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Abstract: It has been proposed that the air-cooled configuration for air gap membrane distillation
is an effective way to simplify the system design and energy source requirement. This offers
potential for the practical applications of membrane distillation on an industrial scale. In this work,
membrane distillation tests were performed using a typical water-cooled membrane distillation
(WCMD) configuration and an air-cooled membrane distillation (ACMD) configuration with various
condensing plates and operating conditions. To increase the permeate flux of an ACMD system, the
condensing plate in the permeate side should transfer heat to the atmosphere more effectively, such
as using a more thermally conductive plate, adding fins, or introducing forced convection air flow.
Importantly, a practical mass transfer model was proposed to describe the ACMD performance in
terms of permeate flux. This model can be simplified by introducing specific correction values to
the mass transfer coefficient of a WCMD process under the same conditions. The two factors relate
to the capacity (B) and the efficiency (σ), which can be considered as the characteristic factors of a
membrane distillation (MD) system. The experimental results are consistent with the theoretical
estimations based on this model, which can be used to describe the performance of an MD process.

Keywords: air-cooled membrane distillation; mass transfer model; characteristic factor; permeate flux

1. Introduction

Membrane distillation (MD) is a membrane-based separation process that only needs
low-grade heat as the energy input [1–3]. It is a potential desalination technology as the
alternative to thermal evaporation technologies [4,5] and membrane filtration technolo-
gies [6,7]. MD technology is generally still at the laboratory research stage. The main
factors that limit its applications in industrial fields are scale and stability, similar to many
emerging technologies. The majority of the studies on MD are focused on the development
of novel porous membranes for MD applications [8–12], the transmembrane transport anal-
ysis in microscale [13–17], the configurations and their related performance [18–20]. The
MD performance criteria usually include the permeate flux, salt rejection, specific energy
consumption, scaling resistance and operating stability. It is a typical class of research that
relates the microscale sciences to engineering applications.

The present work focuses on the MD configuration types that seem to be the most
promising for scale-up applications. There are mainly two types of MD systems: gap mem-
brane distillation (GMD) [21–26] and direct contact membrane distillation (DCMD) [27–29].
Many other MD systems are based on the two configurations [30,31]. They have different
advantages but share a common feature that there are two liquid circulations, hot feed and
liquid coolant (usually cold water), to provide a temperature gradient as the driving force
to make mass transfer across the membrane. The circulation of the hot feed is the necessary
part, but the circulation of liquid coolant is a significant drawback of an MD system, which
produces an extra energy requirement and system complexity leading to operating costs.
The removal of coolant circulation makes the system more compact and cost-effective.
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Recently, Narayan and Pitchumani [32] creatively proposed an air-cooled membrane distil-
lation (ACMD) configuration, performed experimental investigations on a lab-scale ACMD
module, and compared results to those of water-cooled systems in literature [18].

In this work, we investigate the ACMD configuration with a specific focus on the engi-
neering description of an MD process by modeling it with characteristic factors and values.
A general mass transfer equation was derived to evaluate and predict MD performance in
terms of permeate flux. A series of ACMD modules were constructed, including various
condensing plates with different thermal conductivities, finned condensing plates, natural
convection and various forced convection configurations. The test results were employed
to examine the theoretical estimations and the meanings of the characteristic factors.

2. Methods
2.1. Membrane Characterization

Commercial hydrophobic polytetrafluoroethylene (PTFE) membranes used in this
work were purchased from Membrane Solutions LLC. The average pore diameter is 0.22 µm.
The porosity is 80%. The surface morphology (Figure 1a) of the hydrophobic membrane
was observed by scanning electron microscope (SEM, FEI, Quanta-450, Hillsboro, OR,
USA). Due to the low conductivity of the PTFE membrane, the sample was sputter-coated
with a thin layer of Au to enhance the conductivity. The thickness of the PTFE membrane
was measured by a digital micrometer and averaged. At least six measurements at different
locations on the membrane were conducted. The thickness of the PTFE membrane was
153 ± 7 µm.
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value: variation of the pressure drop (kPa) with injected feed liquid volume (mL).

