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Abstract: Biological membranes are complex dynamic systems composed of a great variety of
carbohydrates, lipids, and proteins, which together play a pivotal role in the protection of organ-
isms and through which the interchange of different substances is regulated in the cell. Given the
complexity of membranes, models mimicking them provide a convenient way to study and better un-
derstand their mechanisms of action and their interactions with biologically active compounds. Thus,
in the present study, a new Schiff base (Bz-Im) derivative from 2-(m-aminophenyl)benzimidazole
and 2,4-dihydroxybenzaldehyde was synthesized and characterized by spectroscopic and spectro-
metric techniques. Interaction studies of (Bz-Im) with two synthetic membrane models prepared
with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and DMPC/1,2-dimyristoyl-sn-glycero-3-
phosphoglycerol (DMPG) 3:1 mixture, imitating eukaryotic and prokaryotic membranes, respectively,
were performed by applying differential scanning calorimetry (DSC). Molecular dynamics simu-
lations were also developed to better understand their interactions. In vitro and in silico assays
provided approaches to understand the effect of Bz-Im on these lipid systems. The DSC results
showed that, at low compound concentrations, the effects were similar in both membrane models.
By increasing the concentration of Bz-Im, the DMPC/DMPG membrane exhibited greater fluidity as
a result of the interaction with Bz-Im. On the other hand, molecular dynamics studies carried out on
the erythrocyte membrane model using the phospholipids POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphoethanolamine), SM (N-(15Z-tetracosenoyl)-sphing-4-enine-1-phosphocholine), and POPC
(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) revealed that after 30 ns of interaction, both
hydrophobic interactions and hydrogen bonds were responsible for the affinity of Bz-Im for PE and
SM. The interactions of the imine with POPG (1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphoglycerol)
in the E. coli membrane model were mainly based on hydrophobic interactions.

Keywords: model membranes; molecular dynamics; calorimetry; Schiff base; imine; benzimidazole;
2,4-dihydroxybenzaldehyde

1. Introduction

Biological membranes are essential for life since they regulate the entry and exit of
nutrients, neurotransmitters, and drugs [1]. Biological membranes contain three main
types of lipids: phospholipids, glycolipids, and cholesterol. Phospholipids are, in turn,
divided into different groups according to the structural properties of the polar head:
phosphatidylcholine (PC), sphingomyeline (SM), and phosphatidylethanolamine (PE) are
common lipids present in eukaryotic cell membranes [2].
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Since drugs operate through different mechanisms when their main targets are intracel-
lular and, therefore, they must penetrate the cell membrane to exert their pharmacological
action, it is essential to understand drug–membrane interactions [3]. However, the com-
plexity of the structure and functionality of cell membranes, as well as the highly dynamic
nature of lipid–lipid and lipid–protein interactions, make drug–membrane system studies
difficult [4].

Thus, artificial model membrane systems were developed to facilitate the understand-
ing of the effects of membrane lipids on drug transport and absorption in cells, drug activity,
and even drug toxicity [5,6]. Within the different types of model membranes, liposomes
are highly suitable for permeability research and drug delivery systems. Additionally,
they allow for the use of various thermoanalytical and spectroscopic techniques—such
as isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), Fourier
transform infrared spectroscopy (FT-IR), fluorescence spectroscopy, and nuclear magnetic
resonance (NMR) methods—to study biophysical interactions of the drug–membrane
complex [7–11].

In studies that make use of model membranes, saturated or unsaturated PC species
are used to mimic eukaryotic cells, while the PC/PG model is used to mimic bacterial
membranes [12]. Studies have revealed that the effect of azole compounds on model
membranes [13,14], including membranes based on the PC/PG species, is controlled by
drug–membrane interactions which depend on the length, unsaturation, and head group
of the phospholipids, as well as the surface charge of the target cell [15]. In particular,
compounds derived from benzimidazole interact with model membranes of human ery-
throcytes using the passive diffusion method [16]. In silico studies demonstrated that
hydroxyl groups present in derivatives of benzimidazole decrease the hydrophobic charac-
ter of DPPC (dipalmitoylphosphatidylcholine) model membranes and interact with the
phosphate group of the polar heads present in the membrane [17].

