
membranes

Article

Competition between Cations via Classical
Poisson–Nernst–Planck Models with Nonzero but Small
Permanent Charges

Mingji Zhang

����������
�������

Citation: Zhang, M. Competition

between Cations via Classical

Poisson–Nernst–Planck Models with

Nonzero but Small Permanent

Charges. Membranes 2021, 11, 236.

https://doi.org/10.3390/

membranes11040236

Academic Editor: Natalia Wilke

Received: 3 February 2021

Accepted: 22 March 2021

Published: 26 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA;
mingji.zhang@nmt.edu

Abstract: We study a one-dimensional Poisson–Nernst–Planck system for ionic flow through a
membrane channel. Nonzero but small permanent charge, the major structural quantity of an ion
channel, is included in the model. Two cations with the same valences and one anion are included
in the model, which provides more rich and complicated correlations/interactions between ions.
The cross-section area of the channel is included in the system, and it provides certain information of
the geometry of the three-dimensional channel, which is critical for our analysis. Geometric singular
perturbation analysis is employed to establish the existence and local uniqueness of solutions to the
system for small permanent charges. Treating the permanent charge as a small parameter, through
regular perturbation analysis, we are able to derive approximations of the individual fluxes explicitly,
and this allows us to study the competition between two cations, which is related to the selectivity
phenomena of ion channels. Numerical simulations are performed to provide a more intuitive
illustration of our analytical results, and they are consistent.

Keywords: PNP; permanent charge; channel geometry; diffusion coefficient; individual fluxes;
electroneutrality conditions

MSC: 34A26; 34B16; 34D15; 37D10; 92C35

1. Introduction

Ion channels are large proteins embedded in cell membranes with a hole down their
middle that provides a controllable path for electrodiffusion of ions (mainly Na+, K+,
Ca++ and Cl−) through biological membranes, establishing communications among cells
and the external environment [1–3]. In general, the study of ion channels consists of two
related major topics: structures of ion channels and ionic flow properties.

The physical structure of ion channels is defined by the channel shape and the spacial
distribution of permanent and polarization charge. Very often, the shape of a typical ion
channel is approximated by a cylindrical-like domain with a non-uniform cross-section area.
Within a large class of ion channels, amino acid side chains are distributed mainly over a
relatively “short” and “narrow” portion of the channel, where acidic side chains contribute
permanent negative charges and basic side chains contributes permanent positive charges,
and this is analogous to the doping of semiconductor devices, e.g., bipolar PNP and NPN
transistors [1,4].

With a given structure of an open channel, the main interest is to understand its
electrodiffusion property. Mathematical analysis plays important and unique roles for gen-
eralizing and understanding the principles that allow control of electrodiffusion, explaining
mechanics of observed biological phenomena and for discovering new ones, assuming
a more or less explicit solution of the associated mathematical model can be obtained.
However, in general, the latter is too much to expect. Recently, there have been some
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successes in mathematical analysis of Poisson–Nernst–Planck (PNP) models for ionic flows
through membrane channels [5–14].

1.1. Poisson–Nernst–Planck Models for Ionic Flows

Considering the structural characteristics, the basic continuum model for ionic flows
is the Poisson–Nernst–Planck system, which treats the aqueous medium as a dielectric con-
tinuum ([15–18] etc.). The PNP system can be derived as a reduced model from molecular
dynamics [19], from Boltzmann equations [20], and from variational principles [21–23].

It is known that more sophisticated models [24–31] have also been developed which
can model the physical problem more accurately, however, it is very challenging to examine
their dynamics analytically and even computationally. Considering the key feature of the
biological system, the PNP system represents an appropriate model for both analysis and
numerical simulations of ionic flows.

The simplest PNP system is the classical Poisson–Nernst–Planck (cPNP) system that
includes the ideal component µid

k (X) in (4) only. The ideal component µid
k contains contribu-

tions by considering ion particles as point charges and ignoring the ion-to-ion interaction.
It has been shown by some numerical studies that classical PNP models provide good
qualitative agreement with experimental data for I-V relations [20,32]. The classical PNP
models have been simulated and analyzed extensively (see, e.g., [7,12–14,20,32–39]).

