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Abstract: The proton battery possesses water electrolysis, proton storage and discharging functions
simultaneously, and it can be manufactured without expensive metals. Use the principle of proton
exchange membrane water electrolysis for charging, store it in the activated carbon on the hydrogen
side and use the principle of proton exchange membrane fuel cell for discharge when needed.
According to the latest literature, it is difficult to obtain the exact important physical parameters
inside the proton battery (e.g., voltage, current, temperature, humidity and flow), and the important
physical parameters are correlated with each other, which have critical influence on the performance,
lifetime and health status of the proton battery. At present, the condition of the proton battery
is judged indirectly only by external measurement, the actual situation inside the proton battery
cannot be obtained accurately and instantly. Therefore, this study uses micro-electro-mechanical
systems (MEMS) technology to develop a flexible 5-in-1 microsensor, which is embedded in the
proton battery to obtain five important physical parameters instantly, so that the condition inside
the proton battery can be mastered more precisely, so as to prolong the battery life and enhance the
proton battery performance.

Keywords: proton battery; flexible 5-in-1 microsensor; real-time microscopic diagnosis

1. Introduction

The proton battery is a very novel research area, first published by Heidari et al. [1]
from the Royal Melbourne Institute of Technology (RMIT), Australia, March 2018. It is
rechargeable, and it can electrolyze water, the electrolyzed protons can be stored in activated
carbon, and the protons can be released and combined with oxygen to generate electricity.
However, the current overall output performance is obtained by externally measuring the
proton battery, so the accurate information inside the proton battery cannot be known
instantly. The proton battery is built on the proton exchange membrane fuel cell (PEMFC),
the major difference between them is that the hydrogen of the proton battery is stored
in the battery in the state of ions, not outside the battery. This innovative breakthrough
can reduce the battery cost and the space occupied by the hydrogen tank greatly, and the
application area is enlarged.

At present, the fuel cell technology has been used in different areas extensively, but
there are still many problems to be solved, such as the fuel cell volume, weight and
hydrogen storage problems. In comparison to PEMFC, the proton battery is rechargeable
and free of hydrogen; the hydrogen ions will be released from the battery. In the charging
process, the proton battery can decompose water with the assistance of power supply
to generate hydrogen ions, which are stored in the porous carbon-based material as a
hydrogen storage electrode. Folonari and Condon et al. [2,3] thought that the new kind of
fuel cell composed of hydride electrode and solid electrolyte had higher energy density
and a more compact simple structure, and, if it maintained the advantages of a traditional
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fuel cell, this structure could enhance the reliability and performance of electric vehicles
significantly. At present, the mainstream fuel cells mostly store the hydrogen in the
hydrogen storage tank and the hydrogen storage tank is installed on the carrier (e.g.,
automobile and generator). Most hydrogen storage tanks use metal hydride technology
to store hydrogen; the idea was first proposed by Andrews et al. In the charging mode of
the unitized regenerative fuel cell using the metal hydride-nitride composite electrode, the
hydrogen storage in the electrode is 0.6 wt% and the emission of hydrogen is detectable,
but very low, only about 0.01 wt%, inducing a safety risk [4]. Jurewicz et al. [5–7] first
pyrolyzed the viscose fabric of the liquid KOH electrolyte (concentration 6M) to prepare
an activated carbon electrode for electrochemical hydrogen storage, which implemented
1.5 wt% reversible hydrogen storage, and studied the influence of the acidity and alkalinity
of the electrolyte on hydrogen storage capacity. Babel et al. [8] fabricated a highly porous
carbon; the 1.89 wt% high hydrogen storage capacity proved again that ultramicropore and
micropore volume and relatively smaller mesopore volume enhanced the hydrogen storage
capacity. Bosch et al. [9] enlarged the surface area and improved the material. As the
hydrogen storage characteristic of carbon nano-structure was understood, the feasibility of
the rechargeable the proton battery with high energy density and high hydrogen storage
capacity could be enhanced. The proton battery is a very novel research area, there are
many immature prototypes [10–12] worth further research.

