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Abstract: In the present work, Ar/O2 plasma treatment was used as a surface modification tool for
polypropylene (PP) membranes. The effect of the plasma conditions on the properties of the modified
PP surface has been investigated. For this purpose, the influence of gas composition and its flow
rate, plasma power excitation as well as treatment time on the contact angle of PP membranes has
been investigated. The properties of used membranes were determined after various periods of
time: immediately after the modification process as well as after one, four and five years of storage.
Moreover, the used membranes were evaluated in terms of their performance in long-term MD
process. Through detailed studies, we demonstrated that the performed plasma treatment process
effectively enhanced the performance of the modified membranes. In addition, it was shown that
the surface modification did not affect the degradation of the membrane matrix. Indeed, the used
membranes maintained stable process properties throughout the studied period.

Keywords: hydrophobic membrane; membrane distillation; plasma treatment; surface
hydrophilization

1. Introduction

Properties and surface structure of the membrane are the key parameters influencing
separation effects in membrane processes. Indeed, the membrane pore size determines
the size of the retained particles and macromolecular substances in microfiltration (MF)
and ultrafiltration (UF) processes, respectively, while the porous support dense skin layer
enables separation of ions from desalinated water by the reverse osmosis process (RO) [1–3].

It has been widely documented, e.g., [4–7], that water desalination can also be per-
formed by the membrane distillation process (MD). However, it is necessary to mention
that since in MD, process water and other volatile compounds evaporate from a feed
through pores filled by gas phase, the solutes rejection is influenced by the vapour–liquid
equilibrium. For this reason, in order to separate the feed from the distillate obtained, it is
necessary to maintain a vapor layer inside the membrane. Most often, it is obtained using
porous membranes made of highly hydrophobic polymers such as polypropylene (PP) [8],
polytetrafluoroethylene (PTFE) [9] and polyvinylidenefluoride (PVDF) [10].

It should be noted that fouling occurring during membrane exploitation is a critical
issue and has serious consequences for the process efficiency and performance. Hence,
preventing a decline in permeate flux is a basic requirement for membrane process appli-
cation on an industrial scale [11,12]. As has been indicated by Yao et al. [4], key factors
influencing fouling and wetting in the MD process are classified as: membrane surface
properties, process parameters and feed characteristics. An increasing number of studies
have found that reducing of the fouling intensity can be achieved by various methods
of modifying the surface properties of the membranes [13–19]. For example, it has been
demonstrated [20,21] that fouling caused by hydrophobic compounds present in the feed
can be successfully limited by improving the membrane’s surface hydrophilicity. Surface
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deposition, interfacial crosslinking, coating and graft polymerization are applied for surface
modification [22–25].

A relatively simple, fast and effective method of membrane modification is plasma
treatment, which has also been successfully used in the modification of membranes for MD
applications [26–32]. The process of plasma treatment allows one to induce hydrophilicity
of the polymer surface [33]. Undoubtedly, the advantage of the plasma treatment process
is the fact that it does not change the properties of the bulk of the membrane matrix, but
only modifies its surface, usually several nanometers deep [34]. Various methods and
design solutions of plasma induction apparatuses are used, which significantly affects
the obtained surface modification effects [25]. In addition, for a given apparatus, various
effects can be obtained by changing the composition of plasma gases as well as its operating
parameters, such as time of plasma treatment and excitation power. This may hinder the
process of membrane modification, as it requires very careful selection of parameters for
its implementation [35]. On the other hand, in an industrial application, using only one
apparatus and making slight changes to the parameters ensure producing membranes with
different performances [25].

Summarizing the literature data, it can be concluded that since the plasma gas composi-
tion determines the effectiveness of the process, the selection of suitable gases is a key issue.
When using inert gases such as argon (Ar) or helium (He), the obtained plasma gas does
not contain new components that can be deposited on the membrane surface, as is the case
with, e.g., CF4 plasma [30,31]. However, Ar or He plasma may cause etching/degradation
of the polymer surface which changes surface morphology and porosity [36]. Gas plasma,
which contains air, O2, CO2 or H2O demonstrates a similar effect [35,37]. In turn, the
presence of oxygen in the plasma promotes the formation of hydrophylic groups [38].
Moreover, free radicals excited during the action of the plasma are still active and cause
further changes in the composition of the surface. As a result, if the material is in contact
with air, oxidation processes may occur and hydrophilic groups such as COOH or C=O are
formed on the surface, although the plasma did not contain oxygen [39].