Studies including compounds with the benzimidazole motif on their structures are
interesting for the scientific community, not only because of their known antibacterial
and cytotoxic properties [18–20], but because of the high conjugation that they exhibit
when forming Schiff bases, improving their electronic characteristics and often conferring
fluorescent properties that facilitate the monitoring of morphology in microorganisms
subjected to these types of drugs [21].

Hence, based on the antibacterial and cytotoxic properties that Schiff bases obtained
from (1H-benzimidazol-2-yl)anilines have demonstrated [22–24], this article describes the
synthesis and characterization of 4-(((3-(1H-benzo[d]imidazol-2-yl)phenyl)imino)methyl)
benzene-1,3-diol and the study of its possible mechanism of interaction with bacterial and
mammalian membrane models by analyzing the thermodynamic profiles of the phase
transition by DSC. In addition, in order to explore the Bz-Im effect on the thermotropic
behavior of bacterial and mammalian systems, proper membrane models consistent with
experimental membrane models were developed. Thus, the interaction of the imine
towards model membranes of human erythrocytes and E. coli were described from results
by molecular dynamics (MD) simulations.

2. Materials and Methods
2.1. Synthesis of Benzimidazole Schiff Base
2.1.1. Materials

All chemical reagents used for the synthesis of benzimidazole and subsequent imine
were used as received and without further purification. Elemental analyses were performed
using Flash EA 1112 Series CHN Analyzer. A Shimadzu Affinity 1 FT-IR spectrometer was
used to obtain the infrared spectra. IR data are reported using the following abbreviations:
vs = very strong; s = strong; m = medium; w = weak; sh = shoulder; br = broad. 1H and
13C{1H} NMR spectra were obtained on a Bruker Avance II 400 spectrometer using DMSO-
d6 as a solvent at 25 ◦C. The following abbreviations were used: s = singlet; d = doublet;
t = triplet; m = multiplet. The mass spectrum of the benzimidazole was recorded on a
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Shimadzu-GCMS-QP2010 at 70 eV by electronic impact (EI) ionization, while the mass spec-
trum of the derived imine was obtained by direct analysis in real time (DART) ionization
system on a JEOL AccuTOF JMS-T100LC.

2.1.2. Synthesis of 2-(m-aminophenyl)benzimidazole (Bz)

The condensation reaction of o-phenylenediamine with m-aminobenzoic acid was carried
out following a similar methodology to that previously reported [25]. o-phenylenediamine
(0.54 g, 5 mmol), m-aminobenzoic acid (0.69 g, 5 mmol), and polyphosphoric acid were
mixed and stirred for 2.5 h at 180 ◦C. After this time, the resulting reaction mixture was
allowed to cool and then neutralized with sodium carbonate (20%) before the resulting
solution was filtered. The violet precipitate was then washed with distilled water, purified
with activated carbon, and recrystallized in ethanol to give the final product as a beige
powder. Yield: 0.87 g, 83%. C13H11N3 (209.25 g·mol−1): Calc. C, 74.62; H, 5.30; N, 20.08.
Found: C, 74.58; H, 5.36; N, 20.09%. IR (ATR cm−1): 3826 w, 3739 w, 3425 w, 3321 w, 3205 w,
2328 w, 1683 w, 1616 vs. 1566 s, 1510 s, 1463 s, 1394 m, 1346 m, 1234 m, 1062 m, 945 w,
893 m, 835 w, 750 vs. 1H NMR (DMSO-d6) δ (ppm) 12.70 (s, 1H), 7.62 (d, J = 7.0 Hz, 1H),
7.49 (d, J = 7.0 Hz, 1H), 7.43 (s, 1H), 7.28 (d, J = 7.5 Hz, 1H), 7.23–7.11 (m, 3H), 6.68 (d,
J = 7.8 Hz, 1H), 5.30 (s, 2H). MS (EI, m/z): 209.