A goniometer was used to measure the static water contact angle (WCA) of the PTFE
membrane to characterize the hydrophobicity. Details of measurements could be found
in the previous studies [33,34]. As shown in Figure 1a, the test membrane shows high
hydrophobicity (135 ± 2◦), which meets the membrane hydrophobicity requirements of
MD. Liquid entry pressure (LEP), the minimum pressure to overcome the membrane’s
hydrophobicity into the membrane pores, was tested by a custom-designed device. The
membrane holder was filled with the membrane. Then a syringe pump was used to
generate liquid pressure on the membrane by pumping the DI water slowly (0.5 mL/min).
The pressure increased until it exceeded the critical pressure that prevents the liquid
from wetting the membrane pores. The detailed LEP tests were described in previous
studies [22,35]. As shown in Figure 1b, the LEP value of the PTFE membrane used in this
work is ~ 650 kPa, which meets the requirements of MD experiments conducted here.
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2.2. Membrane Distillation Apparatuses and Tests

The ACMD configuration and water-cooled membrane distillation (WCMD) configu-
ration share the same feeding system but differ in terms of cooling system strategy and
design (Figure 2). The ACMD module consists of a feed chamber, a test membrane, two seal-
ing gaskets, a mesh spacer, a condensing plate, a collecting tube, two stainless steel frames
and four sets of bolt and nut assemblies. The size of the feed chamber 65 × 20 × 65 mm3

(length × width × height) made of polymethyl methacrylate (PMMA). It was designed as a
circular chamber with a diameter of 50 mm and a depth of 10 mm. The effective membrane
area was 17.67 cm2. The air gap thickness was 2 mm. The feed side and air gap were
both filled with polyethylene mesh spacers for the support of the test membranes. The
dimension parameters of the mesh spacer were shown in detail in Table S1. A stainless
steel tube was placed between the rubber sheet and the condensing plate to conduct the
flow of the permeate water (Figures S1 and S2 of SI). The MD test units in this work applied
condensing plates made of different materials, including T2 copper, 1060 aluminum alloy,
304 stainless steel and PMMA. The plates have different thermal conductivities that vary
from 0.18–398 W/m/K (Table 1). The thickness of the condensing plates is 1 mm.
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Table 1. The thermal conductivities and water contact angles of the condensing plates used in this work.

Material Thermal Conductivity (W/m/K) WCA (◦)

1 Copper 398 46 ± 3
2 Aluminum 234 65 ± 2
3 Steel 18 82 ± 6
4 PMMA 0.18 68 ± 3

In the WCMD configuration (Figure 2a and Figure S1), the hot feed solution was
heated by a water bath (DF-101S, Henan Yuhua Instrument Co., Ltd., Henan, China) and
pumped into the feed channel by a magnetically driven pump (MP-15R, 10 W, Guangquan
Machinery Co., Ltd., Zhengzhou, China). In the cooling side of the WCMD experiment,
the cooling water was circulated through the coolant channel to the coolant tank by a
magnetically driven pump (30 W) and then cooled to the desired temperature by the chiller.

In the ACMD configuration, the evaporation, transport, and condensation processes
of the water molecules were the same as those in WCMD. However, ACMD reduced the
use of the pump, chiller, coolant tank, and flow meter on the cooling side. In contrast,
natural convection or forced convection of the air by the fan (2.5 W) was employed to
transfer the heat from the condensing plate to the atmosphere. The condensing plate was
fabricated by flat plates with various thermal conductivities or fins. The permeate water
was collected from the lower portion of the MD module, and the change in weight was
automatically recorded every 60 s by a digital balance. Besides, two temperature sensors
were attached to the outer surface of the condensing plate to measure the temperature of
the condensing plate more accurately.
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The 3.5 wt% sodium chloride (Tianjin Kemiou Chemical Reagent Co., Ltd., Tianjin,
China) aqueous solution was used as the feed. The recirculation flow rate of the feed
was maintained at 1.2 L/min. The temperature of the feed was varied in the range of
38 and 71 ◦C by a water bath. In the WCMD tests, the temperature and the flow rate
of the cooling water were maintained at 22.5 ± 0.5 ◦C and 1.6 L/min, respectively. In
the forced convection ACMD tests, the velocities of airflows were set as 0, 0.4, 1.0 and
2.0 m/s, respectively. The relative humidity of the cooling air was ~ 50%. The temperatures
of the feed solution and cooling air were maintained at 68.8 ± 0.2 ◦C and 22.5 ± 0.5 ◦C,
respectively. Each MD test was carried out for 1 h and repeated three times under the
same conditions.

To further enhance the driving force of the ACMD configuration, cooling fins were
added to the condensing plates, which significantly increased the surface area so that
the heat transfer could be increased. Three types of fins were designed (as shown in
Figures S3 and S4) and made of aluminum (thermal conductivity: 234 W/m/K). The
surface area ratios of fins 1, fins 2, and fins 3 were 14.2, 14.9 and 25.2, respectively. The air
velocity was fixed at 2.0 m/s. The specific size parameters of the fins are shown in detail
in Table S2.

