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Abstract: An important component of tissue engineering (TE) is the supporting matrix upon which
cells and tissues grow, also known as the scaffold. Scaffolds must easily integrate with host tissue and
provide an excellent environment for cell growth and differentiation. Human amniotic membrane
(hAM) is considered as a surgical waste without ethical issue, so it is a highly abundant, cost-effective,
and readily available biomaterial. It has biocompatibility, low immunogenicity, adequate mechanical
properties (permeability, stability, elasticity, flexibility, resorbability), and good cell adhesion. It exerts
anti-inflammatory, antifibrotic, and antimutagenic properties and pain-relieving effects. It is also a
source of growth factors, cytokines, and hAM cells with stem cell properties. This important source
for scaffolding material has been widely studied and used in various areas of tissue repair: corneal
repair, chronic wound treatment, genital reconstruction, tendon repair, microvascular reconstruction,
nerve repair, and intraoral reconstruction. Depending on the targeted application, hAM has been
used as a simple scaffold or seeded with various types of cells that are able to grow and differentiate.
Thus, this natural biomaterial offers a wide range of applications in TE applications. Here, we review
hAM properties as a biocompatible and degradable scaffold. Its use strategies (i.e., alone or combined
with cells, cell seeding) and its degradation rate are also presented.

Keywords: amniotic membrane; cells; biological scaffold; tissue engineering; repair; reconstruction

1. Introduction

Tissue engineering (TE) aims to induce tissue growth by combining cells, scaffolds,
and growth factors or biomolecules [1]. Hence, the cells require the development of a
scaffold from native or synthetic biomaterials, or a combination of the two, that mimics the
extracellular matrix (ECM) [2]. The scaffold should have tissue integration properties and
should be easily colonized with cells and be able to adhere, proliferate/survive, differen-
tiate, and replicate the cell/tissue function [3]. The ideal scaffold requires easy handling
and production, with biocompatibility, biodegradability, and mechanical properties consis-
tent with the anatomical site of implantation. Depending on the application, it could be
selectively permeable (to avoid invasion by fibrous tissue [4]) or porous (to ensure cellular
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penetration and adequate diffusion of nutrients to the cells within the construct and to the
ECM formed by these cells [3]). When required, it should create and maintain space [4].

We have developed several TE products combining cells with biocompatible scaf-
folds [5,6]. We have been studying the benefit of the human amniotic membrane (hAM) in
bone and nerve repair and in oral and maxillofacial surgery over the last few years [7–24].

The hAM derived from the placenta is considered surgical waste that can be obtained
after elective cesarean surgery. It is thus a highly abundant, readily available, and cost-
effective biological tissue that does not raise ethical issues. Thanks to its unique biological
properties, this natural membrane has been used for over a century in medicine, espe-
cially in the field of ophthalmology and dermatology [25,26]. hAM is known to display
several biological properties that are able to promote wound healing. It is a biocompatible
immune-privileged tissue that exerts an anti-inflammatory, antifibrotic, antimicrobial, and
antimutagenic effect [27,28]. hAM is a source of growth factors, cytokines, and hAM cells
with stem cell properties [26,29,30]. Moreover, it combines adequate mechanical properties
(permeability, stability, elasticity, flexibility, resorbability) [31,32] with good cell adhesion
capacity, thanks to its natural ECM structural components (hyaluronic acid, collagens,
laminin, fibronectin, and proteoglycans) [33].

Consequently, hAM represents a “ready to use” TE product, containing inherent cells
and growth factors [34–36] (Figure 1). In addition, it is a suitable natural scaffold for
cell seeding, proliferation, and/or differentiation. Thus, hAM-based scaffolds have been
developed to improve its healing capacity and, mostly, to produce a qualified TE construct.

Figure 1. Human amniotic membrane properties as an ideal scaffold for tissue engineering.

The efficacy of hAM alone or combined with cells has been widely investigated in
experimental and clinical studies. Therefore, its support function is emphasized by the
development of hAM composites and commercial products [9,31,32,36]. The use of hAM
cells in the TE field is more sporadic [37].

The purpose of this review is to describe hAM properties as a biocompatible and
degradable scaffold for TE applications. Moreover, an overview of hAM used alone or
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combined with cells is presented. We also aim to explore cell seeding and the degradation
rate of hAM as there is currently limited data in the literature.

2. Human Amniotic Membrane
2.1. Anatomy and Physiology

The human placenta plays a key role in the development and survival of the fetus,
acting as physical and biological protection [38]. It is composed of two fetal membranes:
an outer chorionic membrane and an inner hAM or amnion. hAM lines the amniotic cavity,
in contact with the amniotic fluid. It contains three main layers: an epithelial monolayer
that is separated from the stroma layer by a basement membrane (Figure 2) [26].

Figure 2. (A) Histological staining of fresh human amniotic membrane. hAEC: human amniotic epithelial cell, hAMSC:
human amniotic mesenchymal stromal cell. (B) Representative structure of human amniotic membrane. The epithelial side,
which consists of a monolayer of hAECs, and the mesenchymal layer, composed of hAMSC. A thick basement membrane
separates both sides.

The amniotic epithelium is characterized by a single layer of human amniotic epithe-
lial cells (hAECs), which usually have a columnar or cuboidal shape. It has been reported
that hAECs express stem cell markers, retain the pluripotency of the undifferentiated
epiblast, and have pluripotency and the ability to differentiate toward all three germ
layers [29,30,39]. hAECs are densely adherent to the basement membrane, which lies at
their outer edge. These cells secrete collagen type III and IV as well as noncollagenous
glycoproteins (laminins, nidogen, and fibronectin) that form the basement membrane of
the hAM [40]. This basement membrane is one of the thickest found in humans, and it
provides support to the fetus during gestation. The third layer, called the stroma layer, is
a collagen-rich mesenchymal layer that contains three components: (i) a compact layer,
which is a dense and almost acellular layer mainly composed of collagen type I and III
and fibronectin; (ii) a fibroblastic layer, where fibroblast-like mesenchymal cells (human
amniotic mesenchymal stromal cells (hAMSC)) and rare macrophages with a loose fibrob-
last network can be observed; and (iii) the outer layer, called the spongy layer because of
the high quantity of proteoglycans and glycoproteins leading to a spongy appearance on
histological sections [38,41,42]. This spongy layer is made of loosely arranged collagen
fibers and separates the amniotic and chorionic mesoderm. Collagen types I, III, V, and
VI, secreted by the hAMSC, are the major proteins of the ECM in the stroma layer [43].
Those cells meet MSC minimal criteria [29], with divergence about their pluripotency [30]:
hAMSC lack markers associated with pluripotency, such as TRA-1-60 and TRA-1-81 [44],
whereas pluripotency markers SSEA-3 and SSEA-4 were reported to be positive [45].

hAM is a translucent biological structure that is neither vascularized nor innervated.
Nutrients and oxygen are provided by the surrounding chorionic fluid, amniotic fluid, and
the fetal surface vessels through diffusion mechanisms [34].

2.2. Collection and Preservation Methods

Placenta is generally obtained from healthy pregnant patients undergoing elective
caesarian surgery after proper informed consent [26]. A rigorous serological screening must
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be performed on pregnant donors for human immunodeficiency virus-1/2, Hepatitis B,
Hepatitis C, human T-cell lymphotropic virus, syphilis, cytomegalovirus, and tuberculosis.
Placentas obtained from caesareans are the preferred source because placentas from vaginal
deliveries can be contaminated and, therefore, unsuitable for transplantation. After the
delivery, the collected placenta is placed in a sterile transport medium to avoid drying. Then
the placenta is processed under aseptic conditions to obtain hAM. After repeated rinses of
the placenta, the amnion is easily separated from the underlying chorion along their natural
cleavage plane since the hAM spongy layer is loosely connected to the chorion (Figure 3).
The placenta is routinely washed using a saline sterile solution containing antibiotics such
as streptomycin, penicillin, neomycin, and amphotericin prior to storage [46].