Zhang et al. [13] found that when the immersion ratio was 4.5:1 (KOH/char), the
activation temperature of activated carbon was 800 ◦C, the activation time was 1.5 h
and the maximum surface area ratio was 2388 m2g−1. Li et al. [14] used six kinds of
sulfur-activated carbon with different specific surface areas to study the influence of
electrochemical properties and specific surface area on electrochemical properties. When
the current density in 6M KOH was 0.05 Ag−1, the capacitance value was 395 Fg−1.

Laribi et al. [15] found that when the working temperature of the fuel cell rose from
60 to 140 ◦C, the resistance of the thin film rose with time, and the water content in the thin
film decreased, so the ionic conductivity decreased.

Yang et al. [16] used platinum (Pt) as a thermistor, which was deposited on the film
surface; the surface temperature was calculated according to the resistance temperature
correction data.

Ko et al. [17] studied the influence of working pressure on the fuel cell performance.
The findings showed that when the relative humidity was low, the influence of water
delivery was more important than reaction kinetics. The water flow could be controlled
by adjusting the working pressure to obtain appropriate water distribution and optimum
performance.

Sun et al. [18] used micromachining technology to manufacture a flow sensor and
studied the influence of different geometric parameters on temperature difference.

Aslam et al. [19] probed into the effect of different flow rates on the cell. The perfor-
mance of the fuel cell declined as the flow increased. In addition, the speed of removing
water from the cathode increased with air flow rate, so that the moisture for humidifying
the membrane electrode assembly decreased.

This study uses MEMS technology to develop an internal diagnostic tool for the proton
battery, which is combined with a flexible 5-in-1 microsensor and embedded in the proton
battery for measuring the five important physical parameters simultaneously, so that the
actual situation inside the proton battery can be mastered more accurately, so as to enhance
the proton battery performance. Its internal structure is shown in Figure 1. The principle
of use of the proton battery in the oxygen side provides water for water electrolysis, and
the electrolyzed hydrogen protons move through the proton exchange membrane to the
hydrogen side and are stored in activated carbon. When discharging, the oxygen side
provides oxygen and the hydrogen side releases hydrogen protons for fuel cell reaction.
In this study, the flexible 5-in-1 microsensor is moved into the hydrogen side upstream,
the oxygen side upstream and the oxygen side downstream of the proton battery, and the
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internal voltage, current, temperature, flow and battery are measured when the proton
battery is charged. When discharging, the humidity of the gas inside.
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Figure 1. Schematic diagram of the proton battery.

2. Flexible 5-in-1 Micro-Sensor Production Process

This study used MEMS technology to integrate five sensing structures, including tem-
perature, voltage, current, flow and humidity. The process of the flexible 5-in-1 microsensor
is shown in Figure 2.

(a) First, the PI (polyimide) film is cleaned with acetone and methanol organic solutions
respectively, the residual methanol is removed by DI (deionized) water, and the
surface dust, residual oil and fat are removed, so as to enhance the adhesion of the
thin film metal.

(b) The Cr and Au are evaporated by E-beam evaporator as the adhesion layer and
sensing electrode layer.

(c) The patterns of micro temperature, voltage, current, flow and humidity sensors are
defined by photolithography.

(d) The Au etching solution and Cr etching solution are used for wet etching.
(e) LTC 9320 is coated as a protection layer, and the sensing areas and pins of micro

voltage, current and humidity sensors are defined by the photolithography process,
which are exposed and not covered with a protection layer.

(f) LTC 9305 is coated as the humidity sensitive thin film of the micro humidity sensor
and the process of the flexible 5-in-1 microsensor is completed. Figure 3 shows the
optical micrograph of the flexible 5-in-1 microsensor.
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Figure 3. Optical micrograph of the flexible 5-in-1 microsensor.

