

Supplementary Data File

Influence of Casting Solvents on CO₂/CH₄ Separation using Polysulfone Membranes

Roba M. Almuhtaseb, Ahmed Awadallah-F⁺, Shaheen A. Al-Muhtaseb and Majeda Khraisheh *

Department of Chemical Engine e ring, Qatar University, Doha, P.O. Box 2713, Qatar; roba.almu-

- htaseb@qu.edu.qa, ahmed.awadallah@qu.edu.qa, s.almuhtaseb@qu.edu.qa
- * Correspondence: m.khraisheh@qu.edu.qa; Tel.: +974-4403-4993; Fax: +974-4403-4131
- + On leave from the Radiation Research of Polymer Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, P.O. Box 29, Nasr City, Cairo, Egypt.
- Correspondence: e-mail@e-mail.com; Tel.: (optional; include country code; if there are multiple corresponding authors, add author initials)

S1. Theory

The Equations (1) and (2) are used to calculate the permeability of the membrane as follows:

$$J_i = \frac{n_i}{t.A} \tag{1}$$

$$P_i = \frac{J_i \cdot l}{\Delta P_i} \tag{2}$$

where J_i is the flux, $\frac{cm^3}{s.cm^{2\prime}}$, n_i is the molar volume at standard temperature and pressure (cm^3) , t is the experiment duration (s), A is the cross surface area of membrane (cm^2) , P_i is the permeability, $\frac{cm^3.cm}{s.cm^2.cmHg'}$ but the unit of permeability is known as *barrer*, l is the thickness of membrane (cm), and ΔP_i is the partial pressure difference of each gas, (cmHg). Equation (3) is used to calculate the selectivity of CO₂ with respect to CH₄ as follows:

$$\alpha = \frac{P_{CO_2}}{P_i} \tag{3}$$

Where *i* represents CH₄. The data in **Table S1** are needed to calculate the permeability and selectivity values.

Parameters.		
Mole fraction of CH4 in feed, yCH4,feed=	0.95	
Mole fraction of CO ₂ in feed, yCO _{2,feed} =	0.05	
Thickness of membrane casted by CF, $l =$	0.0132 cm	
Thickness of membrane casted by THF, $l =$	0.0116 cm	
Permeate volume, V =	92 cm^3	
Cross surface area of membrane, A =	14.52 cm^2	
Duration of experiment, t =	10800 <i>s</i>	
Atmospheric pressure, P _{atm} =	1.013 <i>bar</i>	
Gas constant, R =	83.1447 $\frac{bar.cm^3}{mole.K}$	
Operating temperature, T=	293.15 K	
Pressure of Feed, P _{feed} =	1-10 <i>bar</i> (gage)	
Pressure of Helium, P _{He} =	1.5-2 bar	

Pressure of Permeate, P _{perm} =	The pressure of the sample taken from GC <i>bar</i>	
Total pressure (P _{He} + P _{perm}), P _{Totat} =	bar	
Density of membrane =	$\sim 1.24g/cm^{3}$	
Calculating number of	moles of Helium as follows:	
	$n_{He} = \frac{P_{He}V}{RT}$	(4)
Calculating the total nu	mber of moles as follows:	
	$n_{Total} = \frac{P_{Total}V}{RT}$	(5)
Calculating number of	moles in permeate as follows:	
	$n_{Perm} = \frac{P_{Perm}V}{RT}$	(6)
Calculating number of	moles of CO ₂ in permeate as follows:	
	$n_{CO2} = n_{Perm} \times y_{CO2,feed}$	(7)
Calculating the mole fra	action of CO ₂ in permeate as follows:	
	$y_{CO2,perm} = \frac{n_{CO2}}{n_{Perm}}$	(8)

Calculating the partial pressure difference of CO₂ as follows:

$$\Delta P_{CO2} = y_{CO2,feed} \times P_{feed,Abs} - y_{CO2,perm} \times P_{Total} \quad (9)$$

Calculating the flux of CO_2 using Equation (10) as follows:

$$J_{CO2} = \frac{n_{CO2}}{t.A} \tag{10}$$

Same procedures will be done to find the permeability of CH₄ The selectivity of CO₂ is calculated using Equation (11) as follows:

$$\alpha = \frac{P_{CO_2}}{P_{CH4}} \tag{11}$$