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Abstract: Since the high temperature proton exchange membrane fuel cells (HT-PEMFC) stack require
a range of auxiliary equipments to maintain operating conditions, it is necessary to consider operation
of related components in the design of HT-PEMFC systems. In this paper, a thermodynamic model
of a vehicular HT-PEMFC system using phosphoric acid doped polybenzimidazole membrane is
developed. The power distribution and exergy loss of each component are derived according to
thermodynamic analysis, where the stack and heat exchanger are the two components with the
greatest exergy loss. In addition, ecological functions and improvement potentials are proposed to
evaluate the system performance better. On this basis, the effects of stack inlet temperature, pressure,
and stoichiometric on system performance are analyzed. The results showed that the energy efficiency,
exergy efficiency and net output power of the system achieved the maximum when the inlet gases
temperature is 406.1 K. The system performance is better when the cathode inlet pressure is relatively
low and the anode inlet pressure is relatively high. Moreover, the stoichiometry should be reduced to
improve the system output performance on the basis of ensuring sufficient gases reaction in the stack.

Keywords: HT-PEMFC; thermodynamic modeling; powertrain design; exergy analysis; energy analysis

1. Introduction

Recently, the demand for energy-efficient and eco-friendly energy systems has been
increasing with the growing problems such as depletion of fossil fuels and environmental
deterioration [1–7]. Proton exchange membrane fuel cells (PEMFC) with benefits of zero-
emission, high energy conversion efficiency, high power density and low maintenance
are widely used in fuel cell vehicles (FCVs) [8–12]. Perfluorosulfonic acid (Nafion) is
commonly used as a membrane in low temperature proton exchange membrane fuel
cells (LT-PEMFCs) [13–16]. Since the proton conductivity inside the Nafion membrane
requires water as a charge carrier, the membrane must always be kept in a hydrated
state to maintain optimal performance [17,18]. Compared to LT-PEMFC, HT-PEMFC
simplifies water and heat management system and accelerates reaction kinetic at the
electrode [19]. Higher operating temperatures can also improve CO tolerance and improve
the quality of waste heat [20–22]. In recent years, a range of plasmonic conductor polymer
membranes have been developed and modified which enable operation in the higher
temperature 120–200 ◦C [23–28]. Phosphoric-acid-doped polybenzimidazole (PA/PBI)
membranes are widely used in HT-PEMFC due to its excellent mechanical strength and
good chemical resistance [29–31]. In fact, polybenzimidazole (PBI) is an amorphous rigid
polymer doped with phosphoric acid [32,33]. Compared to other acids at high temperatures,
phosphoric acid has low vapor pressure and high thermal stability [34–39]. In this paper, a
thermodynamic model of the vehicular HT-PEMFC system was established based on a PBI
membrane.
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From a thermodynamic point of view, a complete vehicular HT-PEMFC system consists
of HT-PEMFC stack, hydrogen supply sub-system, air supply sub-system and a thermal
management sub-system [40,41]. HT-PEMFC single cell is the main core component in the
stack and its performance has a great impact on the overall system operation. Guo et al. [42]
developed a thermodynamic model of a HT-PEMFC single cell and studied the effect of the
main operating conditions and designing parameters on the performance of the HT-PEMFC
sing cell. The results showed that higher operating temperatures and operating pressures
can effectively improve the output performance of HT-PEMFC single cell. However, the
power distribution of the ancillary equipment that maintains these operating conditions
is not considered. Qin et al. [43] properly equipped an air compressor with the PEMFC
stack, and optimized the operating pressure of the power system. The results showed
that both the power generation of the fuel cell stack and the power consumption of the
compressor increase with the system operating pressure. Zhang et al. [44] developed a
simulation model of PEMFC system with hydrogen cycle and dead-ended anode. The
results showed that the hydrogen cycle fuel cell system with dead-end anodes had good
performance and the control strategy was effective. Reddy et al. [45] investigated the
effectiveness of the HT-PEMFC external coolant system by using a multi-scale stacked heat
transfer model. The simulation results showed that the temperature variation in the stack
could be kept within 10 K by optimizing the number of cooling plates, the coolant flow rate
and the temperature entering the stack. Most of these studies focused on the analysis of
fuel cell system components, such as HT-PEMFC stack [46], air compressor [47], hydrogen
circulation pump [48] and combinations of very few components of the system [49,50],
lacking overall system modeling and performance analysis.

