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Table S1. MolProbity [1] analysis of CCR3 Homology Models truncated to residues 23–317. *** de-

notes the selected model. The CCR5 template PDB ID 4MBS is included for comparison [2]. 

 
Model 

1*** 
Model 2 Model 3 Model 4 Model 5 

CCR5 

(4MBS) 
Goal 

Clashscore 1.22 1.42 1.02 1.22 1.02 2.47  

Poor Rotamers 1 (0.38%) 1 (0.38%) 0 0 1 (0.38%) 
28 

(4.84%) 
<0.3% 

Favored Rota-

mers 

261 

(98.49%) 

261 

(98.9%) 

262 

(98.49%) 

261 

(98.49%) 

262 

(98.49%) 

506 

(87.54 
>98% 

Ramachandran 

Outliers 
0 0 1 (0.34%) 1 (0.34%) 1 (0.34%) 

6 

(0.87%) 
<0.05% 

Ramachandran 

Favored 

286 

(97.61%) 

282 

(96.25%) 

286 

(97.61%) 

284 

(96.93%) 

286 

(97.61%) 

664 

(96.51%) 
>98% 

Rama. Distribu-

tion Z-score 

−0.25 ± 

0.45 

−0.38 ± 

0.44 
0.79 ± 0.47 0.70 ± 0.49 0.06 ± 0.46 

−1.29 ± 

0.29 

|Z 

score|<2 

MolProbity 

Score 
0.92 1.13 0.88 1.02 0.88 1.78  

Cβ deviations 

>0.25Å 
0 0 2 (0.71%) 0 1 (0.35%) 0 0% 

Cα Geometry 

Outliers 
0 2 (0.69%) 0 0 2 (0.69%) 

2 

(0.29%) 
<0.5% 

Bad bonds 
2/2493 

(0.08%) 

5/2493 

(0.2%) 

4/2493 

(0.16%) 
0/2493 0/2493 0/5641 0% 

Bad angles 
7/3391 

(0.21%) 

14/3391 

(0.41%) 

8/3391 

(0.24%) 

16/3391 

(0.47%) 

15/3391 

(0.44%) 

20/7698 

(0.26%) 
<0.1% 

Cis Prolines 0/9 0/9 1/9 0/9 0/9 0/26 

≤1 per 

chain, 

≤5% 

Twisted Pep-

tides 
0 0 0 0 2 (0.68%) 0 0 

Table S2. Docking Parameters used in AutoDock Vina [3] analysis. . 

Receptor Ligand center_x center_y center_z 

CCR3_model.pdbqt ligand.pdbqt 152.076 117.239 28.933 

     

energy_range exhaustiveness size_x size_y size_z 

4 8 104 102 50 
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Figure S1. CCR3 model generation and validation. (a) 5 full-length models generated by Robetta (1–5 left-right) [4]. (b) 

Modeling error per residue associated with each model, estimated by Robetta. (c) Models in (a) truncated to residues 23–

317 (1–5 left-right) to forego error-prone regions identified in (b). Model 1 was selected for this work. 
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Figure S2. CCR3 model validation, compared to the CCR5 template 4MBS. (a) ProSa Z-score [5] as a function of total 

residue number for the CCR3 Homology Model Chosen for this work. The black dot represents the ROBETTA CCR3 

homology model. A Z-score of -3.61 falls within the Z-score range of experimentally determined conformations as deter-

mined by NMR (dark blue) and X-Ray Crystallography (light blue) of similar number of residues. (b) Ramachandran 

analysis of the CCR3 model chosen for this work using PROCHECK [6]. (c) Z-score comparison and (d) Ramachandran 

analysis for the CCR5 template used in this work for comparative modeling. 
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Figure S3. Structures, names, and database substance identification numbers (ZINC database [7]) of the small molecules 

docked to the CCR3 model. 
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Figure S4. Average RMSD and RDF analysis of replicates for simulation runs. (a) RMSD analysis suggests a general equi-

librium is quickly reached. (b) Results suggest cholesterol preferentially packs around the receptor over PC, evidenced by 

higher calculated cholesterol RDFs within ~4 nm. Both PC and cholesterol RDF values trend to 1 (no correlation) shortly 

after 4 nm. Line thickness is correlated with increased variance in standard deviation among the five replicates for each 

membrane composition. The PC RDF behaves the same in all simulations. The cholesterol RDF follows a gradually tight-

ening of variance, suggesting variable packing at lower percent membranes. 
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Figure S5. RMSF analysis of simulation data. (a) ΔRMSF mapped onto the monomer (left) and plotted (right) for each 

cholesterol composition. Increasing rigidity (blue) suggests cholesterol-driven conformational selection. (b) Raw RMSF 

values used to calculate ΔRMSF in (a). 
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Figure S6. Plotted Pylipid-predicted [8–10] binding sites for both cholesterol and PC, for all runs. Binding site numbering is 

based on the first residue sequentially in the primary sequence and does not necessarily reflect the same binding site in differ-

ent runs. Cholesterol is preferentially interacting with the receptor in each average of simulations; PC behavior is both con-

sistent and non-interacting. 
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Figure S7. Identification of Chemokine Receptor Cholesterol-Binding Sites. (a) CRAC motif [11,12] 

(L/V–X1–5–Y–X1–5–R/K) sequences are highlighted in red. (b) CARC motif [12,13] (R/K–X1–5–Y/F–X1–

5–L/V ) sequences are highlighted in blue. Sequences were derived from Fantini and Barrantes, 2013 

and mapped onto snake plots using the GPCR database [14]. (c) Motifs in CCR3 lacking cholesterol 

residency time as identified by PyLipID [8,9], color coded as in (a) and (b). 

(a)

(b)

(c)
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Figure S8. Several CARC sites [12,13] found within PyLipID-predicted binding sites [8,9] 

of unimpressive cholesterol residency time. Cholesterol residency time in the TM3/4/5 

extracellular (dark teal) and intracellular (tan) sites is quite low. CARC site Phenylala-

nines are labeled on the left (Weinstein-Ballesteros numbering [15]), and the full sites are 

visualized on the right in snake plot form (GPCRdb, [14]). 
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. 

Figure S9. A Noncanonical Putative Cholesterol-Binding Site Previously Identified in CXCR4 and 

CCR5 [16] is accurately predicted by PyLipID analysis [8,9] of CCR3 and includes the amphipathic 

H8 (left). The main residues involved in this binding site (right) are largely conserved in CC and 

CXC motif chemokine receptors, number according to the Weinstein-Bellesteros numbering con-

vention [15]. Listed are Uniprot accession numbers. 
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