3. Results and Discussion
3.1. Feasibility of ACMD Configuration

The ACMD configuration works when there is a temperature gradient between the
feed side and the cooling side (Figure 3a). The values of the salt rejection ratio in all the
cases in this work are larger than 99% (Table S3). When the temperature of the cooling air is
fixed, the permeate flux increases with the temperature of the feed. The trend is similar to
that of the WCMD configuration, but the values are small. Besides, the permeate flux of the
ACMD process is related to the thermal conductivity of the condensing plate. A plate with
higher thermal conductivity leads to a more efficient heat transfer to the atmosphere and a
higher permeate flux as a result. The permeate flux increases with the thermal conductivity
until a certain point when the natural convection is insufficient to further enhance the heat
transfer performance. In this work, the highest permeate flux (1.6 kg/m2/h) of the ACMD
process is achieved with the feed temperature of 71 ◦C and using the copper condensing
plate under natural convection conditions.
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To further increase the permeate flux, forced convection was introduced to the cooling
side of the ACMD system to enhance the heat transfer from the condensing plate to the
atmosphere. As shown in Figure 3b, the permeate flux can be increased significantly by
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the forced convection at the cooling side. The convection heat transfer coefficient at the
outer surface of the condensing plate increases with the air velocity, whereas the total
thermal resistance decreases with the air velocity so that the heat flux and permeate flux
are enhanced. The permeate flux reaches the highest value (e.g., Copper plate: 5 kg/m2/h)
when the velocity of the airflow is 1.0 m/s, which is comparable to that of the WCMD
configuration. The continued increase of the air velocity has a slight influence on the
permeate flux of the ACMD process. This is because the resistance to convective heat
transport becomes lower, and the thermal resistance of the ACMD process is mainly
reflected in the air gap. The continued increase of the air velocity has a slight influence
on the decrease of the total thermal resistance. The ACMD configuration reaches the
maximum cooling capability by air in this case. Besides, the salt rejection ratios under
the conditions of different condensing plates and air velocities are both larger than 99.9%
(Table S4).

3.2. Mass Transfer Model for ACMD Configuration

In the microscale, the mass transport across the porous membrane in an MD process is
the diffusion behavior of water molecules through the microchannels forced by the vapor
pressure gradient. It depends on pore size, porosity, tortuosity and collision behaviors.
In general, all the factors can be summarized as the mass transfer coefficient (B) of an
MD process, as shown in Equation (1). The B value can be considered as a constant
for simplification based on the previous study [35], which can also be considered as a
characteristic factor of a certain MD process.

J = B(Pf − Pc), (1)

where J is the permeate flux of an MD process, B is the general mass transfer coefficient, Pf
and Pc are the saturated vapor pressures of the feed side and cooling side, respectively.

According to the Antoine equation, the saturated vapor pressure is dominated by tem-
perature. The permeate flux of a MD process can be directly expressed by the temperature
gradient across the membrane (Equation (2)).

J = B

[
exp(23.1964 − 3816.44

t f + 273.15 − 46.13
)− exp(23.1964 − 3816.44

tc + 273.15 − 46.13
)

]
, (2)

where t f and tc are the temperatures of the feed side and the cooling side, respectively.
In the WCMD configuration, the latent heat of evaporation released by the condensa-

tion of the water vapor is transferred to the cooling side through the heat conduction of
the condensing plate and convection of the cooling water circulation. The heat transport is
mainly affected by the experimental parameters such as the properties of the condensing
plate and the circling flow rate of the cooling water (uw). As water has a large heat capacity,
the thermal resistance of conduction and convection on the cooling side is negligible. The
temperature of the membrane surface facing the condensing plate can be considered the
same as that of the condensing plate and the cooling water (tc). The temperature of the feed
(t f ) is considered as the temperature of the membrane surface directly contacting the feed.

In the ACMD configuration, we started the derivation with the assumption that the
feed temperature is equal to the membrane surface temperature, which is the same as that
of the WCMD configuration. However, the temperature of the condensing plate is not
the same as the temperature of cooling air in the atmosphere because air has a relatively
small heat capacity and the heat transfer from solid (condensing plate) to gas (cooling
air) is much less efficient than that from solid to liquid (cooling water), although we can
apply fins and forced convection to enhance the heat transfer performance. In this case, we
introduce a temperature correction coefficient (ϕc) to the temperature of the cooling side
(tc) to reveal the actual temperature of the condensing plate (tcp), which is in the range of
the feed temperature and cooling temperature (Equation (3)). Then, the permeate flux of
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an ACMD process can be rewritten as Equation (4). In a WCMD process, ϕc ≈ 1, because
of the small thermal resistance in the cooling side.