Figure 3. Human amniotic membrane collection. (A) Placenta. (B) Amnion and chorion. (C) Amnion detached from
the chorion.

Long-time storage before use is recommended by regulatory agencies of many coun-
tries to avoid the possibility that the donor is in the “window period” of infection. Thus,
several preserving methods, such as cryopreservation, freeze-drying (lyophilization), or air-
drying, have been developed. Whatever the method used, the processing and preservation
of hAM will affect the properties of the biological material [47].

Cryopreservation in glycerol, acting as a cryoprotectant, is the most commonly used
preservation method. Several studies reported the use of dimethyl sulfoxide as an alter-
native solution to cryopreserve hAM [48]. The cryopreserved format is safe and efficient,
as reported by many experimental and clinical studies. Cryopreservation allows better
preservation of proteins and growth factors compared to lyophilization, which is espe-
cially important when the tissue contains few proteins [49]. However, cryopreservation
has some limitations and impacts the viability of the hAM cells [11,14,50]. Moreover, it
requires expensive and cumbersome equipment to freeze a high quantity of amniotic tissue
to −80 ◦C. Moreover, storage cannot exceed several months. Another difficulty is the
necessary respect of the cold chain, making transportation difficult [46,51].

Lyophilization or freeze-drying is a preservation technique that consists of removing
water from tissue by the process of sublimation. This process induces some alterations
concerning structure, biological, and physical properties [49]. However, it results in a
decrease of destructive chemical reactions, avoiding tissue deterioration, and the samples
can be stored safely for several years at room temperature [49,51,52]. Transport is simple, in
contrast to cryopreserved hAM [52]. A pretreatment with trehalose prior to lyophilization
has been proposed to improve its quality. As the water loss caused by lyophilization may
affect the physical and biological structures of amnion, trehalose can replace some water
content in the cells, and it might have a positive effect on the stabilization of proteins and
other components [46,53].

Air-drying is another preservation technique that is low-cost, and the final product
is easy to store at room temperature [47,54]. hAM is kept at room temperature under a
laminar flow hood and exposed to air for different time periods.

Lyophilization and air-drying are usually followed by sterilization of the hAM by
gamma-radiation [48]. Sterilization with peracetic acid has also been proposed as an
alternative to gamma-radiation [55]. Both products can be easily cut to the desired size and
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shaped with scissors just before use [56,57]. In addition, the graft is ready to use, contrary
to glycerol-preserved membranes that require thawing and rinsing for approximately 1 h.

Several enzymatic, chemical, or mechanical techniques have been developed for
denuding hAM [46]. Indeed, denuded (or de-epithelized) amnion promotes better cell pro-
liferation and differentiation, better structural integrity, and more uniform cell outgrowth
compared to the intact format [58,59]. Hence, it has been the preferred choice for ocular
surface reconstruction. Similarly, decellularization treatment has also been applied to hAM.
It aims to remove the major immunogenic cellular components, membrane-associated
antigens, and soluble proteins, thus preventing the initiation of a cell-mediated or hu-
moral immune response and subsequent degradation and rejection after clinical implanta-
tion [60,61]. Decellularization results in a significant decrease in hAM thickness without
significantly decreasing its ultimate tensile strength, extensibility, or elasticity [60]. Both de-
epithelization and decellularization strategies could be applied to fresh and cryo-preserved
hAM. They are mainly combined with lyophilization or air-drying.

2.3. Biological Properties

hAM is an immune-privileged tissue as it contains some immunoregulatory factors,
such as HLA-G, which is an immunosuppressive factor, and the Fas ligand [28]. This
effect is also supported by the low/absent level of expression of HLA class I molecules
and the absence of HLA class II molecules [62], thereby avoiding allograft rejection. Sev-
eral growth factors are produced by hAM cells, such as epidermal growth factor (EGF),
keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), vascular endothelial
growth factor (VEGF), platelet-derived growth factor (PDGF), basic fibroblast growth factor
(bFGF), and macrophage colony-stimulating factor (M-CSF) [63,64]. Moreover, hAM has
an anti-inflammatory effect, driven by both hAECs and hAMSC, which express various
antiangiogenic and anti-inflammatory proteins such as the interleukin (IL)-1 receptor an-
tagonist, tissue inhibitors of metalloproteinase (TIMPs)-1, -2, -3, -4, and IL-10 [65]. It has
both angiogenic and antiangiogenic properties [66]. A few studies have suggested that
hAM cells may exert an anticancer effect [67,68], mainly explained by the antiangiogenic,
proapoptotic, and immunoregulatory activities of amnion.

hAM is also known to induce an antiadhesive and antiscarring effect. It reduces
protease activity via the secretion of tissue inhibitors of TIMPs, and downregulates the ex-
pression of transforming growth factor beta (TGF-β), which is responsible for the activation
of fibroblasts, thereby inducing an antifibrotic effect [27,69]. hAM is also known to exert an
antimicrobial effect and, therefore, protects the wound from infection [70]. The antibacterial
effect of hAM can be illustrated by its expression of natural antimicrobial molecules such as
β-defensins and elafin [71] and its inhibitory effect against several bacteria (streptococcus
group A or S. aureus) [72]. It can also be explained by its close adherence to the wound
surface, avoiding contamination [73]. This close adherence is also known to maintain a
moist environment, which contributes to the pain-relieving effect of hAM [48]. Indeed, it
can be used to reduce the pain of burn or surgical wounds, acting as a biological dressing
that protects the exposed nerve [74]. Finally, several studies have highlighted its ability to
enhance re-epithelization [51,75].

Biological properties have to be modulated by the variability of hAM due to inter- and
intradonor variations [76–78], subregional differences [79], or preservations methods [80],
but this is without any clinical evidence.

2.4. Mechanical Properties

The physical properties of hAM, such as elasticity, stiffness, and mechanical strength,
are other key elements of its attractiveness for TE [20,46]. Amnion is one of the thickest
human membranes that adhere firmly to an exposed surface, for example, osteoarthritis
articular cartilage [73]. Fresh hAM is a translucent tissue, and its thickness ranges from
0.02 to 0.5 mm. Collagens, elastin, and other ECM components play an important role in
its biomechanical properties [43,81]. Indeed, it has been suggested that collagen proteins
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play a key role in the stress tolerance of fetal membranes because it has been observed that
the collagen content was reduced in pathological fetal membranes that ruptured early [43].
Moreover, it seems that collagen types I and III predominate and form parallel bundles,
providing the mechanical integrity of hAM. Collagen type V and VI form filamentous
connections between interstitial collagens and the epithelial basement membrane [35]. To
enhance its mechanical properties or to overcome the lack of space-maintenance capabilities,
the use of multi-layered hAM [82,83] has been suggested or, alternatively, to reinforce hAM
with a stronger biomaterial such as the electrospun nanofibers of polymers [84,85] or
viscoelastic electrospun nanofibrous silk fibroin [86].

Both physical and mechanical properties of hAM are also affected by preservation
methods, sterilization, and cell removal (Figure 4) [18].

Figure 4. Human amniotic membrane formats. (A) Fresh. (B) Cryopreserved. (C) Lyophilized. (D) Decellularized and
lyophilized [18].