At present, in addition to the research on fuel cell system components, there are
some studies on the overall PEMFC system. Chen et al. [51] established a PEMFC system
thermodynamic model and applied a novel multi-objective evolutionary algorithm based
on decomposition (MOEA/D) to optimize the operating parameters of the PEMFC system
in order to maximize system efficiency and power. The final optimized point of system
energy efficiency and electrical power can reach 79% and 8.04 kW, respectively. However,
the components of the PEMFC system and their connections were not described in detail.
Chitsaz et al. [52] presented the layout structure of the PEMFC system layout, and its
thermodynamic and the exergoeconomic assessment was carried out. In addition, the
effects of current density and temperature on the performance of the PEMFC system were
investigated. Hwang et al. [53] developed a PEMFC cogeneration system that provided
high quality electricity and hot water. The results showed that the maximum system
efficiency was as high as 81% when combining heat and power. Mert et al. [54] dealt with
the exergoeconomic analysis of a vehicular PEMFC system. It was found that with the
temperature and pressure increased and the membrane thickness decreased, the system
efficiency increased, leading to a reduction in overall production cost. Blum et al. [55]
elaborated the system layout concepts of PEMFC, phosphoric acid fuel cell (PAFC) and
solid oxide fuel cell (SOFC), and analyzed their electrical efficiencies. The results show that
the electrical efficiency of different types of fuel cell systems varies greatly.

Based on the above research background, a complete thermodynamic model of the
vehicular HT-PEMFC system is developed in this paper to provide a reference for the future
design and optimization of the fuel cell system. The model fully takes the power distribu-
tion of each component and their connection methods into account. Energy and exergy
distribution based on thermodynamic model are revealed, and the evaluation method of
the system is established. In addition, ecological functions and improvement potentials are
derived to evaluate the system performance. Then, the future optimization of the system
is suggested based on the effect of different parameters on the system performance. The
rest of this paper is organized as follows: The schematic and description of the proposed
vehicular HT-PEMFC system is given in Section 2. In Section 3, the thermodynamic model
of the system is given, including the HT-PEMFC stack and other auxiliary equipment. The
power consumption and exergy distribution of different components are determined by
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energy analysis and energy analysis. Section 4 analyzes the effect of stack inlet temperature,
pressure and stoichiometry on system performance. Contents of this paper are concluded
in Section 5.

2. System Description

In order to meet the operating conditions of the HT-PEMFC stack, the air from the
environment and hydrogen from the hydrogen storage tank should be pressurized, heated
and humidified before entering the stack, and the waste heat from the stack should be
removed. Therefore, the vehicular HT-PEMFC system should include: HT-PEMFC stack,
compressors, humidifiers, heat exchangers and a coolant pump. Meanwhile, in order to
make full use of the energy in the cathode exhaust gas, a turbine is installed at the cathode
outlet. The use of turbine can effectively reduce the power consumption of the compressor
as well as improve the energy utilization and overall efficiency of the system. The schematic
of the vehicular HT-PEMFC system developed in this paper is shown in Figure 1. The
arrows in Figure 1 indicate the direction of fluid flow in the system, and the numbers
indicate the state of the fluid.
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Figure 1. Schematic of the proposed HT-PEMFC system.

The yellow line in Figure 1 indicates the gas supply sub-system, which uses an
exhaust gas energy recovery strategy [56]. It mainly consists of air compressor (AC),
cathode heat exchanger (CHE), cathode humidifier (CH) and turbine (TUR). The air in the
environment is first pressurized by an air compressor to the required operating pressure
of the stack. Then, the compressed air is preheated by the high temperature coolant from
the stack. The air needs to be humidified before entering the stack to improve the proton
conductivity of the PEM. This system uses external spray humidification method. Finally,
the incompletely reacted exhaust gas from the environment and water vapor are discharged
from the cathode outlet of the stack and then flow into the turbine for energy recovery
before being discharged into the environment. The blue line in Figure 1 is the hydrogen
supply sub-system, which uses a hydrogen recirculation strategy [57]. It mainly consists of
a hydrogen compressor (HC), an anode heat exchanger (AHE) and an anode humidifier
(AH). The hydrogen from the hydrogen storage tank is passed through a pressure regulator
to reach the pressure required for HT-PEMFC stack operation and then is mixed with
hydrogen from hydrogen compressor. The mixed hydrogen gas flows into the HT-PEMFC
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stack after heating and humidifying. The incompletely reacted hydrogen is recycled by a
hydrogen compressor. The red line in Figure 1 is the thermal management sub-system. It
consists of a coolant pump (CP), AHE and CHE. The coolant for HT-PEMFC system is Tri-
ethylene glycol (TEG) because its phase does not change at 423~463 K [58,59]. The coolant
carries heat away from the stack to preheat the inlet gases through the heat exchangers.