In the case of hydrophobic polymers such as polypropylene, it is advantageous to
hydrophilize their surface, which reduces organic fouling and increases adhesion to, e.g.,
paints. Unfortunately, it was found that the created hydrophilic surface quickly regains its
hydrophobicity. This is due to the fact that some hydrophilic compounds (low molecular
oxidized compounds—LMOC) evaporate from the membrane surface or, as a result of
reorganization of polymer chains, penetrate into its deeper layers [33,35]. In the case of the
MD process, it can be expected that the recovery of hydrophobicity will be advantageous
since higher hydrophobicity leads to less surface wetting. However, some hydrophilic
groups should remain on the membrane surface to limit the deposition of hydrophobic
foulants [26].

When assessing the properties of the membranes, the time from the production of
the membranes to the start-up of the membrane system should also be taken into account.
Indeed, this is a period of various multi-stage activities and certainly lasts at least several
months. Therefore, it is important to investigate the changes in membrane properties, e.g.,
one year after their modification. In addition, the plasma treatment process may initiate
polymer degradation during the storage of modules or reveal it during the operation of the
MD installation.

Taking the abovementioned into account, the objective of this study was to investigate
stability of Ar/O2 plasma-treated PP membranes applied for membrane distillation. The
properties of used membranes were determined immediately after the modification process
as well as after one, three, four and five years of storage.
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2. Materials and Methods
2.1. Plasma Treatment

The capillary polypropylene membranes (Table 1) manufactured for the microfiltration
process by Microdyne GmbH (Germany) were applied for the presented studies. The
membranes have a sponge structure with an average pore diameter of 0.2 µm.

Table 1. Characteristics of the PP membranes used in the experiments (manufacturer’s data).

Inner Diameter
(mm)

Wall Thickness
(mm)

Porosity
(%)

Average Pore Diameters
(µm)

1.8 0.4 72 0.2

The membranes were modified by gas plasma using an apparatus for plasma enhanced
chemical vapor deposition (PECVD) 2.45 GHz produced by Roth & Rau (Wüstenbrand,
Germany). In order to obtain the plasma, Ar or a mixture of Ar/O2 of the following
concentration (volume%): Ar80%–O220% or Ar50%–O250% was used. Analytical grade
Ar and O2 gases were used. The applied gas flow rate was in the range of 30–90 mL/min.
The PECVD system used microwave excitation at a frequency of 2.45 GHz. The plasma
power was in the range of 50–205 W. Additionally, the sample holder was connected to the
direct current (DC) voltage, which by applying negative DC bias voltages (Bias) allows the
increase of the energies of the ions bombarding the surface of the treated sample [40]. In
our studies, the values of Bias were varied from 80 to 203 V.

Four membrane samples, spaced 5 mm apart, were placed in the chamber of the
apparatus on the substrate holder. The chamber was vacuumed, and then plasma was
generated at 6–7 Pa for a defined time. Plasma duration time equal to 1, 3 and 5 min was
used. The plasma stream, acting from the top, modified only half of the external surface of
the capillary membrane. Therefore, after plasma treatment was completed, the membranes
were inverted and the process was repeated. The results of the studies using a scanning
microscope showed that such treatment did not create the boundary between the lower
and upper surfaces of the membranes. The obtained modified membrane samples were
stored in the closed plastic containers at ambient conditions.

2.2. Membrane Distillation

The MD process was performed in the direct contact MD (DCMD) configuration using
modules without external housing (submerged module) with distillate flow inside the PP
capillaries. Such a system has been successfully applied to treatment of oily wastewaters
and construction of membrane bioreactors [41,42]. The MD experimental studies were car-
ried out using the installation schematically shown in Figure 1. Three capillary membranes
were mounted in each submerged MD module with an effective length of 8 cm (module
area of 19.6 cm2). The tested MD module was placed in a feed tank that was electrically
heated. An industrial temperature controller EDIG (Nűga Company, Germany) was used.
The applied feed temperature was 353 ± 0.5 K. The volume of the feed in the tank was
kept constant, VF = 4.3 ± 0.1 L. In part of the presented study, a laboratory thermostat (5 L)
was used as the feed tank. Inside the membranes, the cooled distillate (300 ± 2 K) flowed
at a speed of 0.35 m/s. The MD process was carried out continuously by collecting the
permeate flowing from the distillate loop in the distillate tank. The permeate flux (L/m2h)
was calculated as the mean of the distillate volume collected over 24 h. NaCl solutions and
salt solution contaminated by oil were used as a feed.
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Figure 1. Experimental Membrane Distillation (MD) set-up. 1—MD module, 2—feed tank with 
electrical heating, 3—peristaltic pump, 4—cooling bath, 5—distillate tank, 6—measurement 
cylinder, T—thermometer. 
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Figure 1. Experimental Membrane Distillation (MD) set-up. 1—MD module, 2—feed tank with
electrical heating, 3—peristaltic pump, 4—cooling bath, 5—distillate tank, 6—measurement cylinder,
T—thermometer.