2.1.3. Synthesis of 4-(((3-(1H-benzo[d]imidazol-2-yl)phenyl)imino)methyl)benzene-1,3-diol
(Bz-Im)

As was the case for the intermediate Bz, the imine Bz-Im was synthesized based
on previously reported procedures [26,27]. 2-(m-aminophenyl)benzimidazole (0.52 g,
2.5 mmol), 2,4-dihydroxybenzaldehyde (0.35 g, 2.5 mmol), and methanol were mixed
and set to reflux under stirring for 2 h. After this time, the yellow precipitate obtained
was washed with cold water and then dried under vacuum for 4 h. Yield: 0.72 g, 87%.
C20H15N3O2 (329.36 g·mol−1): Calc. C, 72.94; H, 4.59; N, 12.76. Found: C, 72.83; H, 4.56; N,
12.91%. IR (ATR cm−1): 3381 w, 3046 w, 1891 w, 1600 s, 1567 sh, 1512 w, 1494 vs. 1451 m,
1384 s, 1268 sh, 1259 s, 1222 m, 1143 s, 1114 m, 963 w, 910 m, 856 s, 807 vs. 725 vs. 1H NMR
(DMSO-d6) δ (ppm) 13.46 (s, 1H), 12.98 (s, 1H), 10.34 (s, 1H), 8.94 (s, 1H), 8.22–8.01 (m, 2H),
7.70–7.45 (m, 5H), 7.24 (s, 2H), 6.45 (dd, J = 8.4, 2.3 Hz, 1H), 6.35 (d, J = 2.3 Hz, 1H). 13C{1H}
NMR (DMSO-d6) δ (ppm) 163.7, 163.5, 163.2, 151.3, 149.3, 144.2, 135.5, 135.1, 131.83, 130.6,
124.6, 123.2, 122.8, 122.3, 119.6, 119.4, 112.6, 111.9, 108.5, 102.9. MS (DART+) m/z: 330.

2.2. Interaction with Models of Synthetic Membranes
2.2.1. Membrane Preparation

Model membranes mimicking mammalian and bacterial membranes were prepared
following the methodology reported previously [28]. Thus, DMPC and DMPG lipids at
a molar ratio of 3:1 were dissolved in chloroform/methanol (2:1 v/v) to imitate gram-
negative bacterial membranes [2], while the DMPC lipid alone was dissolved in chloro-
form/methanol (2:1 v/v) to imitate zwitterionic human cell membranes. The lipid mixture
was first dried under a stream of nitrogen and then under vacuum for a further three hours.
The hydration process was performed by preparing different concentrations of Bz-Im using
HEPES buffer (25 mM HEPES, pH 7.0; 100 mM NaCl and 0.2 mM EDTA), which were
added to the existing dry lipid mixture and vigorously shaken with a vortex for 2 min
before incubation for 10 min at 37 ◦C above the phase transition temperature (Tm). The
multilamellar vesicles (MLVs) were obtained after repeating the shaking and incubation
process three times [29].

2.2.2. Differential Scanning Calorimetry

For the acquisition of thermograms by DSC analysis, a TA instrument DSC Q25 was
used. Multillamellar vesicles (MLVs) were prepared using 2 mg of lipids hydrated with
Bz-Im diluted in HEPES buffer to give three Bz-Im–lipid ratios: 1:50, 1:25, and 1:10. HEPES
buffer was used as a reference solution. The samples were placed and subsequently sealed
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within standard aluminum DSC pans, and were analyzed over a range of 10 to 35 ◦C
at a heating rate of 1 ◦C/min. Trios software (TA Instruments) was used to obtain the
phase transition temperature (Tm), the transition enthalpy (∆H), and the full width at
half-maximum from thermograms (FWHM, ∆Tm/2).

2.3. Molecular Dynamics (MD) Studies
2.3.1. Construction of the 3D Structure of Bz-Im

The 3D structure of Bz-Im was drawn using Chemdraw software (https://chemdrawdirect.
perkinelmer.cloud/js/sample/index.html, access date: 8 March 2021). The Bz-Im structure
was optimized using the universal force field (UFF) [30] and the steepest descent algorithm
with Avogadro version 1.2 software.

2.3.2. Erythrocyte Membrane Construction

The zwitterionic model membrane of erythrocyte cells, which was mimicked by
zwitterionic phosphatidylcholine for DSC assays, was built with the CHARMM-GUI [31]
platform using, as a basis, the phospholipid composition mentioned by Texeira et al. [32].
The phospholipid proportions used were 20 units of POPE, 40 units of SM, and 40 units
of POPC, which were distributed both in the upper and lower layer of the membrane.
For the placement of the ions, the Monte Carlo method was used with a concentration
of 0.15 M NaCl. In addition, a water thickness of 22.5 Å, and a force field for the entire
CHARMM36m system was used [33]. The files were prepared to minimize energy, balance,
and dynamics with GROMACS [34] at 310 K.