In order to simplify the thermodynamic model, several reasonable assumptions are
made:

(1) The system works under steady-state conditions, and the heat loss and pressure of
the system loss are neglected [60,61].

(2) The ambient air temperature is 298.15 K, the pressure is 101 kPa [60].
(3) Dry air and hydrogen behave as ideal gas. Hydrogen is 100% pure and reacts com-

pletely in the fuel cell. Air is composed of 21% oxygen and 79% nitrogen [62].
(4) The working temperature of the stack is uniform. The temperature rise of both gases

and coolant in the stack is fixed at 10 K, and the pressure drop is fixed at 0.2 atm [60].
(5) Energy loss and exergy losses during the gas flow are not considered [63].
(6) All the heat generated by the stack is carried away by the coolant [63].

3. Thermodynamic Modeling and Analysis
3.1. HT-PEMFC Stack

The HT-PEMFC stack model developed in this paper is based on HT-PEMFC single cell
using PBI membranes, which have been validated in our previous studies [64–66]. The pro-
ton conduction mechanism of the PA/PBI membrane is called “Grotthus mechanism” [67].
The electrochemical reactions within HT-PEMFC be described as [68]:

Anode : H2 → 2H+ + 2e− (1)

Cathode : 2H+ +
1
2

O2 + 2e− → H2O (2)

Overall recation : H2(g) +
1
2

O2(g)→ H2O(g) + heat + electricity (3)

The reversible output voltage of a HT-PEMFC single cell is expressed:

Ucell = Erev − Eact − Eohm − Econ

= Erev −
(

1 + 1
α

)
RT
ne

ln
(

JL
JL−J

)
− RT

neαF ln
(

J+Jleak
J0

)
− J
(

tmem
σmem

) (4)

where Ucell is the output voltage of a HT-PEMFC single cell. Erev is the reversible cell
voltage that can be calculated from the Nernst equation. Eact, Eohm and Econ represent the
activation overpotential, ohmic overpotential and concentration overpotential, respectively.
α is the charge transfer coefficient. J is the operating current density. JL is the limiting
current density. J0 and Jleak are the exchange current density and leak curent density,
respectively. tmem and σmem are the thickness and proton conductivity of the membrane,
respectively [64]. σmem can be calculated by:

σmem =
ab
T

e
−cact

RT (5)

a = 68DL3 − 6324DL2 + 65750DL + 8460 (6)

b =


1 + (0.01704T − 4.767)RH 373.15K ≤ T ≤ 413.15
1 + (0.1432T − 56.89)RH 413.15K < T ≤ 453.15
1 + (0.7T − 309.2)RH 453.15 < T ≤ 473.15

(7)

cact = −619.6DL + 21750 (8)
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where DL is the doping level of PA. RH is the relative humidity of the electrolyte. Kim
et al. [69] suggested empirical model explaining that PA doping level is dropped from
initial doping level depending on time t. DL can be calculated by:

DL = DL0 − DLDC·t (9)

where DL0 is initial doping level, DLDC is doping level drop coefficient.
Figure 2 is a comparison of model prediction and experimental data from ref. [70].