2.3. Analytical Methods

The composition of the membrane surface was tested using the attenuated total
reflection. Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-
FTIR) analyses were performed using a Nicolet 380 FTIR spectrophotometer coupled with
Smart Orbit diamond ATR accessory (Thermo Electron Corp., Waltham, MA, USA).

Scanning Electron Microscopy (SEM) (Hitachi SU8000, Tokyo, Japan) and an Atomic
Force Microscopy (AFM) (multi-mode 8 AFM, Brucker, Santa Barbara, CA, USA) were used
to study the membrane morphology.

The membrane hydrophobicity was determined by water contact angle (WCA). The
sessile drop method using the Contact Angle System OCA (Data Physics, Filderstadt,
Germany) apparatus was used for the WCA measurements. The measurements were
performed for each type of studied membranes, repeated five times across the surface of
the sample and the mean value of WCA was determined.

Diameters of membrane pores were measured via a mercury porosimetry technique
using Autopore III (Micrometrics GmbH, Aachen, Germany).

Distillate conductivity was measured with a 6P Ultrameter (Myron L Company, Carls-
bad, CA, USA).

The oil content in the solutions was examined by infrared method using an oil analyzer
OCMA 500 manufactured by Horiba (Kyoto, Japan).

3. Results and Discussion
3.1. Conditions of Plasma Treatment

It is well established that plasma treatment is a complex process and its conditions
may affect the properties of the polymer surface [43]. Therefore, in the first stage of the
presented studies, the effect of the plasma treatment conditions on the properties of the
modified PP surface has been investigated. For this purpose, various values of the gas flow
velocity and different gas compositions were used. Moreover, a wide range of the plasma
operating time and excitation power was applied. The obtained effects were assessed
by measuring the water contact angle. In order to avoid the possible influence of the
porosity of the capillary wall, a nonporous flat PP foil (0.2 mm thickness) was used for
preliminary tests.

Contact angle of the non-treated PP foil was equal to 95◦ and, as a result of the plasma
treatment, it decreased significantly (Figure 2). It has been determined that each of the
tested parameters had a significant impact on the changes in the hydrophobicity of the
PP foil surface. These results are in good agreement with the work of [35], where similar
changes in contact angle (below 70◦) were obtained for polypropylene membranes modified
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by Ar plasma. As has been indicated by the authors, the use of low power caused the
hydrophobicity to quickly increase to over 80◦. In general, lower and more stable contact
angle values are obtained by increasing the power of the plasma excitation [44]. This
observation was confirmed in the presented studies, regardless of both plasma exposure
time (Figure 2) and gas flow (Figure 3). Increasing the gas flow promotes the homogeneity
of the produced plasma [26]. On the other hand, the increase in plasma power results in
greater intensity of free radicals activity, leading to an increase in the content of oxygen
compounds on the membrane surface [45]. In addition, changing the surface roughness also
affects the CA value. Indeed, the plasma etches the polymer surface and at the same time the
concentration of the polymer in the gas phase increases, which results in its redeposition on
the sample surface, leading to an increase in the surface roughness. Importantly, even small
changes in plasma treatment parameters may significantly affect the etching/redeposition
balance [46], resulting in different changes in CA values (Figure 3).
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A much smaller reduction in contact angle was noted when oxygen was added to Ar
(Figures 4 and 5). This effect was observed despite the fact that the presence of oxygen in
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the plasma gas generally increases the number of oxygen-based polar groups, which in
turn increases the hydrophilicity of the surface [37]. However, in another study [47], it has
been shown that initially, the plasma causes etching of the surface, while the extension of
its time (4 and more minutes) favors the redeposition of fragments on the polymer surface,
which leads to increasing its hydrophobicity.
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power 200 W and flow rate: 90 mL/min.