3. Correction of the Flexible 5-in-1 Microsensor

The micro voltage and current sensors directly export the voltage and current from
the proton battery for detection, thus additional correction is unnecessary. The correction
of micro temperature, humidity and flow sensors is described below.

3.1. Temperature Correction of Flexible 5-in-1 Microsensor

The flexible 5-in-1 microsensor and the thermometer of the BM-525 BRYMEN digital
multimeter are put in the DENG YNG DS45 Drying Oven, the reference is set up and
the temperature is stabilized, then the resistance value of the micro temperature sensor is
extracted. In the working temperature range, the resistance value is extracted at intervals
of 10 ◦C, the micro temperature sensor is corrected three times, the average value is taken,
and the measured correction curve approximates linear variation, as shown in Figure 4.
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3.2. Humidity Correction of the Flexible 5-in-1 Microsensor

For humidity correction, the constant temperature and humidity testing machine is
used as environmental criteria, from relative humidity 40% to 100%, and the temperature
is fixed in the operating state. Each time when the relative humidity recording point is
increased, the heater on the micro humidity sensor is heated to evaporate the residual
moisture at the previous recording point. Each time after 120 min of stabilization, the NI
PXI 2575 data acquisition unit is used to extract the resistance value of the micro humidity
sensor instantly, so as to obtain the correction curve. Figure 5 shows the average correction
curve of the micro humidity sensor; the higher the temperature is, the larger the humidity
variation is.
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3.3. Flow Correction of the Flexible 5-in-1 Microsensor

When charging, it is necessary to provide water on the oxygen side to produce water
electrolysis. The hydrogen side produces hydrogen protons and hydrogen. When discharg-
ing, oxygen is provided. Therefore, the water flow and oxygen flow must be corrected.

The flexible 5-in-1 microsensor is embedded in the proton battery and the battery
testing machine supplies gases (H2 and O2) as the source of flow. The power supply is
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connected to the signal pin of micro flow sensor and the anode is connected to BM-525
BRYMEN digital multimeter in series to measure the current variation. The power supply
supplies constant voltage to the micro flow sensor to generate a stable heat. First, the
reference current value at 0 mL/min is measured; the hydrogen flow correcting range is
100 to 300 mL/min, it is measured at intervals of 50 mL/min. The oxygen flow correcting
range is 400 to 600 mL/min, it is measured at intervals of 50 mL/min. The micro flow
sensor is corrected and the average value is taken; the measured average correction curve
is shown in Figures 6 and 7.
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For liquid (H2O) flow correction, the LEADFLUID BT100S-1 speed adjusting peristaltic
pump provides steady flow. The flow correction range is 100 to 150 mL/min, measured at
intervals of 10 mL/min; the average correction curve of the micro flow sensor is shown in
Figure 8.
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3.4. Thermal Shock Test for the Flexible 5-in-1 Microsensor

There is an electrochemical reaction inside the proton battery during charging or
discharging, this variation generates heat energy and temperature. Therefore, the thermal
shock test is performed for the flexible 5-in-1 microsensor with relatively strict internal
ambient temperature, so as to test whether the flexible 5-in-1 microsensor can maintain its
performance as the temperature changes rapidly.

The corrected flexible 5-in-1 microsensor is put in the thermal shock machine and the
preset temperature is changed quickly to simulate the harsh environment inside the proton
battery. After repeated thermal shock tests, the flexible 5-in-1 microsensor is corrected again,
and the correction data before and after thermal shock are compared to check whether the
linear curves are coincident or not.

The thermal shock test parameters are shown in Table 1. The thermal shock experiment
is performed in the temperature range of 30 to 100 ◦C and the heating rate is 35 ◦C/min.
When the temperature is reduced from 100 to 30 ◦C, the declining temperature rate is
−35 ◦C/min. This process is repeated 40 times. There is no exception found in the flexible
5-in-1 microsensor correction curves before and after the thermal shock test, proving the
reliability of the flexible 5-in-1 microsensor, as shown in Figure 9.
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Table 1. Thermal shock test parameters.