The results show that the model is in good agreement with the experimental data. The
variation of proton conductivity of the membrane σmem and reversible output voltage
of the HT-PEMFC single cell Ucell with DL and t at current density J = 0.8 A cm−2 is
given in Figure 3. Figure 3a shows that σmem and Ucell achieve the maximum value when
DL = 8.4. A higher degree of phosphoric acid doping is beneficial to improve the HT-
PEMFC performance, but too high DL also results in a poorer mechanical property and
makes phosphoric acid molecules more easily to leak out of the HT-PEMFC [71]. As the
temperature increases, both σmem and Ucell increase. The increase in temperature facilitates
the reduction of internal resistance, thus improving the single cell output performance.
From Figure 3b, σmem and Ucell first increases and then gradually decreases with time. In
the lifetime test of HT-PEMFC, there was an activation stage at the beginning that led to
improved performance [72]. After that, the phosphoric acid in the PBI membrane continues
to be lost, σmem and Ucell gradually decrease. Therefore, the leakage of PA is one of the main
reasons for the durability of PA doped PBI membranes and is one of the urgent problems
that need to solve at present. In addition, the increase of electrode relative humidity is
beneficial for proton conductivity and single cell output voltage.
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of σmem and Ucell with t.

The electric power and thermal power output of the HT-PEMFC stack is expressed as:

Wstack = N·Ucell ·J·A (10)

Qstack = N·(Erev −Ucell)·J·A (11)

where Wstack is the electric power output of the stack, Qstack is the thermal power. N is the
number of HT-PEMFC single cells, and A is the effective working area of a single cell.

This paper provides a power system design for FCVs based on the above HT-PEMFC
single cell model, and uses mathematical equations to build the HT-PEMFC system model
by Matlab programming. The operating and design parameters of the vehicular HT-PEMFC
system model in this paper are given in Table 1. The design parameters of HT-PEMFC
single cell can be found in ref. [50].

Table 1. Operating and design parameters of a vehicular HT-PEMFC system.

Component Parameters Values

HT-PEMFC stack

Number of single cells N 250
Effective working area A 300 cm2 [59]
Anode stoichiometry San 1.05 [62]

Cathode stoichiometry Sca 2 [62]
Anode inlet pressure p11 2 atm
Cathode inlet pressure p4 2 atm

Inlet temperature Tin 403 K [42]
Relative humidity RH 7.6% [42]

current density J 0–2 A cm−2 [42]

Compressors Efficiency ηC 55% [62]

Coolant pump Efficiency ηCP 55%

Turbine Efficiency ηTUR 65%

3.2. Auxiliary Equipment

The inlet and outlet gas flow rates of the fuel cell stack should be determined before
the auxiliary equipment is modeled. According to the above reaction Equation (1), it is
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known that 1 mol of hydrogen can transfer 2 mol of electrons, therefore, the mass flow rate
of hydrogen at the stack inlet can be expressed as [73]:

.
mH2,in = San·MH2 ·

N·J
2F

= San·MH2 ·
N·J·A

2F
(12)

where F is the Faraday constant, San is the anode stoichiometric ratio.
Similarly, the air mass flow rate at the stack inlet can be obtained as [73]:

.
mair,in = Sca·MO2 ·

N·I
4F·gO2

= Sca·MO2 ·
N·J·A
4F·gO2

(13)

where Sca is the anode stoichiometric ratio, and gO2 represents the oxygen mass fraction in
the air.

The gas at the cathode and anode inlets should have a certain humidity to ensure more
efficient operation of the HT-PEMFC stack. The ratio of the mass of water vapor to the
mass of dry gas is called the moisture content in the wet gas, and it can be obtained [63]:

d =
mv

ma
=

Mv

Ma

RH·ps

pwet − RH·ps
(14)

where mv and ma are the masses of water vapor and dry gas, respectively. Mv and Ma are
the relative molar masses of water vapor and dry gas, respectively. pwet is the pressure of
wet gas. ps is the saturated vapor pressure. Thus, the mass flow rate of water vapor can be
obtained [63]:

.
mv =

.
ma·d (15)

The mass flow rates at the cathode and anode of the stack inlet can be expressed as:

.
m4 =

.
mair,ca +

.
mv,ca (16)

.
m11 =

.
mH2,an +

.
mv,an (17)

where
.

mv,ca and
.

mv,an are the mass flow rates of water vapor in the wet gas at the cathode
and anode of the stack inlet, respectively. The numbers in the subscripts correspond to the
state of the fluid in Figure 1.