2.3.3. Construction of Gram-Negative Bacterial Membrane Models

The membrane model systems for E. coli were constructed based on the data reported
by Epand et al. [35], using the same distribution published by Liscano et al. [36] for a
gram-negative membrane model system (POPE = 80 units and POPG = 20 units), with
CHARMM-GUI software [31].

2.3.4. Implementing Molecular Dynamics

The minimization energy of the erythrocyte model membrane and E. coli membrane
system with the ligand Bz-Im was adjusted with the steepest descent algorithm in 5000 steps
using the Verlet cutoff scheme. Equilibration was performed for 2 ns using the Berendsen
algorithm to equilibrate the temperature and pressure of the system. Molecular dynamics
were run for 10 ns at 310 K using the Nose–Hoover and Parrinello–Rahman algorithms to
adjust temperature and pressure.

Gromacs software version 2020.1 [34] was used for the molecular dynamics simulation
of gram-negative bacterial and erythrocyte membrane models. The CHARMM36m force
field [33] was used for the simulation. For the localization of the ions, the Monte Carlo
method was used with 0.15 M NaCl in water 22.5 Å thick. For the energy minimization,
the steepest descent algorithm was used, running for 1 ns. Using the Berendsen algorithm,
the system was adjusted to a temperature of 310 K with an equilibration of 2 fs/step for
300 ps to 155,000 n-steps. Once the system was equilibrated the molecular dynamics were
run for 30 ns for both erythrocyte and E. coli model membranes, using the Nose–Hoover
and Parrinello–Rahman algorithms to adjust the temperature and pressure.

2.3.5. Interaction Analysis

Gromacs was used to obtain the hydrogen bonds between Bz-Im and the phospholipids
of each membrane model system within 30 ns. PyMOL PDB files were obtained for each
membrane system at six different times: 1, 5, 10, 20, 25, and 30 ns. These files were used to
visualize and analyze the interactions between the different components of each model
system and the Bz-Im using Discovery Studio Visualizer software.

https://chemdrawdirect.perkinelmer.cloud/js/sample/index.html
https://chemdrawdirect.perkinelmer.cloud/js/sample/index.html
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3. Results and Discussion
3.1. Schiff Base (Imine) Characterization

The synthesis of Schiff base 4-(((3-(1H-benzo[d]imidazol-2-yl)phenyl)imino)methyl)
benzene-1,3-diol (Bz-Im) was carried out from the reaction between 2,4-dihydroxybenzaldehyde
and 2-(m-aminophenyl)benzimidazole (Bz) (Scheme 1).
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Scheme 1. Synthesis of Bz-Im.

Compound Bz-Im was obtained in high yield (87%) as a yellow powder, and its
structure was unequivocally determined by mass spectrometry, elemental analyses (C,
H, and N), infrared spectroscopy, and nuclear magnetic resonance spectroscopy. The FT-
IR spectra of Bz-Im showed bands corresponding to υ (3425 and 3321 cm−1) stretching
and deformation δ (1616 cm−1) vibrations of the amino group in Bz disappeared after
the formation of the imine, while a new band was observed at 1600 cm−1, characteristic
for this type of compound, confirming the formation of the N=CH bond [37]. In the
infrared spectrum, the characteristic band of the stretching vibration υC-O at 1259 cm−1

was also observed (phenolic fragment). In addition, the 1H NMR spectrum of Bz-Im
showed the characteristic signal of the imine group at 8.94 ppm, while signals due to the
aromatic protons were observed around 8.25–6.25 ppm [22,27]. Additionally, the 13C{1H}
NMR spectra exhibited a typical signal due to the imine carbon at ~163 ppm. This one-
dimensional NMR analysis was further supported with two-dimensional studies that can
be consulted in Figures S4, S6, and S7 of the supplementary material. Finally, analysis by
mass spectrometry (DART+) afforded a spectrum exhibiting the peak due to the molecular
ion [M+1] at 330 m/z (Figure S9). Elemental analysis results were also in agreement with
the proposed structure.