Cryopreservation often increases hAM’s thickness, whereas lyophilization decreases
it [87]. Moreover, it was shown that cryopreservation did not affect some of hAM’s biome-
chanical properties [21]. Following rehydration, the lyophilized amnion returns to a layered
structure; it thickens and becomes flaccid, and its transparency increases, suggesting that
the membrane may have sufficient strength [56]. Recent studies have compared fresh,
cryopreserved, lyophilized, and decellularized-then-lyophilized hAM [18,21]. In vivo,
fresh hAM and decellularized-then-lyophilized hAM were significantly stronger than cry-
opreserved hAM and lyophilized hAM. Thus, the decellularization process increased the
physical and mechanical properties of hAM. It made hAM significantly more stretchable
than fresh hAM, significantly enhancing the tearing strength and significantly decreasing
the hAM’s rate of resorption. One study also suggested that the sterilization process by
gamma-radiation reduced its mechanical properties [88].

Moreover, differences in mechanical properties, thickness, and transparency have
been reported depending on hAM subregions [20,76,79,89]. However, the clinical impact
of such changes has not yet been evaluated.

2.5. Biocompatibility

Biocompatibility is the ability of a material to perform its desired function without
causing any local or systemic adverse response in the recipient of the material [90]. As
detailed before, hAM possesses a low risk of immunogenicity, which is an important
criterion for a biocompatible scaffold [35]. Some authors have compared the in vivo bio-
compatibility of a synthetic scaffold and a biological scaffold made of hAM during the
early phase of implantation in rats [91]. Histology and immunohistochemistry analyses
revealed inflammatory infiltration in the synthetic-scaffold-implanted rats, but not in the
hAM-implanted rats. At the same time, they demonstrated the in vivo biocompatibility of
fresh hAM by complete blood count, clinical chemistry measurements, and immunohisto-
chemical analysis.

hAM biocompatibility has also been evaluated following different preservation meth-
ods and/or osteodifferentiation [13,18,53,92,93]. It appears that fresh and preserved or
osteodifferentiated hAM are biocompatible with slight variabilities, showing a slight-to-
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moderate inflammatory reaction compared to controls. In some applications, hAM has
been used as a coating to improve the biocompatibility of other materials [32].

2.6. Cell Adhesion, Proliferation, and Differentiation

hAM has the ability to promote cell adhesion and proliferation, thanks to its ECM
structural components (hyaluronic acid, collagens, laminin, fibronectin, and proteogly-
cans) [33]. Lyophilization improves its adhesion properties compared to fresh and cryopre-
served hAM [87].

The application of hAM to the ocular surface results in an excellent substrate on
which hAECs of the ocular surface can easily migrate, adhere, and grow [48]. That is
why de-epithelization processes have been developed to expose the basal membrane
in order to allow better cell proliferation and differentiation and the uniformity of cell
outgrowth [58,59]. Zhang et al. compared the de-epithelialization of hAM by 20% ethanol,
1.2 U/mL dispase, 0.02% ethylenediaminetetraacetic (EDTA), 0.25% trypsin-EDTA, or
5 M urea, respectively, followed by gentle scraping [94]. The results indicated that urea
denudation preserved basement membrane integrity, ECM, and growth factor composition
and had higher cell attachment and proliferation efficiencies than the other modalities.

Four preparations were examined to determine the effect of total, partial, or non-
decellularization on subsequent limbal epithelial cell expansion on hAM [55]. Complete
removal of the hAECs resulted in a higher percentage of confluence of limbal epithelial cells
but a lower cell density than the intact preparation. Thus, removing the hAM epithelium
does not increase proliferation but, rather, facilitates migration of limbal epithelial cells
that become larger in comparison with cell culture on intact amnion.

Fresh or preserved hAM, intact or denuded, and decellularized hAM have been used
as biological substrates for cell culture growth with different cell types [35,87]. Moreover,
the culture of human MSC on the hAM does not affect their immunophenotype or dif-
ferentiation abilities [95]. Amnion was also used as a delivery system for chondrogenic
MSC or adipose-derived MSC [96,97]. We investigated the capacity of fresh, cryopreserved,
lyophilized, and decellularized-then-lyophilized hAM to support BM-MSC proliferation
and osteodifferentiation [18,21]. We reported that decellularized format was the most
suitable scaffold for BM-MSC proliferation and osteodifferentiation.

There are currently very few studies comparing the different sides of hAM to promote
cell seeding. Initially, rabbit articular chondrocytes were seeded on three different hAM
substrates: the epithelial side of intact hAM (IHE), basement side of denuded hAM (DHB),
and stromal side of denuded hAM (DHS) [98]. While chondrocytes grew in a monolayer on
the surface of the IHE and DHB substrates, the cells seeded in DHS penetrated and spread
into the whole thickness of the stromal layer. The results suggested that denuded hAM
was able to support chondrocyte proliferation with phenotype conservation in vitro and
seemed more favorable when DHS was used. Later, Diaz et al. specified that the stromal
side is more suitable than the epithelial one for human chondrocyte growth because of
possible competition between chondrocytes and hAECs [73]. Both the basement membrane
side and the collagenous stroma side of the acellular hAM matrix were capable of providing
a preferential environment for driving the osteogenic differentiation of human dental apical
papilla cells (APCs) with proven stem cell characteristics [99]. In addition, even without
osteodifferentiation factors, APC cells differentiated on acellular amnion: more specifically,
the collagenous stroma side was more effective than the basement membrane side.

Porcine urothelial cells were seeded on the hAM epithelium, denuded, and the stromal
sides were cultured for 3 weeks [100]. The fastest growth and the highest differentiation
of urothelial cells were demonstrated on the stromal version scaffold, which enabled
the development of a tissue-engineered urothelium, with molecular and ultrastructural
properties comparable to that of the native urothelium.

Recently, adipose-derived MSC and a human immortalized keratinocyte cell line
(HaCaT) were seeded on the three different layers of the hAM and cultured for 3 weeks.
Cell attachment and viability and the mechanical strengths of the basement membrane were
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assessed before and after cell culture [101]. All three layers supported the attachment and
proliferation of cells with no visible cytotoxic effects. However, the growth and viability of
both cell types cultured on the basement membrane were significantly higher than on the
epithelial and stromal layers.

2.7. Biodegradation

Depending on the application/implantation site and species, hAM degradation varies
from several days to several months [12,24], but the data are insufficiently reported. In
ophthalmology, but also in wound healing, premature degradation may mean frequent re-
peat transplantations [24]. Exploiting hAM for corneal reconstruction, it has been observed
occasionally that a residual subepithelial hAM may persist and inadvertently opacified the
visual axis [26]. The fabrication of a composite material by adding silk to hAM in order to
improve the degradation rate of hAM has been proposed [86].

Using a common murine animal model in a subcutaneous site, 8 weeks after implanta-
tion, all samples could be located. We noted a slight difference in tissue degradation be-
tween non-osteodifferentiated hAM (fresh hAM and cultured hAM) and osteodifferentiated
hAM, probably due to a mineralized hAEC layer [13]. Additionally, we reported that the
preservation methods of hAM may influence its degradation rate [18,21]. Decellularized-
then-lyophilized hAM had the slowest rate of resorption compared to fresh, cryopreserved,
and lyophilized hAM. It was the only membrane still present 8 weeks after subcutaneous
implantation in rats.

3. Tissue Engineering Applications

Depending on the targeted TE application, hAM can be combined with natural or
synthetic materials and/or additional cells. Here, a nonexhaustive list of publications was
established for each tissue [31,32]. Examples of studies combining cells with hAM and no
additional scaffold are summarized in Table 1. Clinical trials using hAM and/or hAM cells
for regenerative medicine applications are reviewed in Table 2.

Table 1. Use of amniotic membrane as a scaffold for tissue engineering.