The mass flow rates at the cathode and anode of the stack outlet can be calculated by
applying the mass balance equations:

.
m5 =

.
m4 −MO2 ·

N·J·A
4F

(18)

.
m12 =

.
m11 −MH2 ·

N·J·A
2F

(19)

3.2.1. Compressors

The compressor can pressurize the inlet air and the incompletely reacted hydrogen
to the working pressure of the stack. The power consumed by the air compressor and
hydrogen compressor can be expressed as:

WAC =
Cp,1

.
m1T1

ηC

( p2

p1

) γ−1
γ

− 1

 (20)

WHC =
Cp,12

.
m12T12

ηC

( p13

p12

) γ−1
γ

− 1

 (21)
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where WAC and WHC represent the power consumed by the air and hydrogen compressors,
respectively. Cp is the specific heat at constant pressure, γ is the adiabatic coefficient. p and
T represent the temperature and pressure in different state, respectively.

The temperature of the compressor outlet can be obtained:

T2 = T1·

( p2

p1

) γ−1
γ

− 1

 (22)

T13 = T12·

( p13

p12

) γ−1
γ

− 1

 (23)

3.2.2. Humidifiers

The humidification process is considered as an adiabatic process, which satisfies the
law of conservation of energy. Thus, the cathode and anode humidification process can be
expressed as:

Cp,4
.

m4T4 = Cp,3
.

m3T3 + Cp,9
.

m9T9 (24)

Cp,11
.

m11T11 = Cp,10
.

m10T10 + Cp,20
.

m20T20 (25)

The process of gas 8 and gas 13 to gas 9 in Figure 1 is also consistent with the energy
conservation theorem, and the process can be expressed as:

Cp,9
.

m9T9 = Cp,8
.

m8T8 + Cp,13
.

m13T13 (26)

3.2.3. Heat Exchangers

When the heat exchangers heat the inlet gas, part of the heat comes from the coolant
through heat exchange and the other part is provided by the electric heater. It is considered
that the heat required for gas 2 and gas 9 to reach T15 is provided by the coolant, which
rejects heat at the heat exchanger [63]. However, the heating from state 15 to state 10 and
state 3 needs to be heated by electric heaters, respectively. Thus, the heating power of the
heat exchanger of the cathode and anode is:

WCHE = Cp,2
.

m2(T3 − T15) (27)

WAHE = Cp,2
.

m2(T10 − T15) (28)

3.2.4. Coolant Pump

The coolant pump extracts coolant into the fuel cell stack to remove excess heat, which
is used in the heat exchanger for heating. The coolant flow rate can be obtained by energy
conservation. The coolant flow rate is:

.
m15 =

Qstack
Cp,15(T16 − T15)

(29)

The power consumed by the coolant pump is expressed as:

WCP =

.
m15·(p16 − p15)

ρCP·ηCP
(30)

where ρCP is the density of the coolant, ηCP is the efficiency of the coolant pump.



Membranes 2022, 12, 72 9 of 19

3.2.5. Turbine

The use of turbine can effectively reduce the power loss of air compressor and improve
the energy utilization. The turbine works just the opposite of the air compressor, and its
output power is:

WTUR = Cp,6·
.

m6·T6·ηTUR

1−
(

P7

P6

) γ−1
γ

 (31)

According to the above model, the power of each component at different current
densities can be obtained, as shown in Table 2. Positive values represent the power output
and negative values represent the power consumed. From Table 2, when the current
density increases, the output power of the HT-PEMFC stack increases, but the power
consumption of the ancillary equipment also increases. The reason for this is that increasing
current density leads to an increase in the flow rate of the fluid, thus increasing the power
consumption of the ancillary equipment. By comparison, it can be found that AC is the
most consuming component of the ancillary equipment. In order to reduce parasitic power
consumption and further improve the efficiency of the system, the design and operation of
the AC should be carefully considered.

Table 2. Power of each component at different current densities.

Components
(Power: W) 0.2 0.4 0.6 0.8 1.0 1.2 1.4

HT-PEMFC stack 9156.9 16,588.3 23,106.4 28,815.2 33,675.9 37,532.9 40,045.9
AC −1125.8 −2251.6 −3377.4 −4503.2 −5629.1 −6754.9 −7880.7
HC −2.4 −4.9 −7.3 −9.7 −12.2 −14.6 −17.0

CHE −154.1 −308.1 −462.2 −616.3 −770.3 −924.4 −1078.4
AHE −32.3 −64.6 −97.0 −129.3 −161.6 −193.9 −226.3
CP −115.3 −254.1 −405.3 −567.6 −741.3 −928.7 −11,345

TUR 472.0 944.0 1416.0 1887.9 2359.9 2831.9 3303.9

3.3. Thermodynamic Analysis

In order to better evaluate the thermodynamic performance of vehicular HT-PEMFC
systems, the energy analysis and the exergy analysis of the system are performed according
to the first and second laws of thermodynamics, respectively.