Notably, several researchers observed the phenomenon of the rapid recovery of mem-
brane hydrophobicity within 1–2 days after plasma exposure [36,45]. In this study, good
stability of the obtained changes was reported, especially for higher values of the plasma
excitation power (Figure 5). Moreover, due to a plasma treatment on the PP surface,
low molecular oxidized compounds (LMOCs) were created. The hydrophilic LMOCs are
weakly bound to the polymer surface and can be easily removed from its surface by rinsing
with water or disappear during the membranes storage (ageing phenomenon) [36]. This
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confirms the conclusion presented by Wade et al. [48], indicating that the gas effect depends
on the polymer type.

3.2. Parameters of Membrane Modification

The studies carried out with the use of PP foil showed that application of higher
plasma power did not destroy the polymer. Moreover, good stability of the CA value was
obtained, which confirms the results of the other study [45]. For these reasons, high power
values (100–205 W) were used for modifying the PP membranes. The contact angle values
presented in Table 2 indicate that the surface of the modified membranes had hydrophilic
properties. Contrary to PP foils, also for the Ar/O2 plasma, a significant reduction of the
contact angle value was obtained. This may limit the intensity of the fouling phenomenon
caused by hydrophobic substances, but, on the other hand, such low values (55–65◦) can
result in wetting of surface pores during the MD process.

Table 2. Influence of plasma parameters on the water contact angle and membrane tortuosity.

Membrane Power (W) Bias (V) Time (min) Plasma Water Contact Angle (◦) RA (nm)

#0 - - - - 102.1 150 ± 29
#1 205 180 5 Ar 65.1 ± 3.7 286 ± 71
#2 205 270 3 Ar 57.8 ± 2.5 236 ± 63
#3 205 272 1 Ar 61.9 275 ± 68
#4 101 100 5 Ar 62.2 ± 2.9 200 ± 54
#5 205 274 5 Ar/O2 71.6 182 ± 80
#6 205 215 5 Ar/O2 55.6 ± 2.7 188 ± 55
#7 101 139 5 Ar/O2 62.4 ± 2.1 197 ± 20

The SEM and AFM studies (Figure 6) showed that the plasma treatment process
significantly modified the membrane surface. The obtained results confirm that even
small changes in the plasma formation parameters resulted in significant differences in
the morphology of the treated membrane surface. Higher RA values were reported for
Ar plasma-modified membranes. In study [49], it has been shown that though different
gases exhibit different etching rates of polymers, Ar is more powerful in roughening the
surface through physical etching under strong ion bombardment. However, it has been
found that the plasma treatment process led to modification only of the membrane surfaces.
Indeed, the SEM studies of the membrane cross-section (Figure 7) did not demonstrate
significant changes in the pore membranes’ walls, which indicates that they maintained
their properties.
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Figure 7. SEM images of the membrane cross-section. Virgin membrane #0: (a) edge of external surface, (c) inside the wall.
Membrane #6: (b) edge of external surface, (d) inside the wall.

It is important to note that the results obtained from the studies performed by a
mercury porosimetry method (Figure 8) confirmed that the observed changes in pore size
were related only to the membrane surface, while the interior of the pore wall did not
change. Compared to membrane #0, results for the membranes treated by plasma showed
a slight shift of the peak in the range of 0.4–0.6 µm, indicating the greater proportion of
large pores formed on their surface. As a result of the use of plasma, the larger pores were
formed only on the membrane surface, which is advantageous for MD membranes since
the larger pores are faster wetted by the feed. Moreover, it is expected that the formation of
hydrophilic compounds will facilitate surface wetting. However, as shown in the previous
work [26], wetting the thin surface layer with plasma did not cause a significant decrease
in the MD process efficiency. This is due to the fact that the water conductivity coefficient
is higher than that of the dry membrane; therefore, filling of the surface pores by water
does not reduce the temperature of the evaporation surface.
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Figure 8. Pore size distribution determined by a mercury porosimetry method. 
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Figure 9. Changes in permeate flux during the MD process with membranes treated by plasma. 
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3.3. Membrane Wettability

