%
bases. Quantities were obtained after a 4-h study and continuous circulation of acid-base.
At this point, it has been determined that the percentages of acids and bases formed cannot
be increased furthermore under the current conditions (with the existing pilot plant with a



Membranes 2022, 12, 83 15 of 17

membrane surface area of 100 cm2, a maximum voltage of 25 volts, and a maximum current
of 3 amps).

Even if the acid and base production concentration is low, many treatment plants
(including the existing plant) use acids and bases. The acids and bases produced here
have the potential to contribute to the system’s own needs. In other words, even if the
concentration is low, there may be a potential for use, at least in the existing facility or in
nearby businesses. Thus, the opinion that EDBM is one of the best sustainable alternatives
in the management of reverse-osmosis concentrate, which is a critical problem for the
environment, has been demonstrated by this study.

As a result, it has been determined by the studies that wastewater can be more econom-
ically recovered. Concentrate originating from reverse osmosis is a method that can be used
for acid and base production, but measures such as salt addition should be taken in order
to ensure its economic use. However, it is thought that it will be possible to produce acids
and bases at desired concentrations with only reverse-osmosis concentrate, without adding
salt, by modifying the study, together with rapidly developing membrane technologies.

In line with the results of this study, it is aimed to increase the current efficiency with
further studies. With this study, a database will be created for researchers who work in this
field since, as a result of the research conducted within our scope regarding the production
of acids and bases from the concentrate formed after RO, we have not encountered a
similar study.

This study was carried out for the sustainable disposal of the concentrate formed
as a result of the reverse-osmosis process. Acids and bases were produced from this
concentrate using EDBM systems. It is thought that higher acid-base amounts can be
achieved, especially from wastewater with higher salinity. The approach presented in this
research has shown that it is possible to dispose of the concentrate formed as a result of
reverse osmosis with an environmentally friendly technology. Thus, it is thought that it
will be a guide for future studies.
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