3.3.1. Energy Efficiency

The power consumed by the auxiliary equipment is:

Wcomsume = WAC + WHC + WCHE + WAHE + WCP (32)

The net output power of the HT-PEMFC power system can be expressed as:

Wnet = Wstack −Wconsume + WTUR (33)

The energy efficiency of the system is:

ηenergy =
Wnet·Ucell
Wstack·Erev

(34)

3.3.2. Exergy Efficiency

Exergy is the portion of energy that can be converted into useful work during a fully
reversible change in the environment [74,75]. Unlike energy analysis, exergy analysis
takes into account the energy limitations, losses and conversion efficiency of the system to
evaluate the performance of the system [76,77]. Exergy is mainly divided into mass flow
exergy and energy flow exergy.
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Mass flow exergy consists mainly of the physical exergy and the chemical exergy. thus
mass flow exergy Ex can be expressed as [21]:

Ex = e· .
m = (eph + ech)· .

m (35)

where e is the specific exergy of fluid. eph and ech are the specific physical exergy and the
specific chemical energy, respectively. eph and ech can be expressed as [78]:

eph = ∑(hi − h0)− T0·(si − s0) (36)

ech = (∑ xiech
i + R·T0·∑ xilnxi) (37)

where h and s are the specific enthalpy and entropy of substances, respectively. T0 is the
reference temperature. ech

i is the specific chemical exergy of the substances. The standard
chemical exergy of several substances could be found in ref. [60].

Energy flow exergy consists mainly of exergy of work and exergy of heat. exergy of
work Ex,W and exergy of heat Ex,Q can be expressed as:

Ex,W = W (38)

Ex,Q = WQ =

(
1− T

T0

)
Q (39)

The exergy balance equation of each component can be expressed as [63]:

Ex,in = Ex,out + Woutput + Ex,heat + Ex,loss (40)

where Ex,in and Ex,out indicate the mass flow energy of the input and output components.
Woutput and Ex,heat are the output power of the components and the exergy of heat produced,
respectively. Ex,loss is the exergy loss of the component.

The exergy efficiency of a system is defined as the ratio of the net output power of the
system to the input energy of the system, and can be expressed as:

ηexergy =
Wnet

Ex,in,sys
(41)

where Ex,in,sys is the exergy of input hydrogen.
The temperature, pressure and mass flow exergy distribution at current density

J = 0.8 A cm−2 can be obtained by thermodynamic analysis, as shown in Figure 2.
The black font represents the temperature and pressure of the fluid, and the red font repre-
sents the mass flow exergy of the fluid. The exergy distribution in the system is intuitively
seen in the Figure 4. As shown in Table 3, the exergy loss caused by each component or
thermal processes in the system can be obtained according to the exergy balance equation.
From Table 3, the energy loss caused by the heat exchanger is the largest among the ancillary
equipment, which is mainly because the large amount of heat absorbed by the coolant that
is not fully utilized and dissipated into the environment. Therefore, it is significant to find
an effective method to recover the waste heat from the stack [56].
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current density J = 0.8 A cm2.

Table 3. Exergy loss expressions for each component and exergy loss distribution at current density
J = 0.8 A cm2.

Components (Exergy Loss: W) Exergy Loss Expressions Values (J = 0.8)

HT-PEMFC stack Ex,4 + Ex,11 + Ex,15 − Ex,5 − Ex,12 −
Ex,16 −Wstack

35,057.3

AH Ex,19 − (Ex,11 − Ex,10) 269.6
CH Ex,18 − (Ex,4 − Ex,3) 814.7
HC WHC − (Ex,13 − Ex,12) 8.5
AC WAC − (Ex,2 − Ex,1) 1709.2

AHE and CHE (Ex,16 − Ex,17 + WAHE + WCHE)−
(Ex,10 − Ex,9)− (Ex,3 − Ex,2)