Authors
Tissue

Engineering
Applications

Amniotic
Membrane

Formats

Modalities of
Amniotic

Membrane
Usage

Cells Seeded on
Amniotic Membrane

Sides of Cells
Seeding Assessment

Shortt et al.,
2009 Ocular surface

Cryopreserved or
Decellularized +
Cryopreserved

Single membrane Human limbal
epithelial stem cells

Basement
membrane (?) In vitro/Ex vivo

Zhang et al., 2013 Ocular surface Cryopreserved or
De-epithelialized Single membrane Human limbal

epithelial cells
Basement
membrane In vitro/Ex vivo

Che et al., 2019 Ocular surface De-epithelialized
Multilayer

ultrathin amnion
(3–4 layers)

Human corneal
stromal cells
Keratocytes

Basement
membrane

Cells between
the layers

In vitro/Ex vivo

Bandeira et al.,
2019 Ocular surface Cryopreserved +

De-epithelialized
Single mem-
brane/Cover

Human conjunctival
epithelial cells

Basement
membrane Clinical study

Yang et al., 2006 Skin Cryopreserved +
De-epithelialized

Single mem-
brane/Cover Human keratinocytes Basement

membrane
In vitro/Ex vivo +

In vivo

Kim et al., 2008 Skin Cryopreserved +
De-epithelialized

Single mem-
brane/Cover

Rabbit bone marrow
autologous or

allologous MSC

Basement
membrane In vivo

Redondo et al.,
2011 Skin Cryopreserved +

De-epithelialized
Single mem-
brane/Cover Human melanocytes Basement

membrane Clinical study

Tsai et al., 2007 Vascular system
Cryopreserved +
De-epithelialized

sow amnion
Single membrane Porcine vascular

endothelial cells
Basement
membrane In vitro/Ex vivo

Niknejad et al.,
2011 Vascular system

Fresh or
Cryopreserved or

Lyophilized
Single membrane Rat vascular

endothelial cells Epithelial In vitro/Ex vivo
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Table 1. Cont.

Authors
Tissue

Engineering
Applications

Amniotic
Membrane

Formats

Modalities of
Amniotic

Membrane
Usage

Cells Seeded on
Amniotic Membrane

Sides of Cells
Seeding Assessment

Lee et al., 2012 Vascular system
Air-dried +

De-epithelialized
+ Glutaraldehyde

Tube of amnion Porcine vascular
endothelial cells NS In vitro/Ex vivo

Amensag et al.,
2012 Vascular system

Two cycles of
freezing and

thawing +
Decellularized

Tube of
six-layered

amnion

Human umbilical
vein

endothelial cells
Human vascular

smooth muscle cells

Stromal In vitro/Ex vivo

Amensag et al.,
2017 Vascular system

Two cycles of
freezing and

thawing +
Decellularized

Tube of
six-layered

amnion

Human vascular
smooth muscle cells NS In vitro/Ex vivo +

In vivo

Swim et al., 2018 Vascular system Decellularized +
Lyophilized

Multilayer
amnion/Cover

Human
thymus-derived MSC

Human umbilical
cord blood MSC

Human umbilical
vein endothelial cells

Cardiac myocytes
Arterial smooth

muscle cells

NS In vitro/Ex vivo +
In vivo

Sharifiaghdas
et al., 2009

Vaginal and
bladder

Fresh +
De-epithelialized Single membrane Human bladder

smooth muscle cells
Basement
membrane In vitro/Ex vivo

Seyed-Forootan
et al., 2018

Vaginal and
bladder Fresh Two layers of

amnion/Cover
Autologous skin

fibroblasts NS Clinical study

Sharifiaghdas
et al., 2007 Urethra Fresh +

De-epithelialized Single membrane Mouse urothelial cells Basement
membrane In vitro/Ex vivo

Sartoneva et al.,
2011 Urethra Fresh +

De-epithelialized

Amnion attached
to a membrane
fixation device
(cell crowns)

Human urothelial
cell NS In vitro/Ex vivo

Jerman et al., 2014 Urethra Cryopreserved Single membrane Porcine urethral cells

Epithelial or
Basement

membrane or
Stromal

In vitro/Ex vivo

Wang et al., 2014 Urethra De-epithelialized Single mem-
brane/Cover

Rabbit urethral
epithelial cells NS In vitro/Ex vivo +

In vivo

Chen et al., 2018 Urethra Decellularized +
Lyophilized Tube of amnion

Allogenic canine
endothelial

progenitor cells +/−
bone marrow MSC

NS In vitro/Ex vivo +
In vivo

Jin et al., 2007 Cartilage
Cryopreserved or
Cryopreserved +
De-epithelialized

Single mem-
brane/Cover Rabbit chondrocytes

Epithelial or
Basement

membrane or
Stromal

In vitro/Ex vivo +
In vivo

Díaz-Prado et al.,
2010 Cartilage

Cryopreserved or
Cryopreserved +
De-epithelialized

Single membrane Human chondrocytes

Epithelial or
Basement

membrane or
Stromal

In vitro/Ex vivo

Krishnamurithy
et al., 2011 Cartilage Air-dried or

Lyophilized Single membrane Rabbit chondrocytes Basement
membrane In vitro/Ex vivo

Tan et al., 2011 Cartilage Air-dried or
Lyophilized Single membrane Rabbit bone marrow

MSC NS In vitro/Ex vivo

Garcia et al., 2015 Cartilage

Fresh or
cryopreserved or

and
cryopreserved

Single mem-
brane/Cover

Sheep bone marrow
MSC Stromal In vitro/Ex vivo +

In vivo

Tsugawa et al.,
2011 Bone Cryopreserved +

De-epithelialized
Single mem-
brane/Cover

Mouse bone
marrow-derived
osteoblast cells

Stromal In vitro/Ex vivo +
In vivo

Chen et al., 2012 Bone Decellularized +
Dried Single membrane Human dental apical

papilla cells

Basement
membrane or

Stromal
In vitro/Ex vivo
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Table 1. Cont.

Authors
Tissue

Engineering
Applications

Amniotic
Membrane

Formats

Modalities of
Amniotic

Membrane
Usage

Cells Seeded on
Amniotic Membrane

Sides of Cells
Seeding Assessment

Semyari et al.,
2015. Bone

Fresh
decellularized
rabbit amnion

Single mem-
brane/Cover

Rabbit
adipose-derived MSC NS In vitro/Ex vivo +

In vivo

Akazawa et al.,
2016 Bone Cryopreserved +

Decellularized
Single mem-
brane/Cover

Human calvaria
osteoblasts

Human dermal
fibroblasts

Human umbilical
vein endothelial cells

Mouse osteoblasts
Human periodontal
ligament stem cells

NS In vitro/Ex vivo +
In vivo

Tang et al., 2017 Bone Fresh +
De-epithelialized Single membrane

Human umbilical
vein endothelial cells

Rat bone marrow
MSC

NS In vitro/Ex vivo

Akhlaghi et al.,
2019 Bone Decellularized +

Lyophilized
Single mem-
brane/Cover

Buccal fat
pad-derived stem

cells
NS Clinical study

Ahn et al., 2006 Oral mucosa De-epithelialized
+ Lyophilized

Single mem-
brane/Cover

Rabbit oral
keratinocytes

Basement
membrane

In vitro/Ex vivo +
In vivo

Amemiya et al.,
2010 Oral mucosa Cryopreserved +

De-epithelialized
Single mem-
brane/Cover

Human oral mucosal
epithelial cells

Basement
membrane

In vitro/Ex vivo +
In vivo

Amemiya et al.,
2009/2015 Oral mucosa Cryopreserved +

De-epithelialized
Single mem-
brane/Cover

Human oral mucosal
epithelial cells

Basement
membrane Clinical study

Hsueh et al., 2016 Oral mucosa De-epithelialized
+ air dried Single membrane Human oral mucosal