Figure 9 shows the changes in permeate flux during the MD process of 5 g NaCl/L
solution with membranes treated by plasma. It can be seen that the performed surface
modification allowed a significant increase in the efficiency of the process. During the
first 2 h of the processes, the permeate flux decreased and, finally, stabilized at the level
of 0.85–0.93 of the maximum value. This could be due to the wetting of the surface pores
by the feed. Generally, the surface layer by water filling does not significantly affect the
MD process conditions [26]. However, in the case of NaCl solution, evaporation of it
inside the pores causes a significant increase in the salt concentration at the feed/vapor
interface. According to Roult’s law, this causes a reduction in the vapor pressure, i.e., a
reduction in the driving force for mass transport in the MD process. The diaphragm layer
(laminar sublayer) is stationary; there is no feed flow inside the wetted pores. In this case,
only diffusion (dC/dx) may provide the salt back transport from the wetted pores to the
feed bulk.
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Feed: NaCl solution (5 g/L). One month after plasma treatment. 
Figure 9. Changes in permeate flux during the MD process with membranes treated by plasma. Feed:
NaCl solution (5 g/L). One month after plasma treatment.
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Wetting the surface pores can facilitate the wetting of the entire membrane wall,
which should significantly increase the distillate conductivity. However, it was shown
that the conductivity of the distillate was less than 5 µS/cm (feed conductivity over
10,000 µS/cm). This observation confirmed that the used plasma hydrophically modified
only the membrane surface. In turn, inside the membrane wall, the pores were still
hydrophobic, which prevented them from being wetted.

After the experiments were completed, the MD modules were rinsed thoroughly
with distilled water and, after drying, they were placed in a plastic box filled with air
for one year. After this period, the membranes were still flexible and MD processes were
resumed. For study, the following membranes were selected: membranes characterized
by the similar high performance (membranes #2 (Ar) and #6 (Ar/O2)) and the lowest
performance (membranes #3 (Ar) and #7 (Ar/O2)) during the initial studies (Figure 9).
The experiments were conducted continuously for 250 h (Figure 10). For safety reasons,
the laboratory thermostat (Figure 1, element 2) was replaced by a heating chamber with
an industrial controller. Since no feed mixing was performed, the noted permeate flux
(Figure 10) was slightly lower than those shown in Figure 9. This is due to the fact that
turbulence of the feed flow has a significant impact on the membrane surface temperature.
Indeed, no mixing led to a decrease in the temperature value (lower value of the heat
transfer coefficient), which in turn reduced the value of the driving force of mass transport
in MD [26].
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Figure 10. Changes in permeate flux during long-term water desalination by the MD process. One 
year after plasma treatment. 

It must be recognized that despite the long service life of the membranes (250 h), the 
membranes demonstrated a stable performance. Moreover, the distillate conductivity 
only increased slightly (Figure 11). This observation confirms the high resistance of the 
membranes to wetting. Remarkably, the exception has been noted for the #7 membrane, 
for which the performance after 100 h of the process rapidly decreased to the value equal 
to 50% of the maximum permeate flux. However, the conductivity of the distillate did not 
exceed 4 μS/cm (Figure 11, #7). Therefore, it can be concluded that the change in #7 
membrane performance was not caused by wetting of the pores. Moreover, the 
performance obtained for membranes #2 and #6 (similar at the beginning of the study, 
Figure 9) now differed significantly. In both cases, it was due to changes in the porosity 
of the surface layer (see the next section). 

Figure 10. Changes in permeate flux during long-term water desalination by the MD process. One
year after plasma treatment.

It must be recognized that despite the long service life of the membranes (250 h),
the membranes demonstrated a stable performance. Moreover, the distillate conductivity
only increased slightly (Figure 11). This observation confirms the high resistance of the
membranes to wetting. Remarkably, the exception has been noted for the #7 membrane, for
which the performance after 100 h of the process rapidly decreased to the value equal to 50%
of the maximum permeate flux. However, the conductivity of the distillate did not exceed
4 µS/cm (Figure 11, #7). Therefore, it can be concluded that the change in #7 membrane
performance was not caused by wetting of the pores. Moreover, the performance obtained
for membranes #2 and #6 (similar at the beginning of the study, Figure 9) now differed
significantly. In both cases, it was due to changes in the porosity of the surface layer (see
the next section).
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Figure 11. Changes in distillate electrical conductivity during the MD process (Figure 10). One year 
after plasma treatment. 

3.4. Long-Term Stabilization of Membranes 
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after plasma treatment.

3.4. Long-Term Stabilization of Membranes

After 4 years from the plasma treatment process, both the unused membranes and
those in the MD modules, when tested, were still characterized by good flexibility. Al-
though no changes in the value of the contact angle have been reported for the #0 membrane,
significant changes for membranes treated by plasma have been observed (Table 3). For
instance, the contact angle for the #2 membrane treated by Ar plasma after 4 years of
storage increased from 62.8 ± 3.5◦ to 106.2 ± 3.4◦. In turn, for the #6 membrane treated
by Ar/O2 plasma, the value of the contact angle increased from 69.6 ± 2.7◦ to 81.4 ± 5.7◦.
On the other hand, after the MD process, a decrease in contact angle was generally found.
This is consistent with the fact that during membrane storage, soluble compounds could
be formed on their surface, which, in turn, during the MD process are dissolved and finally
could lead to increasing of the membranes’ hydrophilicity.