For ionic solutions with n ion species, the PNP system reads

∇ ·
(

εr(r)ε0∇Φ
)
= −e

( n

∑
s=1

zsCs +Q(r)
)

,

∇ · Jk = 0, −Jk =
1

kBT
Dk(r)Ck∇µk, k = 1, 2, · · · , n,

(1)

where r ∈ Ω with Ω being a three-dimensional cylindrical-like domain representing the
channel, Q(r) is the permanent charge density, εr(r) is the relative dielectric coefficient,
ε0 is the vacuum permittivity, e is the elementary charge, kB is the Boltzmann constant, T is
the absolute temperature; Φ is the electric potential. Furthermore, for the kth ion species,
Ck is the concentration, zk is the valence, µk is the electrochemical potential depending on
Φ and {Cj}, Jk is the flux density, and Dk(r) is the diffusion coefficient.

Based on the fact that ion channels have narrow cross-sections relative to their lengths,
reduction of the three-dimensional steady-state PNP systems (1) to quasi-one-dimensional
models was first proposed in [40] and was rigorously justified in [36] for special cases.
A quasi-one-dimensional steady-state PNP model takes the form

1
A(X)

d
dX

(
εr(X)ε0 A(X)

dΦ
dX

)
= −e

( n

∑
s=1

zsCs + Q(X)
)

,

dJk
dX

= 0, −Jk =
1

kBT
Dk(X)A(X)Ck

dµk
dX

, k = 1, 2, · · · , n,

(2)

where X ∈ [0, l] is the coordinate along the axis of the channel, A(X) is the area of cross-
section of the channel over the location X.

Equipped with system (2), we impose the following boundary conditions (see, Ref. [7]
for a reasoning), for k = 1, 2, · · · , n,

Φ(0) = V , Ck(0) = Lk > 0; Φ(l) = 0, Ck(l) = Rk > 0. (3)

1.2. Electrochemical Potential

The electrochemical potential µk(X) for the ith ion species consists of the ideal compo-
nent µid

k (X) and the excess component µex
k (X): µk(X) = µid

k (X) + µex
k (X), where

µid
k (X) = zkeΦ(X) + kBT ln

Ck(X)

C0
(4)
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with some characteristic number density C0 defined by

C0 = max
1≤i≤n

{
Li,Ri, sup

X∈[0,l]
|Q(X)|

}
. (5)

The cPNP system takes into consideration of the ideal component µid
k (x) only. This com-

ponent reflects the collision between ion particles and the water molecules. It has been
accepted that the cPNP system is a reasonable model in, for example, the dilute case under
which the ion particles can be treated as point particles and the ion-to-ion interaction can
be more or less ignored. The excess chemical potential µex

k (x) accounts for the finite size
effect of ions. We point out that, among many limitations, such as the “gating” phenomena,
may not be captured by the simple cPNP model. However, the basic findings on dynamics
of ionic flows and their dependence on the system parameters, particularly, the perma-
nent charges, the channel geometry, the ratios of boundary concentrations, and the ratios
of diffusion constants, provide important insights into the mechanism of ion channels
and better understandings of ionic flow properties. More importantly, some of them are
non-intuitive, and deserve further studies. More structural detail and more correlations
between ions should be taken into considerations in PNP models such as those including
various potentials for ion-to-ion interaction accounting for ion size effects ([5,21,41–44]
etc.).

1.3. Permanent Charge

The spatial distribution of side chains in a specific channel defines the permanent
charge of the channel. While some information may be obtained by ignoring the perma-
nent charge and focusing on the effects of boundary conditions, the valences and sizes
of ions, etc., we believe that different channel types differ mainly in the distribution of
permanent charge [3]. To better understand the importance of the relation of ionic flows
and permanent charges, we remark that the role of permanent charges in membrane chan-
nels is similar to the role of doping profiles in semiconductor devices. Semiconductor
devices are similar to membrane channels in the way that they both use atomic-scale
structures to control macroscopic flows from one reservoir to another. Ions move a lot like
quasi-particles move in semiconductors. Roughly, holes and electrons are the cations and
anions of semiconductors. Semiconductor technology depends on the control of migration
and diffusion of quasi-particles of charge in transistors and integrated circuits. Doping is
the process of adding impurities into intrinsic semiconductors to modulate its electrical,
optical, and structural properties [45,46]. One may roughly understand in the following
sense, doping provides the charges that acid and basic side chains provide in a protein
channel. For both ion channels and semiconductors, permanent charges add an additional
component−probably the most important one−to their rich behavior.