epithelial cells
Basement
membrane In vitro/Ex vivo

Amemiya et al.,
2008 Periodontal Cryopreserved +

De-epithelialized
Single mem-
brane/Cover

Dog periodontal
ligament cells

Basement
membrane In vivo

Iwasaki et al.,
2013 Periodontal Decellularized +

Cryopreserved
Single mem-
brane/Cover

Human periodontal
ligament stem cells NS In vitro/Ex vivo +

In vivo
Amemiya et al.,

2014 Periodontal De-epithelialized Single mem-
brane/Cover

Human periosteum
derived stem cells NS In vitro/Ex vivo +

In vivo

Wu et al., 2015 Periodontal De-epithelialized Single mem-
brane/Cover

Human
adipose-derived MSC

Basement
membrane

In vitro/Ex vivo +
In vivo

Honjo et al., 2015 Periodontal Cryopreserved +
De-epithelialized

Amnion placed
on a cell culture

insert

dental pulp-derived
cell sheet

Basement
membrane In vitro/Ex vivo

Zhang et al., 2006 Nerve

NS in the
abstract/Not
translated to

English

A scroll/wrap of
amnion

Autogenous Schwann
cell

NS in the
abstract/Not
translated to

English

In vivo

Li et al., 2013 Nerve Fresh A scroll/wrap of
amnion

Allogenic human
umbilical cord MSC NS Clinical study

He et al., 2002 Tendon De-epithelialized
+ Cryopreserved

A scroll/wrap of
amnion

Fetal rabbit skin
fibroblasts

Attachment on
ECM and

proliferation on
stromal layer

In vitro/Ex vivo +
In vivo

Parveen et al.,
2019 Cardiac Trypsinized +

Cryopreserved Single membrane

Human-induced
pluripotent stem

cell-derived
cardiomyocytes

Basement
membrane (?) In vitro/Ex vivo

ECM = Extracellular Matrix; MSC = Mesenchymal Stromal Cells; NS = Not Specified; ?: information assumed by the authors from article
content; De-epithelialized = amnion without AEC; Decellularized = amnion without AEC and AMSC.

3.1. Eye

As mentioned earlier, hAM as a “simple scaffold” has a clinical indication in oph-
thalmology. Over the past two decades, excellent outcomes have been reported after
transplantation of cultivated limbal stem cells on denuded hAM for limbal stem cell
deficiency [102–105] or, similarly, with oral epithelium [106].
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Later, different cell types were cultured on hAM to enhance its healing potential and
expand its use to other indications in ophthalmology: it has resulted in several experimental
and clinical studies (Tables 1 and 2) [107].

As mentioned before, de-epithelialization and decellularization have been compared,
with satisfying results, for limbal stem cell growth and/or migration [55,94].

A new method to fabricate a tissue-engineered corneal stromal in combination with
keratocytes and multilayer ultrathin hAM was recently investigated [108]. A novel 3D
biomimetic corneal model was developed to replicate corneal stromal organization with
multilayer ultrathin hAM: it allowed the maturation of corneal stroma–like tissues in vitro.

In 2019, the first clinical study was conducted to evaluate the efficiency of using
cultivated conjunctival epithelium transplantation on denuded hAM prepared using ice-
cold urea as a basement membrane scaffold for cell-based tissue-engineered treatments of
ocular surface disorders [109]. The protocol was applied to two patients, and the results
indicated that this method could facilitate and mainstream a minimally invasive cell-based
treatment for the reconstruction of extensive ocular surface wounds.

Monville et al. developed a human pluripotent stem cell retinal pigment epithelium
sheet, disposed on hAM, that sustained the vision of rodents with retinal degeneration
compared to the same cells injected in suspension [110]. After validation in a primate
model [111], the first cell therapy for retinitis pigmentosa patients carrying retinal pigment
epithelium gene mutations (LRAT, RPE65, and MERTK) was approved in 2019.

3.2. Skin

hAM has been used clinically for centuries as a biological dressing to treat acute and
chronic wound injuries and burns, acting as a physical and biological barrier [112]. More
than 200 clinical trials have reported its efficacy for wound healing [113].

A similarity between normal human skin and hAM layers exists. Consequently,
amnion could provide a scaffold for a living-skin equivalent, greatly simplifying the
procedures for making a dermal matrix and avoiding the use of animal collagen, which is
costly and ethically problematic [74,114].

That is why, in addition to wound dressing, Yang et al. also suggested the use of hAM
as a scaffold to create a skin substitute for wound closure. Amnion scaffolds seeded with
human keratinocytes have generated living skin equivalents and have been successfully
transplanted into an animal model [114]. Kim et al. recognized its added value in the
management of full-thickness skin defects in rabbits [115]. Redondo et al. suggested
the use of this allograft as a new strategy for inducing repigmentation in patients with
vitiligo [116]. They cultured autologous melanocytes on a denuded hAM. The combined
product was then implanted onto lesions of four patients with vitiligo, and the results
showed a 90–95% repigmentation.

A new interesting and promising approach has been developed by Murphy et al. [113].
After grinding lyophilized hAM, they combined this solubilized allograft with hyaluronic
acid, and they made a composite hydrogel delivery system. The aim was to obtain a cell-
free solution while maintaining high concentrations of cell-derived cytokines and growth
factors. This new amnion-derived material showed encouraging results to promote wound
healing and reduce scar contraction in a full-thickness murine wound model.

3.3. Vascular System

Whereas cryopreservation is commonly used, Niknejad et al. suggested that lyophilized
hAM is more suitable than the fresh and cryopreserved formats to culture endothe-
lial cells [87].

The cell culture of porcine arterial endothelial cells on hAM has been proposed for
the fabrication of tissue-engineered blood vessels [117,118]. They first demonstrated that
porcine endothelial cells can successfully be seeded on sow’s hAM, with an increase in
the expressions of junctional proteins while the expression of the adhesive inflammatory
molecules decreases. Then, they realized tissue-engineered blood vessels made with
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rolled hAM, thus creating a tube of amnion that is endothelialized with porcine vascular
endothelial cells [118]. The feasibility of a vein conduit fabrication from hAM and its
implantation in the external jugular vein of juvenile sheep was also assessed [119].

An in vitro study reported the use of decellularized hAM seeded with human umbili-
cal vein endothelial cells and human vascular smooth muscle cells prior to being rolled
into a dense construct as an alternative strategy to develop cell-dense vascular bioscaffolds.
It resulted in a mechanically stable, multilayered tissue-engineered blood vessel conduit
that can be manufactured into different diameters and shapes to suit the targeted applica-
tions [120]. The acellular hAM conduits were surgically implanted as arterial interposition
grafts into the carotid arteries of immunocompetent rabbits [121]. The grafts demonstrated
patency over four weeks (n = 3), with no hyperacute rejection or thrombotic occlusion.
Swim et al. combined decellularization and freeze-drying to produce a monolayer or a
multilayer amnion-based scaffold suitable for TE constructs, designed for reconstructive
heart surgery [122]. Whereas both preservation procedures enhanced the cell viability and
growth of various cell types seeded on hAM in vitro, the multilayered construct displayed
enhanced biomechanical properties. It was implanted in a piglet model of left pulmonary
artery grafting. The results showed its in vivo suitability and biocompatibility for vascular
repair, as demonstrated by the development of newly formed endothelium in the intima,
a smooth muscle cell-rich medial layer and an adventia containing new vasa vasorum,
an endothelial cell layer in the inner side of the graft, and a smooth muscle layer in the
outer side [122].

Finally, an in vitro study evaluated the blood compatibility of the epithelial and stro-
mal surfaces of the amnion for potential use in vascular TE [123]. These results suggested
that hAM, which contains hAECs and hAMSC, has appropriate hemocompatibility to be
employed in the field, especially as a vein substitute. No significant difference was seen
between the epithelial and stromal sides of the amnion.