Schedule Process Set Time

Preparation The temperature of the thermal shock machine is preheated to 30 ◦C -
Step 1 30 ◦C to 100 ◦C 2 min
Step 2 Constant temperature time 13 min
Step 3 30 ◦C 2 min
Step 4 Constant temperature time 13 min
Done 30 ◦C ~ Room temperature -

Cycle: 40 1 Cycle = 30 min

4. Internal Real-Time Microscopic Diagnosis of the Proton Battery

The proton battery technology is built on the fuel cell, so their materials are about
the same. The difference is the intermediate carbon layer, whereby the BET (Brunauer–
Emmett–Teller) area size can influence the hydrogen storage capacity of the proton battery.
The activated carbons from two companies are studied and it is found that simply cleaning
the activated carbon cannot improve the BET area. However, when different concentration
ratios of KOH are heated to 800 ◦C and activated, the BET area can be enlarged a lot.
The findings show that the activated carbons from different companies have different
KOH concentration ratios for generating maximum BET area, and the BET area decreases
when the concentration ratio producing the maximum value is exceeded. Finally, the
KOH concentration ratio of 3:1 of Company A is used for the subsequent experiment.
Figures 10 and 11 show the flexible 5-in-1 microsensor embedded in the anode and cathode
positions of the proton battery, respectively.
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4.1. Voltage Distribution Inside the Proton Battery

As the voltage measurement must be connected to the hydrogen side, the micro
voltage sensor on the hydrogen side is connected to the micro voltage sensor on the oxygen
side. When the proton battery is being charged, the upstream and downstream microsensor
voltage variations on the oxygen side are shown in Figure 12.
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Figure 12. Current data of power supply.

4.2. Current Density Distribution Inside the Proton Battery

The data measured by micro current sensor have the same uptrend as the micro voltage
sensor does, thus it can be deduced that the proton battery is in a stable electrochemical
reaction state, as shown in Figure 13.
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4.3. Temperature Distribution Inside the Proton Battery

When the working temperature is 25 ◦C, the microsensor is placed in different posi-
tions on the oxygen side and hydrogen side, so as to observe the temperature distribution
of the proton battery, as shown in Figures 14 and 15. The water inlet is in the upstream
position, so the upstream temperature is lower, and the downstream temperature is higher.
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4.4. Flow Distribution Inside the Proton Battery

The water flow distribution on the oxygen side is shown in Figure 16. The upstream
oxygen side has a higher flow than downstream, as the water electrolysis and gas diffusion
layer inside the proton battery obstruct the flow of water. Only the hydrogen flow was
measured on the hydrogen side, as shown in Figure 17.
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4.5. Humidity Distribution Inside the Proton Battery

As shown in Figure 18, the oxygen side increases from lower humidity, and the
downstream humidity is higher, this is related to the combination of hydrogen and oxygen.
As the electricity generation decreases, the reaction is slighter, and the upstream and
downstream humidity overlap each other in the late stage.
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5. Conclusions

The flexible 5-in-1 microsensor is embedded in the proton battery for internal real-
time monitoring, whereby five physical quantities can be measured at the same time. This
flexible 5-in-1 microsensor has five sensing functions (voltage, current, temperature, flow
and humidity), characterized by resistance to electrochemical environment, small thickness,
small area, high sensitivity, real-time measurement and arbitrary placement in the proton
battery. Furthermore, it is flexible and unlikely to be damaged. It has greater development
potential in the future commercialization of the proton battery. The measurement of the
microsensor in the proton battery is in line with expectations. It can detect local physical
quantities and allows the use of these data to adjust the membrane to extend the life and
performance of the membrane.
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