In general, the permanent charge Q(X) is modeled by a piecewise constant function,
that is, we assume, for a partition X0 = 0 < X1 < · · · < Xm−1 < Xm = l of [0, l] into m
subintervals, Q(X) = Qj for x ∈ (Xj−1, Xj) where Qj’s are constants with Q1 = Qm = 0
(the intervals [X0, X1] and [Xm−1, Xm] are viewed as the reservoirs where there is no
permanent charge). In this work, we take the following model for Q(x)

Q(X) =


0, X0 < X < X1,
Q0, X1 < X < X2,
0, X2 < X < X3,

(6)

where X0 = 0, X3 = l and Q0 is some nonzero constant.

1.4. Comparison with Some Existing Works

The current work follows a similar dynamical system framework as that employed
in [6,7,9–11] to establish the existence and uniqueness result of the problem. However,
compared to these works, our set-ups are much more challenging and more realistic, more
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importantly, the specific structure of our model allows us to obtain detailed description
of the nonlinear interplay among different system parameters. This is far beyond the
existence and uniqueness result. To be specific, our model includes three ion species,
two positively charged with the same valences, and one negatively charged (in [7,9,10],
only two oppositely charged particles are included, selectivity of cations, one of the most
relevant biological properties of ion channels cannot be described); and a profile of nonzero
but small permanent charges (in [6], it includes three ion species but with zero permanent
charges, the effects on ionic flows from the two key structures of ion channels: channel
geometry and distribution of permanent charges, cannot be examined, while this could
provide crucial insights for the selectivity of cations through membrane channels). In [11],
the author extended the work in [7] and established the existence and local uniqueness of
the classical PNP system with n ion species.

The work, in some sense, is motivated by [9], and there are some similarities in the
treatment. More precisely, both of the works employ regular perturbation analysis to derive
the explicit expressions of the individual fluxes up to the first order in the small permanent
charge, which is reflected in Section 2.2 in the current work. However, the derivation
and the following analysis is much more challenging due to the nonlinearity of the in-
dividual fluxes in the potential V (in [9], the individual fluxes are linear in the potential
V). The nonlinearity of the individual fluxes in the potential provides much more rich
dynamics of ionic flows, and demonstates more complicated nonlinear interaction among
the system parameters, which is addressed in Section 3.1. Meanwhile, this indicates that
our work provides a better understanding of the mechanism of ionic flows through single
ion channels, which is necessary and important for future studies of ion channel problems.

1.5. Main Results

For convenience, we briefly summarize our main results as follows with j, k = 1, 2, 3.

(i) Constructing a singular orbit of the limiting PNP system (ε → 0) over the whole
interval [0, 1], which is a union of singular orbits over the subintervals [0, a], [a, b]
and b, 1]. Over each subinterval, the singular orbit consists of two boundary/internal
layers and a regular layer; see Proposition 2 and Lemma 2 in Section 2.1.1 for the
singular over [0, a], in Proposition 4 and Lemma 3 for the one over [a, b] in Section 2.1.2,
and Proposition 5 and Lemma 4 for the one over [b, 1] in Section 2.1.3.

(ii) Establishing the existence and local uniqueness result of the underlying PNP system
(ε > 0 but small); see Theorem 1 in Section 2.1.5.

(iii) Obtaining the zeroth order and first order (in Q0) solutions of system (40) and (41),
crucial to derive explicit expressions of the individual fluxes up to the first order in
Q0; see Propositions 6 and 7 in Section 2.2.

(iv) The sign of A and 1− B, critical for our analysis in Section 3.1; see Lemmas 7 and 8 in
Section 2.2.

(v) Study on competition between cations in terms of J 1
1,2 = D1 J11 − D2 J21 from two

directions: the sign of J 1
1,2 and the monotonicity of J 1

1,2 in the electric potential V,

based on distinct interplays among D1
D2

, L2
L1

and R2
R1

consisting of three cases

(v1) Case study with D1
D2

= L2
L1

; see Theorems 2–4 in Section 3.1.1.

(v2) Case study with D1
D2

< min{ L2
L1

, R2
R1
}; see Theorems 5–7 in Section 3.1.2.