Table 3. Changes of membranes’ water contact angle.

Membrane Plasma After 1 Day After 4 Years After MD

#0 - 103.9 ± 1.6◦ 104.7 ± 1.9◦ 90.1 ± 4.9◦

#1 Ar 64.8 ± 2.9◦ 98.4 ± 2.1◦ 88.4 ± 3.7◦

#2 Ar 62.8 ± 3.5◦ 106.2 ± 3.4◦ 100.1 ± 2.8◦

#3 Ar 61.9 ± 1.4◦ 95.8 ± 1.6◦ 78.5 ± 1.1◦

#4 Ar 62.1 ± 2.9◦ 88.7 ± 2.8◦ 65.8 ± 1.4◦

#5 Ar/O2 71.6 ± 1.5◦ 92.9 ± 2.8◦ 85.8 ± 3.1◦

#6 Ar/O2 69.6 ± 2.7◦ 81.4 ± 5.7◦ 72.4 ± 2.6◦

#7 Ar/O2 62.4 ± 2.1◦ 106.1 ± 1.6◦ 82.7 ± 5.7◦

Figure 12 shows the changes in permeate flux during water desalination by the MD
process performed after 4 years of membrane storage. It is worth noting that, similar to
the membranes tested 4–5 weeks after the plasma treatment process (Figure 9), a signifi-
cant decrease in the permeate flux value was observed during the first 2–5 h of the MD
process run. This decrease was not observed when the modules were reused after drying
(Figure 10). This indicates that plasma-modified membranes stabilized during the first few
hours of operation.
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the feed temperature was high (353 K), which could lead to some changes in morphology 
and densification of the membrane structure. Indeed, SEM studies (Figure 15) confirmed 
that the structure of the membrane surface was more compact after the MD process. 

 
0 2 4 6 8 10 12 14 16 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 
#0      #1      #2      #3        #5      #6      #7 

ΔP [kPa] 

Pe
rm

ea
bi

lit
y 

[L
/m

2 s
 k

Pa
] 

 
Figure 13. Permeability of membranes treated by plasma (non-used). 

Figure 12. Changes in permeate flux during water desalination by the MD process performed after
4 years of membrane storage.

After the MD processes were completed, the membranes were rinsed thoroughly with
distilled water and dried naturally in air. Subsequently, the investigation of the impact
of the MD process runs on the membranes’ air permeability has been carried out. The
results presented in Figures 13 and 14 confirmed that conducting the MD processes led
to a decrease in the membranes’ permeability. This can be explained by the fact that the
feed temperature was high (353 K), which could lead to some changes in morphology and
densification of the membrane structure. Indeed, SEM studies (Figure 15) confirmed that
the structure of the membrane surface was more compact after the MD process.
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Figure 14. Permeability of membranes treated by plasma (after the MD process). 
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Figure 14. Permeability of membranes treated by plasma (after the MD process).
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Figure 14. Permeability of membranes treated by plasma (after the MD process). 
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Figure 15. SEM images of membrane samples before (the left side) and after the MD process (the right side). Membranes: 
(a) #1, (b) #2, (c) #5, (d) #6. 

The gas permeability tests were carried out by feeding the gas inside the capillaries, 
gradually increasing the amount of air forced (Figure 14—increasing value of ΔP). The 
permeability increased with the increase of the ΔP until the value of 1 L/m2 s kPa for the 
pressure difference above 8 kPa had been achieved. This result indicates that the gas 
flowing through the wall could cause stretching of the pores on the outer surface of the 
capillaries (Figure 15) and this effect should increase with increasing ΔP. This observation 
indicates a certain instability of the plasma-modified layer and no degradation of the 
polymer since PP had retained its flexibility. 