3.2. Model Membrane Studies
3.2.1. Thermotropic Behavior of Synthetic Model Membranes

The membrane models included mammalian-like membranes consisting of the phos-
pholipid DMPC and bacterial-like membranes consisting of a 3:1 ratio of DMPC:DMPG. By
gradually heating the vesicles without compound, the acquisition of thermotropic profiles
was achieved (Figure 1), where a pre-transition endothermic peak was observed at 12.94 ◦C
for the DMPC systems and at 12.71 ◦C for the DMPC: DMPG 3:1 mixture. PCs have a fairly
bulky headgroup, creating a size mismatch with their acyl chains, especially below the
main phase transition [38]. As the temperature increases, the main transition peak emerges
at 23.02 ◦C for the two systems mentioned above—these results being consistent with those
reported previously [28].
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By addition of Bz-Im in a 1:50 compound–lipid molar ratio, changes were observed
in the pre-transition of both systems (Table 1), suggesting that this compound affects the
transition from a flat membrane phase (Lβ) to a ripple phase (Pβ) as a result of the changes
in size mismatch with the phosphatydilcholine headgroup hydration [38]. Interestingly, in
the pre-transition from the DMPC: DMPG mixture, two subtle peaks emerged (Figure 1B).
Riske et al. [38] described that up to 20% fluid lipid population were detected between
the pre- and the main transitions. In addition, gauche conformers are introduced into
the acyl lipid chains in the pre-transition [39]. By increasing the concentration of Bz-Im
(1:25 compound–lipid molar ratio), the pre-transition is abolished, the Tm is changed
moderately, and the size of the peak of the main transition decreases as the width of
the peak increases in both lipid systems (Figure 1). The surface of the bilayer must be
considered as a set of several phospholipid “clusters”, where all the molecules of each
cluster exhibit a simultaneous behavior in the transition. This cooperative property of
the melting process defines more sharp and symmetrical curves at the transition peak. In
this way, Bz-Im is able to penetrate into the bilayer since the “clusters” noticeably increase
in number [40]. ∆Tm/2 is a relative measure of molecular cooperativity and it linearly
increases with the concentration of Bz-Im, ranging from 0.98 to 1.14 ◦C and from 0.73 to
1.08 ◦C for DMPC and DMPC:DMPG systems, respectively, suggesting the insertion of
“free volumes” into the bilayer structure [40]. Therefore, the full width at half-maximum of
the main transition peak is a variable that indicates how cooperative the phospholipids are
when they undergo a transition [41]. Similarly, the enthalpy of transition is considerably
and moderately reduced in DMPC and DMPC/DMPG, respectively (Table 1), suggesting
that the addition of anionic lipids to the zwitterionic lipids avoids greater alterations to
the interactions between lipid acyl chains, i.e., the disruption of trans-gauche isomerization
and the inter- and intramolecular van der Waals interactions [7]. This can be explained
by a strong adhesion of the Bz-Im on the anionic surface by phosphatidylglycerol at this
concentration, where the small size and the reduced flexibility of Bz-Im prevents their
hydrophobic moieties from being inserted inside the bilayer.
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Table 1. Tm, ∆Tm/2, and enthalpy transition (∆H) values of MLVs constituted by DMPC and DMPC/DMPG (3:1) before
and after the addition of Bz-Im at different Bz-Im–lipid molar ratios.

MLV Compound–Lipid
Molar Ratio

Pretransition
Temperature (◦C) Tm (◦C) ∆Tm/2 (◦C) ∆H (J·g−1)

DMPC 0:1 12.94 23.02 0.98 1.48

DMPC-Compound
1:50 11.58 22.94 1.09 1.05
1:25 - 22.60 1.14 0.78
1:10 - 22.38 1.23 0.76

DMPC/DMPG (3:1) 0:1 12.71 23.02 0.73 1.71

DMPC/DMPG
(3:1)-Compound

1:50 12.49 22.98 0.90 1.46
1:25 - 22.24 1.08 1.38
1:10 - 19.72 2.34 1.13

At the maximum concentration of Bz-Im, the size of the peaks representing the main
transition were decreased. Interestingly, a pronounced change in Tm and in the width of
the peak was observed only in the DMPC/DMPG mixture (Figure 1), suggesting that Bz-Im
at this concentration increases the fluidity and the lateral phase separation in membranes
that mimic those of bacteria. In fact, fluidity is known to increase in response to an increase
in the lateral diffusion rates of lipid molecules [42], and has been related to alterations
within the hydrophobic nucleus of the bilayer [43]. Thus, it is likely that more moles of
Bz-Im bind to a smaller unit area in DMPC/DMPG than to an entire surface area of DMPC,
reaching a lower threshold concentration due to the presence of DMPG, which is related to
the degree of insertion of compounds inside the bilayer [44].