(v3) Case study with R2
R1

< D1
D2

< L2
L1

; see Theorems 8 and 9 in Section 3.1.3.

(vi) Analysis on the magnitude of J1,2, equivalent to examine the sign of J 0
1,2J 1

1,2, where
J 0

1,2 = D1 J10 − D2 J20; see Theorems 10 and 11 in Section 3.1.4.

Remark 1. In (v), there are actually another three cases: (1) D1
D2

= R2
R1

; (2) D1
D2

> max{ L2
L1

, R2
R1
};

and (3) L2
L1

< D1
D2

< R2
R1

. The results and arguments are similar to those corresponding to the
case stated in (vi-1)–(vi-3), and are not included in this work. Interested readers can study them
following our discussions detailed in Section 3.1.
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1.6. Problem Set-Up

For definiteness, we will take the following setting in this work:

(A1).We consider three ion species (n = 3) with z1 = z2 = z > 0 and z3 < 0.
(A2).The permanent charge is defined as in (6).
(A3).For the electrochemical potential µi, we only include the ideal component µid

i as in (4).
(A4).We assume εr(X) = εr and Di(X) = Di.

In the sequel, we will assume (A1)–(A4). We first make a dimensionless rescaling
following [3]. With C0 given in (5), let

ε2 =
εrε0kBT
e2l2C0

, x =
X
l

, h(x) =
A(X)

l2 , Di = lC0Di, φ(x) =
e

kBT
Φ(X),

ci(x) =
Ci(X)

C0
, Ji =

Ji
Di

, V =
e

kBT
V , Li =

Li
C0

, Ri =
Ri
C0

.
(7)

The BVP (2) and (3) then becomes (noting that z1 = z2 = z)

ε2

h(x)
d

dx

(
h(x)

d
dx

φ

)
= −zc1 − zc2 − z3c3 −Q(x),

dc1

dx
+ zc1

dφ

dx
= − J1

h(x)
,

dc2

dx
+ zc2

dφ

dx
= − J2

h(x)
,

dc3

dx
+ z3c3

dφ

dx
= − J3

h(x)
,

dJk
dx

= 0,
(8)

with the boundary conditions, for i = 1, 2, 3,

φ(0) = V, ci(0) = Li > 0; φ(1) = 0, ci(1) = Ri > 0. (9)

We comment that the dimensionless parameter ε defined in (1.6) as ε = 1
l

√
εrε0kBT

e2C0
is

directly related to the ratio κD/l, where κD =

√
εrε0kBT

∑j(zje)2Cj
is the Debye length; in particular,

ε = κD/l when z2
j = 1 and Cj = C0. Typically, the parameter ε is small due to the fact that

the two variables l, the length of the channel, and C0, some characteristic number density
could be very large. For many cases, the value of ε is of order O(10−3) (see [47] for a more
detailed description).

2. Methods
2.1. Geometric Singular Perturbation Theory for (8) and (9)

We first rewrite system (8) into a standard form for singularly perturbed systems and
convert the boundary value problem (8) and (9) to a connection problem.

Upon introducing u = εφ̇ and τ = x. System (8) becomes

εφ̇ =u, εu̇ = −zc1 − zc2 − z3c3 −Q(x)− ε
hτ(τ)

h(τ)
u, εċ1 = −zc1u− ε

h(τ)
J1,

εċ2 =− zc2u− ε

h(τ)
J2, εċ3 = −z3c3u− ε

h(τ)
J3, J̇1 = J̇2 = J̇3 = 0, τ̇ = 1,

(10)

where overdot denotes the derivative with respect to the variable x.
System (10) will be treated as a singularly perturbed system with ε as the singular

parameter. Its phase space is R9 with state variables (φ, u, c1, c2, c3, J1, J2, J3, τ).
For ε > 0, the rescaling x = εξ of the independent variable x gives rise to