3.4. Bladder and Vagina

In the early 1980s, the first studies on animals with glutaraldehyde-stabilized or
fresh hAM used for bladder reconstruction were reported [124], with fast epithelialization
and improved functionality [125]. Later, it was observed that hAM may be a substitute
for the transitional epithelium of the bladder in dogs [126]. Three layers of rehydrated
hAM, sutured to the bladder defect, have been experimented on in vesico-vaginal fis-
tulae, demonstrating a structured implementation of a new method for vesico-vaginal
fistulae repair following IDEAL recommendations [127]. In an original way, a sandwich-
structured biocomposite material was made of cryopreserved hAM, covered on both sides
with two-layered membranes of electrospun poly-(L-lactide-co-ecaprolactone) for bladder
augmentation in a rat model [85].

In a clinic setting, Brandt et al. explored the use of hAM grafts in 8 female patients with
urological congenital defects. They reported that the procedure was quick and effective for
appropriate restoration of the function and cosmetics of the lower urogenital tract [128].

Several authors have reported the use of hAM for vaginoplasty in patients suffering
from congenital absence of the vagina or for gender reassignment surgery. The creation
of a neovagina is, thus, associated with an amnion graft. Both fresh and preserved hAM
were assessed and resulted in adequate anatomic and functional outcomes [129–131].
In vitro studies have investigated the growth pattern, morphology, and specific features of
human bladder smooth muscle cells on two different matrixes, amnion and collagen, and
showed abundant cell-to-cell adhesions with hAM [132]. Satisfactory outcomes were also
obtained when autologous fibroblasts were seeded onto hAM prior to its graft to cover the
neovagina [133]. The two layers of amnion and fibroblasts were more resistant to trauma
and laceration than amnion without seeded cells.
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3.5. Urethral

Based on the number of surveys conducted or ongoing clinical studies, urology has
also played a large part in studies using hAM [84,134,135]. Shakeri et al. evaluated hAM as
a xenograft for urethroplasty in rabbits [136]. They concluded that it was an inexpensive,
simple, and biodegradable graft, yielding very little antigen effect, and a viable option in
surgical urethroplasty. A study compared the effects of acellular hAM to synthetic poly-L-
lactide-co-1-caprolactone on human urothelial cell viability, proliferation, and urothelial
differentiation levels, with unfavorable results for the amnion [137]. Salehipour et al.
evaluated its use in the reconstruction of long ureteral defects in dogs and speculated
its efficacy as a patch graft versus a full circumferential graft in the reconstruction of
ureteral defects [138].

In a clinical setting, Koziak et al. explored its use in the reconstruction of long ureteral
structures in 2 and then 11 patients [139,140]. hAM was successfully used to supplement
ureteral wall defects. Indications for the procedure included ureteral strictures of a 5.5 cm
average (range, 3–8 cm), localized in different parts of the ureter: upper (5), middle (5),
and lower (3).

The proliferation quality of mouse urothelial cells has been assessed on three natural
matrixes of hAM, peritoneum, and omentum compared to collagen matrix, with promising
results for the amnion [141]. As described before, the fastest growth and highest differen-
tiations of urothelial cells were demonstrated on the hAM stromal side [100]. Denuded
hAM, inoculated with primary rabbit urethral epithelial cells and applied as urethroplastic
material in the rabbit models of urethral injury, displayed good biocompatibility [142].
Chen et al. seeded allogeneic BM-MSC and/or endothelial progenitor cells on decellular-
ized amnion (with the cell-seeded surface facing the corpus spongiosum) as a treatment
for urethral defects in dogs [143]. Subsequently, they concluded that hAM seeded with
allogeneic endothelial progenitor cells +/− BM-MSC can more effectively repair a 3-cm
circumferential urethral defect in a large animal model.

3.6. Cartilage

Similar components (hyaluronan acid, proteoglycans, and collagen) have been found
between the ECM of hAM and native cartilage [33]. The potential of fresh, cryopreserved,
lyophilized, or dried amnion to act as MSC [96,144] or chondrocyte [145] cell carriers and
promote MSC chondrogenic differentiation was investigated with success.

As mentioned before, in vitro and in vivo studies performed on cryopreserved in-
tact or de-epithelialized hAM have stated that its stromal side is a more suitable scaffold
than its epithelial side to promote chondrocyte proliferation and to maintain their pheno-
type [73,98]. In vivo, denuded amnion alone was compared to denuded amnion seeded
with chondrocytes to repair a rabbit osteochondral defect. The rate of regenerated carti-
lage was significantly higher when chondrocytes seeded on hAM were facing the defect,
suggesting that denuded amnion can act as a cell carrier matrix for cartilage regenera-
tion [98]. In vivo results suggested that fresh and cryopreserved amnions alone compared
to cryopreserved amnion previously cultivated with BM-MSC showed similar regenerative
properties [144].

Interestingly, hAM was combined with fibrin to develop a new 3D scaffold that
was able to promote bovine chondrocytes in vitro proliferation [146]. Similarly, hAM has
also been combined—as cell-free material—with a synthetic scaffold in poly-D,L-lactic-
co-glycolic acid, which, once implanted in osteochondral defects, was able to promote
regeneration of hyaline-like cartilage [147].

3.7. Bone

The ability of hAM to be osteodifferentiated in toto has been established in vitro
[10,13,15,19,148]. However, when associated with a bone substitute and implanted in a
mice subcutaneous model, fresh and in vitro osteodifferentiated hAM were not able to
induce ectopic bone formation [13].
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Interestingly, in an orthotopic model, fresh hAM had a periosteum-like effect when
implanted over a segmental defect in rabbits [149]. Moreover, cryopreserved hAM slightly
enhanced bone regeneration when used as a membrane for guided bone regeneration
(GBR) in a murine calvaria model [14]. GBR function has also been explored with a
decellularized–lyophilized format [21,150].

hAM showed similarities with the induced membrane (IM) [12]. The IM technique
(also called the Masquelet technique) is a commonly used two-step procedure to treat
segmental long bone defects. The first step allows the generation of a foreign body mem-
brane (the IM), which protects the bone auto- or allograft from resorption by the local
environment [151–154]. The similarity between these two membranes (hAM and IM)
generated by the body may simplify the Masquelet technique into a single procedure,
avoiding the time required for the formation of the IM and the second surgery. Accordingly,
a decellularized–lyophilized hAM, as an alternative to the induced membrane technique,
was used in a segmental femoral defect model [23].

Processed hAM, seeded with bone marrow (BM) or adipose-derived MSC, led to
encouraging results in a calvarial bone defect animal model [155,156] and was a suitable
scaffold for cell proliferation and osteogenic differentiation [18,21,150]. As shown before,
even in the absence of osteoinduction, acellular hAM matrix exerted the substrate-induced
effect of initiating APC differentiation [99]. In an original way, transplantation of MSC
from periodontal ligaments and osteoblasts using double-layered cell transfer significantly
enhanced in vivo bone formation compared to single-cell-type transplantation [157].

A clinical study reported the successful use of decellularized hAM in combination
with autologous buccal-fat-pad-derived stem cells to treat large bone defects in jaws [158].
In the case series, the combination of bone substitutes (hydroxyapatite and platelet-rich
fibrin) with amnion allowed periapical bone healing [159].

3.8. Oral, Periodontal, and Maxillofacial Surgery

Since its first use in 1985 by Lawson et al. for the treatment of oral mucosa defects [160],
this allograft has been widely studied in the field of oral and maxillofacial surgery, and
promising results exist for oral soft tissue regeneration [16]. Multilayered hAM was
used to close oronasal fistula in minipigs [161] and in four patients [83]. Moreover, the
amniochorionic membranes were compared to the conventional membrane already used
for GBR procedures in oral surgery [162].