11,774.3

CP WCP − (Ex,15 − Ex,14) 345.2
TUR (Ex,6 − Ex,7)−WTUR 535.2

Hydrogen-mixing Ex,8 + Ex,13 − Ex,9 9.5
Water knock Ex,5 − Ex,6 772.1

From Table 2, it can be found that when the current density is 0.8 A cm−2, the net
output power of the system is 24,877.1 W. At this time, the energy efficiency and exergy
efficiency of the system are 35.3% and 33.4%. As a result, the energy conversion efficiency
at the HT-PEMFC stack should be improved as much as possible to reduce the exergy loss
there. In addition, the turbine can produce 1887.9 W of energy and improve the energy
efficiency of the system by 2.67%. Therefore, the use of turbines can effectively reduce the
consumption of air compressors and improve system efficiency. It is worth noting that if
the system does not use coolant to heat the inlet gas, CHE and AHE will consume 2440.4 W
and 526.4 W of heating power at current density J = 0.8 A cm−2, respectively. Therefore,
using coolant to heat the inlet gases can save 2221.2 W of energy and increase the system
efficiency by 3.15%.
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3.3.3. Ecological Function

Angulo-brown [79] derived the concept of ecological function according to Newton’s
heat transfer law when studying heat engines. The ecological function is the difference
between the net output power of the system and the exergy loss. It is a new performance
indicator that optimizes the tradeoff between the output power and the entropy production,
aiming to improve output power and reduce exergy loss at the same time. The ecological
function E is expressed as:

E = Wnet − Ex,loss,sys (42)

where Ex,loss,sys is the total exergy loss of the system.

3.3.4. Improvement Potential

The improvement potential is a metric proposed based on exergy efficiency and indi-
cates the room for improvement in system performance [80]. The improvement potential
IP is expressed as:

IP =
(
1− ηexergy,sys

)
·
(
Ex,in,sys − Ex,out,sys

)
(43)

Figure 5 shows the variation trends of the system performance with current density are
obtained. From Figure 5a, it can be seen that both energy efficiency and exergy efficiency
decrease with the increase of current density. As current density increases, the power
consumed by ancillary equipment increases. This is mainly because flow rate accelerates
with the increase of current density, resulting in the improve of auxiliary equipment power.
From Figure 5b, it can be seen that the ecological function E gradually decreases and the
improvement potential IP gradually increases with the increase of current density. It shows
that the ecological performance is better in the low current density region, and the exergy
loss is relatively small. There is more room for improvement in the high current density
region to improve the output performance of the system. Due to the limited space available
for vehicle powertrain installation, it is necessary to achieve high power density in high
current density operation mode [81–84].
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4. Results and Discussion

Different operating parameters of the system have a significant impact on the system
performance [51]. In this paper, the effects of stack inlet temperature, inlet pressure, and
inlet stoichiometry on the system output performance are studied for vehicular HT-PEMFC
stacks.
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4.1. Effect of Stack Inlet Temperature

Figure 6 shows variation trends of system performance with stack inlet temperature T.
From Figure 6a, the energy efficiency, energy efficiency and net output power of system
have a small increase and then gradually decrease as the stack inlet temperature increases.
When the inlet temperature of the stack T = 406.1 K, the net output power of the system
achieves the maximum value, the net output power of the system, the energy efficiency
and energy efficiency are 24,907.4 W, 35.4% and 33.4% respectively. This is due to when the
stack inlet temperature increases, the increase in auxiliary equipment power consumption
is greater than the increase in stack power generation. From Figure 6b, the ecological
performance of system is poor when the stack inlet temperature is too high, and the
potential for improvement is large. Therefore, if the stack inlet temperature is too high, the
system output performance will become worse.
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4.2. Effect of Cathode and Anode Inlet Pressures