After completion of the abovementioned tests, the dried modules as well as unused 
membranes were stored in the air atmosphere. One year later (corresponding to 5 years 
from the plasma modification), the investigation of the modules’ performance was 
performed. It has been found that the used membranes were still efficient. Indeed, the 
exponential dependence of the permeate flux on temperature typical of the MD process 
has been noted (Figure 16). Each module was tested for 8 h and the data presented in the 
figure correspond to the arithmetic mean of two one-hour measurements. NaCl solution 
(3 g/L) was used as a feed and the obtained distillate was characterized by conductivity 
below 5 μS/cm. Such a low value indicated that the membranes possessed robust wetting 
resistance. It is worth noting that for the feed temperature equal to 353 K, the obtained 
values of the permeate flux were similar to those noted after stabilization in the initial 
stage of the studies (Figure 9). This result evidenced that the observed changes in the 

Figure 15. SEM images of membrane samples before (the left side) and after the MD process (the right side). Membranes:
(a) #1, (b) #2, (c) #5, (d) #6.

The gas permeability tests were carried out by feeding the gas inside the capillaries,
gradually increasing the amount of air forced (Figure 14—increasing value of ∆P). The
permeability increased with the increase of the ∆P until the value of 1 L/m2 s kPa for
the pressure difference above 8 kPa had been achieved. This result indicates that the gas
flowing through the wall could cause stretching of the pores on the outer surface of the
capillaries (Figure 15) and this effect should increase with increasing ∆P. This observation
indicates a certain instability of the plasma-modified layer and no degradation of the
polymer since PP had retained its flexibility.

After completion of the abovementioned tests, the dried modules as well as unused
membranes were stored in the air atmosphere. One year later (corresponding to 5 years
from the plasma modification), the investigation of the modules’ performance was per-
formed. It has been found that the used membranes were still efficient. Indeed, the
exponential dependence of the permeate flux on temperature typical of the MD process
has been noted (Figure 16). Each module was tested for 8 h and the data presented in the
figure correspond to the arithmetic mean of two one-hour measurements. NaCl solution
(3 g/L) was used as a feed and the obtained distillate was characterized by conductivity
below 5 µS/cm. Such a low value indicated that the membranes possessed robust wetting
resistance. It is worth noting that for the feed temperature equal to 353 K, the obtained
values of the permeate flux were similar to those noted after stabilization in the initial stage
of the studies (Figure 9). This result evidenced that the observed changes in the surface
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morphology (Figure 15) occurred in the initial period of the MD process, after which the
membrane structure was stable.
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3.5. Desalination of Oily Water

As established earlier [26], the modification of membranes with He plasma allowed
one to obtain membrane properties limiting the intensity of the oil fouling phenomenon. It
has been indicated that these properties resulted from the formation of hydrophilic groups
containing C=O on the membrane surface. Therefore, in the next stage of the presented
study, the 5-year modules were used to study the desalination of NaCl solution (4 g/L)
contaminated by oil emulsion (100 ± 20 mg/L). For this purpose, a set of experiments was
carried out.

The performed ATR-FTIR studies (Figures 17 and 18) showed that despite 5 years of
membrane storage, on the surface of modified membranes, the plasma carbonyl groups
were still present in the detected hydrophilic groups, such as COOH or >C=O. The results
of ATR-FTIR analysis performed after 5 years of the membrane storage were compared
with the results obtained by using the same apparatus after 3 and 4 years. Using the
software, diffraction patterns from individual years were superimposed and no significant
differences were found. Indeed, the positions of the individual peaks were consistent and
their intensity was similar. This result clearly shows that in the following years, despite
the membranes being stored in the air, their surface did not degrade. FTIR analysis of the
tested membranes was also performed one week after plasma exposure. The performed
studies were performed with a different apparatus, which makes their direct comparison
difficult, but in each case the plasma-modified samples showed the presence of hydrophilic
groups shown in Figures 17 and 18. Compared to the membrane #0, peak intensity for
membranes #1–#7 in the range of 1500–1800 cm−1 was 3–4 higher, similar to the membranes
after 5 years of storage. This result confirms the findings of the initial studies (Figure 5)
that the application of higher plasma power (205 W) allows one to obtain stable changes
on the membrane surface.
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The FTIR tests showed that, regardless of the gas plasma composition (pure Ar
or Ar/O2), the formation of similar types of hydrophilic groups was detected on the
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membrane surface (Figures 17 and 18). This observation confirms the results obtained in
other studies [37,39] showing that during the contact of membranes with air, free radicals
induced by the action of Ar plasma cause the formation of oxygen-containing groups. In
the tested samples, the following groups were detected, e.g., >COH (1630 cm−1 [50]), C=O
(1713 cm−1 [50,51]), COOH (1760 cm−1 [44]), >C=O (1735 cm−1 [34,51]).