φ′ =u, u′ = −zc1 − zc2 − z3c3 −Q(x)− ε
hτ(τ)

h(τ)
u, c′1 = −zc1u− ε

h(τ)
J1,

c′2 =− zc2u− ε

h(τ)
J2, c′3 = −z3c3u− ε

h(τ)
J3, J′1 = J′2 = J′3 = 0, τ′ = ε,

(11)

where prime denotes the derivative with respect to the variable ξ.
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We comment that for ε > 0, systems (10) and (11) have exactly the same phase portrait.
However, their limiting systems at ε = 0 are different. The limiting system of (10) is called
the limiting slow system, whose orbits are called slow orbits or regular layers. The limiting
system of (11) is the limiting fast system, whose orbits are called fast orbits or singular
(boundary and/or internal) layers. By a singular orbit of system (10) or (11), we mean a
continuous and piecewise smooth curve in R9 that is a union of finitely many slow and
fast orbits. Very often, limiting slow and fast systems provide complementary information
on state variables. Correspondingly, the main task of singularly perturbed problems is to
patch the limiting information together to form a solution for the entire ε > 0 system.

Let BL and BR be the subsets of the phase space R9 defined by

BL ={(V, u, L1, L2, L3, J1, J2, J3, 0) ∈ R9 : arbitrary u, J1, J2, J3},
BR ={(0, u, R1, R2, R3, J1, J2, J3, 1) ∈ R9 : arbitrary u, J1, J2, J3}.

(12)

Then the original boundary value problem is equivalent to a connection problem,
namely, finding a solution of (10) or (11) from BL to BR (see, for example, [48]).

Due to the jumps of the permanent charge function (6) at x = a and x = b, we split
the interval [0, 1] into three subintervals [0, a], [a, b] and [b, 1], where the intervals [0, a] and
[b, 1] represent the reservoirs, and the interval [a, b] represents the channel. To construct a
singular orbit over the whole interval [0, 1], we first construct a singular orbit on each of
the subintervals. To get started, we preassign the values of φ, c1, c2 and c3 at x = a and
x = b as follows:

φ(a) = φ[a], ck(a) = c[a]k ; φ(b) = φ[b], ck(b) = c[b]k , k = 1, 2, 3. (13)

These eight unknown values will be determined along our construction of a singular
orbit on the whole interval [0, 1].

(i) The singular orbit on [0, a] consists of two boundary layers Γ0
l and Γa

l and one regular
layer Λl with (φ, c1, c2, c3, τ) being

(V, L1, L2, L3, 0) at x = 0 and (φ[a], c[a]1 , c[a]2 , c[a]3 , a) at x = a.

In particular, given (φ[a], c[a]1 , c[a]2 , c[a]3 ), the flux densities Jl
k and the value ul(a) are

uniquely determined (see Section 2.1.1).
(ii) The singular orbit on [a, b] consists of two boundary layers Γa

m and Γb
m and one regular

layer Λm with (φ, c1, c2, c3, τ) being

(φ[a], c[a]1 , c[a]2 , c[a]3 , a) at x = a and (φ[b], c[b]1 , c[b]2 , c[b]3 , b) at x = b.

In particular, given (φ[a], c[a]1 , c[a]2 , c[a]3 ) and (φ[b], c[b]1 , c[b]2 , c[b]3 ), the flux densities Jm
k and

the value um(a) and um(b) are uniquely determined (see Section 2.1.2).
(iii) The singular orbit on [b, 1] consists of two boundary layers Γb

r and Γ1
r and one regular

layer Λr with (φ, c1, c2, c3, τ) being

(φ[b], c[b]1 , c[b]2 , c[b]3 , b) at x = b and (0, R1, R2, R3, 1) at x = 1.

In particular, given (φ[b], c[b]1 , c[b]2 , c[b]3 ), the flux densities Jr
k and the value ur(b) are

uniquely determined (see Section 2.1.3).

To obtain a singular orbit on the whole interval [0, 1], one need

Jl
k = Jm

k = Jr
k , ul(a) = um(a), um(b) = ur(b), k = 1, 2, 3. (14)

This consists of eight conditions. The number of conditions is exactly the same as the
number of unknowns in (13).
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The singular orbit constructed for problem (10) associated to BL and BR consists of
nine pieces Γ0

l ∪Λl ∪ Γa
l ∪ Γa

m ∪Λm ∪ Γb
m ∪ Γb

r ∪Λr ∪ Γ1
r . Once a singular orbit is constructed,

one then can apply the geometric singular perturbation theory, such as Exchange Lemma,
to show that, for ε > 0 but small, there is a unique solution that is close to the singular orbit.