3.2.2. Analysis of Molecular Dynamics

In order to understand the results of the thermotropic profile of the membrane mod-
els, the interaction between Bz-Im and the molecular models of erythrocyte zwitterionic
membranes was analyzed by molecular dynamics. Figure 2 shows the root mean square
deviation (RMSD) of Bz-Im in the erythrocyte membrane over 30 ns. From 0 to 10 ns a
continuous variation of the RMSD is observed (Figure 2A), suggesting the whole structure
fluctuates, or it might reflect only large displacements of a small structural subset within an
overall rigid structure [45] as a result of the loss of bonds between phospholipids and the
formation of Bz-Im-membrane interactions during the insertion and adjustment of the com-
pound inside the polar head of the phospholipids in these first nanoseconds (Figure 2B). A
stabilization of the structural configuration of Bz-Im is observed from 10 ns that coincides
with the penetration of Bz-Im inside the polar region of the membrane, indicating that it
does not bring any considerable changes to the overall conformation of the system over
30 ns MD trajectories.
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Figure 3 shows the interactions of Bz-Im with the components of the erythrocyte
membrane model system, observing a greater number of hydrogen bond-type interactions
with water molecules in the first nanoseconds after starting the simulation due to the
interaction with the membrane-water interfacial region. These interactions with water
decrease as time progresses from 10 to 30 ns. Conversely, interactions with SM and POPE
increase as time progresses since they are the phospholipids that most interact with Bz-Im
in comparison with POPC (Figure 3) due to the presence of the amine group in POPE
which forms the additional bonds [46]. In addition, PC and SM have the same polar head
but differ in their interfacial structures due to a decrease in headgroup size of the SM
causing closer molecular packing. The increased interactions at the membrane interface
could influence increased affinity of Bz-Im for SM as compared with POPC [47]. Both
hydrophobic interactions and hydrogen bonds are responsible for the affinity of Bz-Im for
PE and SM (Figure 3A), suggesting that the C-N bonds are oriented towards the core of the
bilayer and the O-H groups are oriented towards the water phase (Figure 2B).
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Figure 3B shows the number of hydrogen bonds between Bz-Im and phospholipids
through time. Interestingly, interactions with SM emerge from 11 nanoseconds, remaining
up to 30 ns, suggesting an initial selectivity for PE, which would directly interact with the
NH3

+ moiety and not with the quaternary amine group of choline. When replacing PE
by PC, this could arise from the sole removal of the hydrogen-bonding capability of the
headgroup [48]. However, there are also hydrogen bonds between Bz-Im and POPC from 2
to 8 ns while it was entering the membrane. This could be due to the larger size of the PC
polar head, compared with those of PE and SM, occupying a greater volume and exhibiting
a better probability of initial contact with Bz-Im. Once it is internalized, a strong interaction
with sphingomyelin is maintained. It was revealed that the OH-group or NH-function of
SM play an important role in hydrogen bonding interactions with foreign compounds [49].

Based on the above, Bz-Im can be buried up to the interfacial region of the outer mono-
layer of a zwitterionic membrane, decreasing the van der Waals interactions between the
phospholipids, while interactions that require less heat to undergo the transition are formed
(Figure 1A). Hence, it is likely that Bz-Im exhibits cytotoxic activity against mammalian
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cells, a property that could be explored and exploited for tumor cells (Supplementary
materials, Section 2).

Figure 4 shows the behavior of Bz-Im on the E. coli model membrane for 30 ns. The
RMSD reveals that during the first 6 ns there is a great structural variation of Bz-Im related
to its location between the surface of the membrane and the water phase, which causes
intermittent contact with both water molecules and POPE or POPG. Between 10 and 20 ns
there is a slight structural variation of Bz-Im and during this time the molecule remains
submerged in the membrane. Again, Bz-Im re-emerges on the membrane surface between
the aqueous and lipid phase, which is reflected in a greater structural deviation between
20 and 21 ns as a result of different solvation changes. Finally, Bz-Im is internalized again
inside the head group of phospholipids between 28 and 30 ns. Unlike the erythrocyte
membrane, the position of the Bz-Im in the E. coli membrane model fluctuated highly
during the 30 ns. To explain this, it must be considered that the erythrocyte membrane is
made up of only 20% POPE while that of E. coli has 80% POPE. The NH3