The presence of hydrophilic groups confirmed by FTIR tests should limit the intensity
of the oil fouling phenomenon during the MD process of salt solution. The adsorption of
oil on the membrane surface reduced the feed access to the pores, hence, in this case, a
decrease in the process performance is observed. However, the obtained results showed
that the module performance was stable (Figure 19). Fouling also leads to wetting of the
pores, which results in an increase in the distillate conductivity. It has to be pointed out that
in the process performed using the membranes treated by plasma, the conductivity did not
increase. Moreover, it has been found that it was similar to that noted for distilled water.
Thus, the conducted experiments showed that the used membranes had high wetting
resistance. It should be pointed out that the reported value of distilled conductivity for
the #0 membrane was twice as high as that for the plasma-modified membranes. This
observation clearly indicates that the modified membranes are characterized by greater
resistance to fouling.
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Moreover, the investigation of the oil concentration in the distillate (Figure 20) has
indicated that plasma-treated membranes ensure obtaining permeate of a higher quality
that the #0 membrane. The oil content increased slightly (#3b and #4b—Figure 20) during
the 3-fold-longer MD tests (Figure 21). For completeness, it should be noted that for these
experiments, the membranes showed a stable permeate flux value. For the #4 membrane, a
greater increase in the conductivity of the distillate was noted, which indicates that this
membrane was slightly more susceptible to wetting. It was due to this fact that membrane
#4 had a smaller contact angle than that noted for membrane #3 (Table 3). As a result of
the more hydrophilic surface, the salt retention of membrane #4 was also lower and the
conductivity of the distillate increased to 13 µS/cm (Figure 21).
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4. Conclusions

This paper presents a successful method of Ar/O2 plasma treatment applied for
a modification of polypropylene membrane surface. As a result of the etching process,
the membrane surface changed significantly to a depth of less than 1 µm and surface
porosity increased significantly. This facilitated mass transport and led to increasing of the
permeate flux by more than 15%. Despite significant surface changes on the membrane
surface, the performed long-term studies have confirmed that polypropylene membranes
can be successfully used in the MD process for water desalination. The structure of
plasma-modified surface stabilized during the first few hours of the MD process, and then
remained stable in the following years. Consequently, after 5 years, the membranes were
characterized by good stability and high wetting resistance. Contamination of the feed
with petroleum compounds causes their adsorption on the membrane surface, which leads
to lowering of distillate quality. In the present work, the intensity of this phenomenon was
limited by using the polypropylene membranes treated by plasma. Indeed, the use of Ar
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and Ar/O2 gas plasma allowed for the formation of hydrophilic groups on the membrane
surface, which limited the adsorption of hydrophobic pollutants. The new properties
of PP membranes obtained as a result of the plasma treatment were stable over several
years of experiments. Particularly good properties were obtained under higher plasma
power (205 W) and flow gas of 90 mL/min. Finally, it should be emphasized that the
performed plasma treatment process did not contribute to the degradation of the polymer.
Indeed, the 5-year-old modules had properties similar to those noted immediately after
their plasma modification.
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50. Barbeş, L.; Rădulescu, C.; Stihi, C. ATR-FTIR spectrometry characterisation of polymeric materials. Rom. Rep. Phys. 2014, 66,
765–777.

51. Fontanella, S.; Bonhomme, S.; Brusson, J.M.; Pitteri, S.; Samuel, G.; Pichon, G.; Lacoste, J.; Fromageot, D.; Lemaire, J.; Delort, A.M.
Comparison of Biodegradability of Various Polypropylene Films Containing Pro-Oxidant Additives Based on Mn, Mn/Fe or Co.
Polym. Degrad. Stab. 2013, 98, 875–884. [CrossRef]

http://doi.org/10.3390/polym12051028
http://doi.org/10.1016/j.surfcoat.2012.09.041
http://doi.org/10.1016/j.jmst.2014.09.005
http://doi.org/10.1016/j.desal.2016.06.009
http://doi.org/10.1016/j.apsusc.2015.12.034
http://doi.org/10.1002/app.1991.070430901
http://doi.org/10.1016/j.surfcoat.2010.06.005
http://doi.org/10.1016/j.polymdegradstab.2013.01.002

	Introduction 
	Materials and Methods 
	Plasma Treatment 
	Membrane Distillation 
	Analytical Methods 

	Results and Discussion 
	Conditions of Plasma Treatment 
	Parameters of Membrane Modification 
	Membrane Wettability 
	Long-Term Stabilization of Membranes 
	Desalination of Oily Water 

	Conclusions 
	References