ϕc =
tcp

tc
(1 < ϕc <

t f

tc
), (3)

J = B

[
exp(23.1964 − 3816.44

t f + 227.02
)− exp(23.1964 − 3816.44

ϕctc + 227.02
)

]
, (4)

As concluded in the previous study [35], the B value is a constant for a WCMD process
and can be obtained through one set of the MD performance values. Thus, the ϕc values
of an ACMD process can be calculated according to Equation (4). As shown in Figure 4a,
in the ACMD processes with various condensing plates, the ϕc values increase linearly
with the feed temperature, ϕc ∼ t f . It indicates that natural convection air cooling is not
efficient in removing heat from the condensing plate. The temperature gradient across the
membrane in an ACMD process is determined by the feed temperature.
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As shown in Figure 4b, the forced convection on the cooling side is also a factor
influencing the ϕc value, which is suppressed by the velocity of the airflow (ua), following
the trend of ϕc ∼ exp(1/ua). This indicates the further cooling on the condensing plate by
the forced convection. When the air velocity increases to a certain value (1.0 m/s in this
work), the continued increase of the air velocity has an insignificant influence upon the ϕc
of the ACMD process.

It can be concluded that the ϕc value in Equation (4) varies with the feed temperature
and the velocity of the cooling air, which means it is not suitable to be used as a characteristic
factor of an ACMD process. Instead, we introduce a specific correction value (σ) to the
mass transfer coefficient (B) in Equation (2) to generalize the effect of the air cooling to an
MD process as follows:

J = Bσ

[
exp(23.1964 − 3816.44

t f + 227.02
)− exp(23.1964 − 3816.44

tc + 227.02
)

]
, (5)

In this case, the B factor can be considered as a characteristic factor indicating the
intrinsic mass transfer coefficient of an MD process. The σ factor can be considered as a
characteristic factor indicating the function of air cooling. The value of σ is in the range
of 0 to 1. It is approximately equal to 1 in a WCMD process, which is the intrinsic MD
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performance. In this work, Equation (5) is applied and examined to describe the ACMD
performance in terms of permeate flux.

3.3. Capacity Factor and Efficiency Factor

As shown in Figure 5, the theoretical estimates of the permeate flux based on Equation
(5) are in good agreement with the experimental results of both WCMD configuration and
ACMD configuration. For an MD process, regardless of configuration types, the B value is
fixed as a characteristic factor indicating the intrinsic mass transfer coefficient. The thermal
conductivity of the condensing plate is one of the dominant factors affecting the B value.
Under the same conditions, the condensing plate with higher thermal conductivity results
in a larger B value which leads to a better MD performance in terms of permeate flux. For
an ACMD configuration with the natural convection, the B value is the same as that of the
related WCMD configuration, while the σ value is about 12% of that. So, the permeate
flux of an ACMD test is about 12% to that of a WCMD test under the same conditions.
We can conclude that an MD system with fixed intrinsic properties, such as membrane
properties and module properties, can be characterized by the B value. It represents the
capacity of an MD system. The σ value reflects the cooling function of the condensing
plate, which represents the efficiency of an MD system. The two factors in Equation (5) can
be used to describe and evaluate an MD process of either a WCMD configuration or an
ACMD configuration.
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3.4. Forced Convection ACMD

In the forced convection ACMD configuration, the velocity of the cooling air stream
has a significant effect on the efficiency factor (σ). As shown in Figure 6a, the σ value
increases with the airstream velocity, which increases the permeate flux. In this work,
the σ value can be increased from 0.12 (natural convection) to 0.45 when the velocity of
cooling air is 1 m/s by a fan. This is the maximum capacity the system can reach because
of the limit of heat transfer. A higher velocity does not increase the σ value in this work.
It is clear that forced convection is an effective way to enhance the permeate flux, but the
performance is still not as good as that of the water cooling system. We take the ACMD
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configuration with the copper plate condenser as an example. As shown in Figure 6b, the
B value is fixed, while the σ values vary with air velocities. The permeate fluxes can be
calculated by Equation (5), which are in agreement with experimental results. The model is
effective for predicting the permeate flux of MD processes of various forced convection
conditions. In this case, the highest permeate flux simply by forced convection air cooling
can reach 5.5 kg/m2/h.
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3.5. Effect of Cooling Fins

