
Supplemental Material

Ca2+ binding does not block ionic currents in

Connexin hemichannel by a pure electrostatic

effect: a systematic molecular dynamics study

Villanelo F., Carrasco J, Jensen-Flores J, Garate J.A., Perez-acle T.

March 9, 2021

Electrostatic potentials

Average electrostatic potentials from the productions runs, were computed
by solving Poisson’s equation on a grid employing the pmepot plugin of
VMD version 1.03 [1] with a grid spacing of 1Å and a Ewald factor of 0.25.

In Figure S1 the electrostatic potentials of different models and the
calcium-bound Cx26-HC are presented. When we compare this potential
profile with that of the channels used in this work, we see that the all-atom
calcium-bound Cx26-HC, generate an electrostatic potential that is between
the X1 and X2 models (Figure S1).
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Figure S1: Effect of CaLP and calcium ions on the electrostatic potential
inside the pore, in HC-like and all-atom HC system, respectively. The po-
tential shown is radially averaged in the same plane in z-axis where CaLP
or calcium ions are (indicated as black dotted lines). Grey shadows show
the position of the channel atoms and the white space is the pore lumen.
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Figure S2: Ion and water permeation events during simulations at V=1000
mV. A & E. Potassium permeation. B & F. Chloride permeation. C
& G. Water permeation exterior to interior. D & H. Water permeation
interior to exterior. In the first column (from A to C) permeation is plotted
against pore diameter, while each color represent a different CaLP charge
magnitude. In the second column (from D to F) permeation is plotted
against CaLP charge magnitude, while each color represent a different pore
diameter. Legends are indicated in the first plot of each column. All the
values are average over three replicas ± SD.
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Figure S3: Ion and water permeation events during simulations at V=100
mV. A & E. Potassium permeation. B & F. Chloride permeation. C
& G. Water permeation exterior to interior. D & H. Water permeation
interior to exterior. In the first column (from A to C) permeation is plotted
against pore diameter, while each color represent a different CaLP charge
magnitude. In the second column (from D to F) permeation is plotted
against CaLP charge magnitude, while each color represent a different pore
diameter. Legends are indicated in the first plot of each column. All the
values are average over three replicas ± SD.
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Figure S4: Half life of decay of survival probability in controls simulations
where ions cannot enter to the pore. See main text for detail.
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