In this work, we will examine the competition between cations due to the nonlinear
interaction among channel geometry, small permanent charges, diffusion coefficients and
boundary conditions, which can be extracted from the matching conditions (14) (for sim-
plicity, we still use (φ, u, c1, c2, c3, J1, J2, J3) for the zeroth order system in ε).

We remark that ul(a), um(a), um(b), ur(b), Jl
k, Jm

k , Jr
k are actually the functions of the

unknowns φ[a], c[a]k , φ[b], c[b]k with the parameter Q0. Furthermore, for simplicity, in the
following analysis, we will use Jk to denote Jl

k, Jm
k and Jr

k , respectively.

Once a solution for (φ[a], c[a]1 , c[a]2 , c[a]3 ; φ[b], c[b]1 , c[b]2 , c[b]3 ) is determined, one then can derive
the zeroth order (in ε) individual fluxes Jk(Q0) = Dk Jk(Q0). Through our following discus-
sions, we always assume the so-called electroneutrality boundary concentration conditions

z(L1 + L2) + z3L3 = 0, and z(R1 + R2) + z3R3 = 0. (15)

For simplicity, we also introduce

L = L1 + L2, R = R1 + R2, Ld = D1L1 − D2L2, Rd = D1R1 − D2R2,

C[a] = c[a]1 + c[a]2 , C[b] = c[b]1 + c[b]2 , C[a,l] = c[a,l]
1 + c[a,l]

2 ,

C[a,m] = c[a,m]
1 + c[a,m]

2 , C[b,m] = c[b,m]
1 + c[b,m]

2 , C[b,r] = c[b,r]
1 + c[b,r]

2 .

(16)

2.1.1. Singular Orbit on [0, a] with Q(x) = 0

Following (13), we introduce

Ba =
{
(φ[a], u, c[a]1 , c[a]2 , c[a]3 , J1, J2, J3, a) ∈ R9 : u, J1, J2, J3, arbitrary

}
.

We now construct a singular orbit on [0, a] that connects BL to Ba, which generally
consist of two boundary layers and a regular layer (see [7,10,11,43]). Over the subinterval
[0, a], the permanent charge is zero because we review [0, a] as one of the reservoirs.
However, the nonzero Q0 over the subinterval [a, b] will affect the solution on [0, a] and
[b, 1] (another reservoir with zero permanent charge) through the matching conditions
imposed on φ[a], c[a]1 , c[a]2 , c[a]3 and φ[b], c[b]1 , c[b]2 , c[b]3 to construct the singular orbit over the
whole interval [0, 1].

Limiting fast dynamics and boundary layers on [0, a] Setting ε = 0 in (10), we get
the so-called slow manifold,

Zl = {u = 0, zc1 + zc2 + z3c3 = 0}.

Setting ε = 0 in (11), we get the limiting fast system,

φ′ =u, u′ = −zc1 − zc2 − z3c3, c′1 = −zc1u,

c′2 =− zc2u, c′3 = −z3c3u, J′1 = J′2 = J′3 = 0, τ′ = 0.
(17)

Note that the slow manifold Zl is the set of equilibria of (17). The following can be
established directly [11].

Lemma 1. For system (17), the slow manifold Zl is normally hyperbolic.

Proof. The slow manifold Zl is precisely the set of equilibria of (17). The linearization
of (17) at each point of (φ, 0, c1, c2, c3, J1, J2, J3, τ) ∈ Zl has seven zero eigenvalues whose
generalized eigenspace is the tangent space of the seven-dimensional slow manifold Zl of
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equilibria, and the other two eigenvalues are ±
√

z2
1c1 + z2

2c2 + z2
3c3, whose eigenvectors

are not tangent to Zl (Recall that ci’s are concentrations and we are only interested in
positive ones). Thus, Zl is normally hyperbolic.