Several studies have reported the ability of hAM to stimulate healing and enhance
epithelial regeneration of human oral mucosa defects after excision of benign and pre-
cancerous lesions [163,164]. In this context, a bioartificial mucosa using cultured oral ker-
atinocytes on hAM was fabricated to evaluate the possibility of developing a prelaminated
myomucosal flap using the fabricated bioartificial mucosa and a local muscle flap [165].
Similarly, denuded (hyper)dry or cryopreserved hAM have been used alone [56] or seeded
with oral mucosal epithelial cell sheets and transferred to the mucosal defect in both
preclinical [166,167] and clinical studies [168,169].

The use of hAM to treat root exposure caused by gingival recession has been success-
fully reported in several clinical studies. When the hAM graft was associated with a gingi-
val flap, the root coverage and gingival thickness and biotype were improved [170–172].

In a combined way, autologous keratinocytes cultured on hAM combined with poly(L-
lactic acid) were transplanted with success to cover intraoral fistulas and bone loss after
osteoradionecrosis in 9 patients (15 procedures) [173].

Periodontal disease affects the supportive tissue of teeth, which include the periodon-
tal ligament. Several preclinical studies have aimed to investigate the efficacy of hAM
to treat periodontal disease. Amnion was seeded with periodontal ligament stem cells
or periosteum-derived cells [166,174,175] or adipose-derived MSC [176]. These studies
concluded that hAM could be a useful scaffold for periodontal regeneration by avoiding
the proliferation of connective tissue on the denuded root surface in the periodontal defect.
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Finally, an in vitro study suggested the potential of dental-pulp-derived cell sheets cultured
on hAM substrates for periodontal TE [177].

In maxillofacial surgery, hAM was used as an interpositional material to prevent
temporomandibular joint re-ankylosis in a rabbit model [178]. Similar results were observed
when cryopreserved hAM was compared to fresh hAM [179]. Improvement in chewing
efficiency and the absence of pain were related in one case report [180]. Its use has also
been tested with success in the treatment of two patients with bisphosphonate-related
osteonecrosis of the jaw [181].

3.9. Nerve

Several studies have reported the use of fresh or preserved hAM as a scaffold for nerve
regeneration, highlighting a proregenerative effect on injured peripheral nerves, thanks to
its antifibrotic and antiscarring effects [17]. For example, fresh hAM was implanted in a rat
model of sciatic nerve scarring to treat recurring perineural adhesions and the associated
nerve scarring. Accelerated recovery of sciatic nerve function was observed when the
epithelial side of hAM was applied toward the nerve [182]. To manage nerve injury, cryop-
reserved hAM was wrapped around the damaged nerve, and scar formation and functional
recovery were assessed. Although both functional and morphological parameters were not
significantly improved, the nerves wrapped with hAM had significantly fewer adhesions
and less scar formation than controls [183]. For both indications, only a few studies have
specified the orientation of the applied amnion [17]: stromal side against the nerve [184]
or epithelial side [182,185]. In a combined way, a dehydrated amnion filled with skeletal
muscle cells, harvested from neighboring tissue, showed encouraging results in humans
for repairing post-traumatic nerve defects of 3 to 5 cm in length [186]. Later, this clinical
proof of concept was substantiated by an experimental model [185]. Additionally, amnion
tubes were manufactured to cover the gap and edges of the nerve with favorable functional
in vivo results [187–189]. Recently, an electrospun polycaprolactone–amnion nanofibrous
membrane showed satisfying results for the treatment of sciatic nerve compression in a
rat model [190].

Only two articles were found with a TE purpose. The first reports the use of a
scroll of amnion derivative (ZQ membrane) combined with cultured autogenous Schwann
cells [191]. The second was the application of human umbilical cord MSC-loaded hAM
for the repair of radial nerve injury, with functional recovery better in the transplantation
group than the control group [192].

3.10. Ligament and Tendon

The interest in hAM for ligament and tendon healing has also been explored [193,194].
This tissue has the ability to prevent tendon adhesions after injury and reconstruction [195].
One study investigated the effects of fresh denuded amnion and hyaluronic acid, alone
and in combination, on adhesions and healing following chicken flexor tendon repair.
The prevention of adhesion formation was superior when hAM was wrapped around the
repaired tendon [196]. Another study reported the effectiveness of decellularized amnion
to promote endogenous healing and prevent tendon adhesion in the same model [197].

This method of tendon-wrapping, in which cryopreserved hAM is laid over the
damaged tendon, has also been successfully reported in humans [198,199]. The addition of a
de-epithelialized and lyophilized hAM wrap around a composite silk scaffold that included
tenocytes accelerated cellular migration and angiogenesis in neotendons in rabbits [200].

We have found only one article with a TE purpose. It evaluated fetal skin fibroblast
cells seeded on hAM ECM in an in vivo model of Achille tendon defect, with promising
functional results [201].

3.11. Heart

In the field of cardiology, hAM patching improved ischemic heart repair in rat and
mice models [202–204]. Similarly, an acellular hAM was explored in vivo as a pericardial
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substitute [205]. Results showed that hAM use increased the pericardium repair thickness,
thanks to its ability to reduce the incidence of adhesions and scarring. Four weeks after
surgery, host cells organized with tissue fibrils and capillaries were clearly identified in the
surface (epicardial) coating of the hAM patch, indicating that its outer layer became well
integrated with the host tissues.

Medical case reports have also stated that hAM patching had anti-inflammatory
effects and reduced new-onset postoperative fibrillation in patients undergoing cardiac
surgery [206,207].

In a combined way, a novel composite biomaterial was developed by processing
human cardiac ECM into a hydrogel and combining it with cell-free hAM via a dry-coating
procedure [208]. The researchers concluded that the incorporation of human cardiac ECM
hydrogel shifts and enhances the bioactivity of decellularized hAM, facilitating its use
in future cardiac applications. Overall, based on their results, this scaffold may be a
potential platform for the epicardial delivery of cells and therapeutic agents as it pos-
sesses superior adhesion capacity, supports cell proliferation and viability, and modulates
inflammatory responses.

Only one article was reported with a TE purpose. It investigated an in-house generated
human-induced pluripotent-stem cell-derived cardiac progenitor seeded on trypsinized
and cryopreserved hAM to construct a cardiac cell sheet [209]. The study showed that
the seeded progenitor cells grafted onto the matrix of hAM differentiated in situ into
functional and relatively mature cardiomyocytes. hAM slightly improved the development
of cardiomyocytes compared to the control basement membrane matrix, Matrigel™.

3.12. Clinical Trials

Due to historical use and banking facilities, to date, hAM is mainly exploited under
its scaffold format instead of its derived cells.

Consequently, the assessment of the overall number of clinical trials evaluating hAM
as a scaffold for TE purposes revealed that ophthalmology has the biggest share, with
14 clinical trials (Table 2). In this indication, various autologous or allogenic cells have been
seeded on hAM: limbal (epithelial) stem cells, cornea stem cells, oral mucosal epithelial
cells, conjunctival epithelial cells, fibroblasts, and BM-MSC.

hAM-based scaffolds have been studied sporadically in Asherman’s Syndrome, en-
dometrium infertile patients, and anterior cruciate ligament ruptures. Interestingly, in
gynecology, hAM was combined with isolated hAECs. In this indication, these cells have
also been explored alone in other clinical trials not included in Table 2 (NCT03207412,
NCT02912104, NCT03381807, NCT03223454). Finally, both hAM cells and hAECs have
been examined alone in wound healing and nonunion fracture, respectively.

Table 2. Clinical trials using human amniotic membrane cells and/or human amniotic membrane as a scaffold for tissue
engineering purposes (https://clinicaltrials.gov (accessed on 7 October 2020)).