Figure 7a,b show the variation of system performance with cathode inlet pressure.
From Figure 7a, when the cathode inlet pressure increases from 1 atm to 3 atm, the output
power of the HT-PEMFC stack continuously increases, but ηenergy, ηexergy and Wnet all
decrease. The energy efficiency and exergy efficiency of the system decreased from 37.6%
and 35.4%, respectively. The net output power of the system decreases from 26,373.3 W
to 23,195.9 W. This is mainly due to the large increase in power consumption of the air
compressor when the cathode inlet pressure increases. From Figure 7b, it is found that
the ecological function of the system attains the maximum value when the cathode inlet
pressure is 1.2 atm. The improvement potential increases with increasing cathode inlet
pressure. This means that the system has less room for improvement at lower cathode
inlet pressures. Therefore, the system output performance is better when the cathode inlet
pressure is lower.
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Figure 7c,d show the variation of system performance with anode inlet pressure. From
Figure 7c, ηenergy, ηexergy, Wstack and Wnet increase constantly as the anode inlet pressure
increases. When the anode pressure increased from 1 atm to 3 atm, the energy efficiency
and exergy efficiency of the system increased by 4.0% and 5.7%, respectively. The net
output power of the system increased from 23,988.5 W to 25,349.5 W. From Figure 7d, it can
be obtained that as the anode inlet pressure increases, the ecological function E increases
and the improvement potential IP decreases. Overall, increasing the anode inlet pressure
can effectively improve the efficiency and output power of the system.

4.3. Effect of Cathode and Anode Stoichiometry

Figure 8 shows the variation trends of system performance with cathode and anode
stoichiometry. From Figure 8a, it can be obtained that the increase in the cathode stoichiom-
etry has little effect on the output power of the stack. When the cathode stoichiometry
increases from 1 to 3, the energy efficiency and exergy efficiency of system decreased
from 37.4% and 35.4% to 33.1% and 31.4%, respectively. The net output power of the
system decreases from 26,382.1 W to 23,372.1 W. It can be obtained from Figure 8c that
the increase in anode stoichiometry has no effect on the output power of the stack. As the
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anode stoichiometry increases, the energy efficiency decreases from 35.3% to 34.4%, the
exergy efficiency reduces from 33.4% to 32.6%, and the net system output power decreases
from 24,893.2 W to 24,258.3W. According to Figure 8b,d, it can be observed that when the
stoichiometry increases, the ecological function E decreases and the improvement potential
IP increases. The stoichiometry directly affects the mass flow rate of the gas. When the gas
flow rate boosts, the output power of the HT-PEMFC stack has no change, but increases
the power consumption of the ancillary equipment. As a result, it can be concluded that
increasing the stoichiometry does not improve the output performance of the system. The
cathode stoichiometry and anode stoichiometry should be as low as possible while ensuring
adequate reaction of the gas in the stack.
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5. Conclusions

In this paper, a thermodynamic model of a vehicular HT-PEMFC system using PA
doped PBI membrane based on Matlab is developed, which includes the HT-PEMFC stack
and the ancillary equipments to maintain the operating conditions of the stack. The system
model can predict the temperature and pressure distribution of the fluid in each state,
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as well as the energy loss and exergy loss of each component in the system. Through
thermodynamic analysis of the system the main conclusions can be drawn:

The efficiency of hydrogen use can be effectively improved by using a hydrogen
compressor. At the current density J = 0.8 A cm2, heating the inlet gases by coolant can
improve the system energy efficiency by 3.15%. Meanwhile, the energy recovery of cathode
exhaust gas using a turbine can make the system energy efficiency improved by 2.67%. The
exergy loss of the HT-PEMFC stack and heat exchanger is relatively large. To improve the
system output performance, on the one hand, the waste heat loss at the heat exchanger
should be reduced, and waste heat utilization can be improved by means of cogeneration,
etc. On the other hand, the energy conversion efficiency at the HT-PEMFC stack should
be improved to reduce the exergy loss. The ecological performance of the system is better
at lower current densities region. However, vehicular HT-PEMFC systems require higher
power density stacks so as to facilitate installation and save space. Therefore, the operating
current density of the HT-PEMFC stack should be carefully designed according to the
specific requirements of the vehicle power system in practical applications. When the
inlet gas temperature is 406.1 K, the energy efficiency, exergy efficiency and net output
power of the system reach the maximum. And if the inlet gas temperature is too high,
the power consumption of auxiliary equipment will increase. The ecological performance
of the system is better in the relatively low range of the cathode inlet pressure. And the
system output performance improves with the increase of anode inlet pressure. In addition,
the cathode and anode stoichiometry should be reduced as much as possible to improve
the system output performance on the basis of ensuring sufficient gas reaction in the stack.
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