+ group of PE
binds with oxygen from unesterified phosphate by very close contacts [50]. Subsequently,
the bonds between adjacent phosphates form a very compact network of PE polar heads
in the surface of the membrane, hindering the access of Bz-Im and reorienting it within
the lipid phase over the first 20 ns. On the other hand, the glycerol moiety of PG mimics
the solvation water of the phosphate group [51]. This internal hydrogen bonding makes
the hydrogen bonding between the foreign compounds and the phosphate less favorable
than when the phosphate is linked to cholines. Thus, phosphate must be shielded by the
glycerol moiety in PG, avoiding the formation of hydrogen bonds with compounds at the
expense of dehydration [52].
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Figure 5A shows a greater interaction with water molecules through hydrogen bonds
in the first 15 nanoseconds. From 10 ns there is a tendency to form hydrophobic bonds
with both phospholipids; this type of interaction is maintained until 30 ns, suggesting
that Bz-Im must penetrate at least partially into the hydrophobic core of the phospholipid
bilayer. As the system is highly dynamic, it is probable that the hydrophobic moiety of the
aromatic heterocyclic ring interacts with the acyl chains in a region close to the interface
(Figure 4B). The partial insertion into the hydrophobic core would be responsible for the
increase in the fluidity described in bacterial model membranes at a 1:10 Bz-Im:lipid molar
ratio (Figure 1B), since interaction of compounds with the phospholipid acyl chains has
been related to a net fluidizing effect of the apolar part of the bilayer [43]. Finally, Figure 5B
shows the number of hydrogen bonds formed between Bz-Im and the phospholipids of
the E. coli model membrane; a similar interaction with POPE and POPG was observed,
except for at 10 and 22 ns when interaction peaks with POPE of up to six hydrogen bonds
were found. The amine group of PE which forms additional bonds [46] would be favorably
oriented towards the polar groups of Bz-Im at both times.
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4. Conclusions

A benzimidazole-derived imine was successfully synthesized and characterized by
spectroscopic and spectrometric techniques. The thermotropic profiles indicate that this
compound can bind both to DMPC and DMPC:DMPG (3:1), which mimic the mammalian
and bacterial membranes, respectively. Our results suggest that Bz-Im can increase the
fluidity in membranes that mimic those of bacteria, which might be correlated with their
potential antibacterial activity, representing a valuable contribution towards the further
design of antimicrobial compounds based on benzimidazole-derived imine analogues.
Preliminary evidence shows that compound Bz-Im has affinity for PC phospholipids,
suggesting that this molecule may have effects against normal human cells, that is, the
Bz-Im compound could be cytotoxic toward these cells. At 30 ns of simulation, hydrogen
bonding interactions between Bz-Im and SM prevail in erythrocyte membrane models,
while in E. coli membrane models the hydrophobic interactions between Bz-Im and PG/PE
play an important role on the fluidizing effect exhibited in bacterial membrane models.
Although 30 ns is a relatively short simulation time, it is sufficient to understand the
behavior of the system since a trend is clearly defined from 10 ns. Finally, this study
serves as a prototype for better understanding of the interactions between these kinds
of molecules and biological membranes, as well as opening prospects for future work in
this area.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/membranes11060449/s1. Section 1: Spectral data. Figure S1: Comparative FT-IR spectra of
Bz and Bz-Im. Figure S2: NMR-1H spectra of Bz. Figure S3: NMR-1H spectra of Bz-Im. Figure S4:
NMR-COSY spectra of Bz-Im. Figure S5: NMR-13C{1H} spectra of Bz-Im. Figure S6: NMR-HSQC
spectra of Bz-Im. Figure S7: NMR-HMBC spectra of Bz-Im. Figure S8: Mass spectra (EI) of Bz.
Figure S9: Mass spectra (DART+) of Bz-Im [M+1]; Section 2: Figure S10: Root-mean-square deviation
(RMSD) of Bz-Im in the system. Figure S11: Hydrogen bonds between Bz-Im and the phospholipids
of the system.
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