Conditions Clinical
Trials Id Phase

Tissue
Engineering

Product
Evaluated

Status Sponsor Results/Status or
Remarks

OCULAR SURFACE
DISEASE NCT00348114 2

Amnion + ex vivo
expanded limbal
epithelial stem

cells

Suspended
Singapore

National Eye
Centre

Estimated
Enrolment: 8
participants

Estimated Study
Completion Date:

May 2006

LIMBAL STEM CELL
DEFICIENCY NCT00736307 1

2

Amnion +
cultured limbal
epithelial stem

cells

Completed Royan Institute,
Tehran, Iran

Enrolment: 10
participants

Study
Completion Date:

October 2009

https://clinicaltrials.gov
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Table 2. Cont.

Conditions Clinical
Trials Id Phase

Tissue
Engineering

Product
Evaluated

Status Sponsor Results/Status or
Remarks

UNILATERALLIMBAL
STEM CELL

INSUFFICIENCY
NCT01377311 1

Amnion +
cultured limbal

stem cells
Terminated

National Taiwan
University
Hospital

Enrolment: 0
participants

Study
Completion Date:

April 2010

LIMBAL
INSUFFICIENCY

SYMBLEPHARON
NCT00491959 1

Amnion + oral
mucosal

epithelial cells

Terminated
(Due to

unstable cell
sheet quality,
the technique
was not tested

on patients)

National Taiwan
University
Hospital

Enrolment: 0
participants

Study
Completion Date:

April 2010

SYMBLEPHARON NCT00799526 1

Amnion + ex vivo
cultivated

autologous
conjunctival

epithelial cells

Unknown
Federal

University of São
Paulo

Estimated
Enrolment: 10
participants

Estimated Study
Completion Date:
November 2010

EYE INJURY NCT01123044 3
Amnion +

autologous limbal
epithelial cells

Unknown Ministry of
Health, Malaysia

Enrolment: 42
participants

Estimated Study
Completion Date:
September 2012

EPIDERMOLYSIS
BULLOSA WITH
MITTEN HANDS

NCT01908088 1
Amnion +

autologous
fibroblasts

Completed Royan Institute

Enrolment: 6
participants

Study
Completion Date:

July 2013

CORNEAL DISEASE
PTERYGIUM

MYOPIA
HYPEROPIA

NCT02148016 1
2

Autologous
limbal stem cell +

amnion as a
protective contact

lens

Unknown Sun Yat-sen
University

Estimated
Enrolment: 30
participants

Estimated Study
Completion Date:
September 2014

LIMBUS CORNEAE
INSUFFICIENCY

SYNDROME
NCT01562002 1

2

Amnion +
allogenic bone
marrow MSC

versus amnion +
allogenic limbal

stem cells

Completed

Instituto
Universitario de
Oftalmobiología

Aplicada
(Institute of

Applied
Ophthalmobiology)—

IOBA

Enrolment: 27
participants

Study
Completion Date:
December 2014

OCULAR SURFACE
RECONSTRUCTION NCT01341223 Observational

Amnion as a
carrier for ex vivo

cell culture
Unknown

National Taiwan
University
Hospital

Estimated
Enrolment: 50
participants

Estimated Study
Completion Date:

Mars 2016

LIMBAL STEM CELL
DEFICIENCY NCT03226015 Observational

Amnion +
autologous oral

mucosa
Completed

Klinikum
Chemnitz
gGmbH

Enrolment: 27
participants

Study
Completion Date:

May 2017

LIMBAL STEM CELL
DEFICIENCY NCT01619189 2

Amnion +
allogeneic or

autologous limbal
epithelial stem

cells

Completed

CHNO des
quinze-

vingtsParis,
France

Enrollment: 14
participants

Study
Completion Date:

6 March 2017

LIMBAL STEM CELL
DEFICIENCY NCT02579993 Interventional

Amnion +
in vitro expanded
limbal stem cells

Terminated
(Preliminary
results not
favorable)

Instituto de
Oftalmologia

Conde de
Valenciana

Enrolment: 10
participants

Study
Completion Date:

March 2018
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Table 2. Cont.

Conditions Clinical
Trials Id Phase

Tissue
Engineering

Product
Evaluated

Status Sponsor Results/Status or
Remarks

LIMBAL STEM CELL
DEFICIENCY NCT02592330 1

Amnion +
expanded

autologous limbal
epithelial cells

Recruiting
Massachusetts

Eye and Ear
Infirmary

Estimated
Enrollment: 17

participants
Estimated Study
Completion Date:

30 June 2023

WOUNDS NCT02314416 4
Amniotic stem
cells + collagen

matrix
Withdrawn Augusta

University

Enrolment: 0
participant

Study
Completion Date:

May 2015

ASHERMAN’S
SYNDROME NCT03223454 1 Amnion + AEC Unknown

The Second
Affiliated

Hospital of
Chongqing

Medical
University

Estimated
Enrolment: 50
participants

Estimated Study
Completion Date:

March 2021

ENDOMETRIUM
INFERTILE PATIENTS NCT04676269 1

Amnion +
autologous

endometrium
cells or allogenic
AEC or both type

of cells

Recruiting Indonesia
University

Estimated
Enrolment: 40
participants

Estimated Study
Completion Date:
15 December 2021

ANTERIOR CRUCIATE
LIGAMENT RUPTURE NCT03294759 Interventional

Amnion collagen
matrix wrap +

bone MSC

Active, not
recruiting

Andrews
Research &
Education

Foundation

Actual Enrolment:
40 participants

Estimated Study
Completion Date:

25 September
2021

ANTERIOR CRUCIATE
LIGAMENT RUPTURE NCT03294720 Interventional

Amnion collagen
matrix wrap +

bone MSC

Active, not
recruiting

Andrews
Research &
Education

Foundation

Actual Enrolment:
10 participants

Estimated Study
Completion Date:

20 March 2021

NONUNION
FRACTURE NCT03031509 1

2 AEC Not yet
recruiting

Shanghai East
Hospital

Estimated
Enrollment: 36

participants
Estimated Study
Completion Date:
December 2020

MSC = Mesenchymal Stromal Cells; AEC = Amniotic epithelial cells.

4. Conclusion

Since promising results have been achieved with hAM in ophthalmology and der-
matology, an increasing number of publications have suggested its potential for other TE
applications. Experimental works have described promising results in vascular, bone, and
cartilage repair and oral surgery, similarly to the research conducted in overall TE in recent
years. From our analysis, nerve, ligament, tendon, and cardiac applications were sporadic
compared to urology.

In clinics, bone, oral mucosa, and ligament repair have been investigated, and two
industrial clinical trials have been conducted. Thus, the participation of the industry in
the TE field is highly anticipated. Some exogenous indications in gynecology (Asherman’s
Syndrome and endometrium infertile patients) that do not properly belong to the TE field
have also been explored.

Looking at the TE constructs more in detail, decellularization or, mainly, the de-
epithelialization process has been applied to hAM. Predominantly in the cartilage TE area,
researchers have compared the efficacy of seeding the three layers (epithelial, basement
membrane, and stromal). The basement membrane layer seems to be more favorable for
cell seeding, proliferation, and differentiation. To date, there is no consensus on the best
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cells to seed on hAM, and the choice is mostly driven by the tissue to regenerate. In all
cases, a good balance must be found between a noninvasive procedure for the collection of
cells and their final functional capacity. That is why, for example, oral mucosa has been
considered a source of epithelial cells in ophthalmology. The in vivo degradation rate of
hAM is not detailed enough in the literature and should be more evaluated.

Finally, we note that clinical trials have intensively explored hAM as a scaffold com-
pared to the use of its cells as a TE construct. Increased knowledge of hAM cells, in
particular regarding their function, will encourage future clinical investigations.
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