To further increase the permeate flux of the ACMD configuration, condensing plates
with cooling fins can be applied to enhance the heat transfer. As shown in Figure 7a,
the finned condensing plate with a higher surface area ratio relates to a larger σ value
along with the velocity of the cooling air. The σ value is approximately equal to 1 for
the ACMD configuration with fins and forced convection. The efficiency of the ACMD is
high, indicating the potential to reveal the intrinsic capacity of an MD system. We take
the ACMD system with finned aluminum condensing plate as an example; as shown in
Figure 7b, the permeate flux is comparable with that of the WCMD system under the same
conditions (Figure 5a). The theoretic estimation according to Equation (5) is consistent
with the experimental results. The above results once again verify the effectiveness of the
mass transfer model. It provides a convenient way to predict the permeate flux of an MD
process, which increases the potential for practical application of MD technology.
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estimations (solid lines) and the experimental results (solid markers) of the permeate flux of the ACMD system using
cooling fins with the optimum airflow velocity (2.0 m/s) in this work.



Membranes 2021, 11, 281 9 of 11

4. Conclusions

The MD system with the configuration of air cooling can produce permeate fluxes
comparable to the liquid cooling configurations by using finned condensing plates and
forced convection to improve heat transfer. It is a significant simplification of the original
MD configurations with the circulation of cooling water, which leads to the potential
practical application of MD using air/wind as the cooling fluid. This is a new route to
feature the MD system in more energy-saving and compact structures. We also proposed a
new model describing the ACMD performance in terms of permeate flux. We defined the
capacity factor (B) and the efficiency factor (σ) in the formula. The values of the two factors
can be used to characterize an MD system by its intrinsic potential and cooling function,
respectively. The theoretical estimation well evaluates the permeate fluxes of MD tests
under various conditions. Also, the two characteristic factors well describe an MD system.
It is reasonable to believe that the ACMD configuration is a potential route to scaled-up
industrial applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/membranes11040281/s1, Figure S1: Photograph of the apparatus used in this work. (a)
ACMD experimental apparatus, (b) WCMD experimental apparatus. Figure S2: Photograph of the
module used in this work. (a) ACMD module, (b) WCMD module. Figure S3. Schematic diagram
of fins structure. L f in: length of the fins; W f in: width of the fins; H f in: height of the fins; δch: the fin
pitch; δ f in,1: the thickness of the inner fin; δ f in,2: the thickness of the outer fin; δbase: the thickness of
the substrate; Ar: surface area of the substrate; A f : side area of the fins. Figure S4. The aluminum
finned condensing plates used in this work. Figure S5. Schematic of heat transfer in ACMD process.
Table S1. The size parameters of the mesh spacer. Table S2. The size parameters of the fins structure.
Table S3. The ACMD performance of the PTFE membrane with various condensing plates at different
feed temperatures in natural convection conditions in terms of temperature correction coefficient
and salt rejection ratio. Table S4. The ACMD performance of the PTFE membrane with various
condensing plates at different air velocities in terms of salt rejection ratio. Table S5. The WCMD
performance of the PTFE membrane with various condensing plates at different feed temperatures
in terms of salt rejection ratio. Table S6. The ACMD performance of the PTFE membrane with the
condensing plate at different surface ratios in the ACMD process.
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Nomenclature

Symbols

A f side area of the fins (mm2)
Ar surface area of the substrate (mm2)
B mass transfer coefficient of the MD process (kg/m2/Pa/s)
H f in height of the fins (mm)
J permeate flux (kg/m2/h)
L f in length of the fins (mm)
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Symbols

N number of the fin
P saturated vapor pressure
Rs salt rejection ratio
t temperature (◦C)
u velocity (m/s)
W f in width of the fins (mm)

Greek letters

δ thickness (m)
δbase thickness of the substrate (mm)
δch the fin pitch (mm)
δ f in,1 thickness of the inner fin (mm)
δ f in,2 thickness of the outer fin (mm)
λ thermal conductivity (W/m/K)
σ specific correction value
ϕ temperature correction coefficient
ω surface area ratio of the condensing plate

Subscripts

a cooling air
c cooling side
cp condensing plate
f feed side
fin rectangular straight fins
w cooling water

Abbreviations

ACMD air-cooled membrane distillation
GMD gap membrane distillation
LEP liquid entry pressure
MD membrane distillation
PMMA polymethyl methacrylate
PTFE polytetrafluoroethylene
RO reverse osmosis
SEM scanning electron microscope
WCA water contact angle
WCMD water-cooled membrane distillation
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