The theory of normally hyperbolic invariant manifolds [49] states that there exists
eight-dimensional stable manifold Ws(Zl) of Zl that consists of points approaching Zl
in forward time; and there exists eight-dimensional unstable manifold Wu(Zl) of Zl that
consists of points approaching Zl in backward time. Let M0

l be the collection of orbits from
BL in forward time under the flow of system (17) and Ma

l be the collection of orbits from
Ba in backward time under the flow of system (17). Then, for a singular orbit connecting
BL to Ba, the boundary layer Γ0

l at x = 0 must lie in N0
l = M0

l ∩Ws(Zl) and the boundary
layer Γa

l at x = a must lie in Na
l = Ma

l ∩Wu(Zl). In this subsection, we will determine
the boundary layers N0

l and Na
l , and their landing points ω(N0

l ) and α(Na
l ) on the slow

manifold Zl . The regular layer, determined by the limiting slow system, will lie in Zl and
connect the landing points ω(N0

l ) at x = 0 and α(Na
l ) at x = a.

First, one has

Proposition 1. The following functions are the first integrals of system (17),

H1 = ln c1 + zφ, H2 = ln c2 + zφ, H3 = ln c3 + z3φ, H4 =
u2

2
− c1 − c2 − c3,

H5 =J1, H6 = J2, H7 = J3, H8 = τ.

Proof. This can be verified directly.

For the landing points ω(N0
l ) and α(Na

l ), following the similar outline as those
in [7,11], one has

Proposition 2. Assume the condition (15), one has

(i) The stable manifold Ws(Zl) intersects BL transversally at points
(
V, u0

r , L1, L2, L3,
J1, J2, J3, 0

)
, and the ω-limit set of N0

l = M0
l
⋂

Ws(Zl) is

ω(N0
l ) =

{
(φL, 0, cL

1 , cL
2 , cL

3 , J1, J2, J3, 0)
}

,

where Ji for i = 1, 2, 3 are arbitrary, and

φL =V, cL
1 = L1, cL

2 = L2, cL
3 = L3, u0

r = 0.

(ii) The unstable manifold Wu(Zl) intersects Ba transversally at points
(
φ[a], ul(a),

c[a]1 , c[a]2 , c[a]3 , J1, J2, J3, a
)
, and the α-limit set of Na

l = Ma
l
⋂

Wu(Zl) is

α(Na
l ) =

{
(φ[a,l], 0, c[a,l]

1 , c[a,l]
2 , c[a,l]

3 , J1, J2, J3, a)
}

,

where Ji for i = 1, 2, 3 are arbitrary, and for k = 1, 2,

φ[a,l] =φa − 1
z− z3

ln
−z3c[a]3

zC[a]
, c[a,l]

k = c[a]k

(−z3c[a]3

zC[a]

) z
z−z3 , c[a,l]

3 = c[a]3

(−z3c[a]3

zC[a]

) z3
z−z3

and

ul(a) = sgn(φ[a] − φ[a,l])
√

2C[a]
(
1− ez(φ[a]−φ[a,l])

)
+ 2ca

3
(
1− ez3(φ[a]−φ[a,l])

)
. (18)
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(iii) The boundary layer Γ0
l at x = 0 is determined up to (J1, J2, J3) as follows: the φ-component

satisfies the Hamiltonian system

φ′′ + zL1ez(V−φ) + zL2ez(V−φ) + z3L3ez3(V−φ) = 0,

together with φ(0) = V and φ(ξ)→ φL as ξ → ∞, u(ξ) = φ′(ξ), and

c1(ξ) = L1ez(V−φ(ξ)), c2(ξ) = L2ez(V−φ(ξ)), c3(ξ) = L3ez3(V−φ(ξ)).

Similarly, the boundary layer Γa
l at x = a is determined in the following way: the φ-component

satisfies the Hamiltonian system

φ′′ + zc[a]1 ez(φ[a]−φ) + zc[a]2 ez(φ[a]−φ) + z3c[a]3 ez3(φ
[a]−φ) = 0,

together with φ(a) = φ[a] and φ(ξ)→ φ[a,l] as ξ → −∞, u(ξ) = φ′(ξ), and

c1(ξ) = c[a]1 ez(φ[a]−φ(ξ)), c2(ξ) = c[a]2 ez(φ[a]−φ(ξ)), c3(ξ) = c[a]3 ez3(φ
[a]−φ(ξ)).

Limiting slow dynamics and regular layers on [0, a] For convenience, we introduce
Tm, Tc and H(x) defined as

Tm = J1 + J2 + J3, Tc = z(J1 + J2) + z3 J3, H(x) =
∫ x

0
h−1(τ)dτ. (19)

Next we construct the regular layer on Zl that connects ω(N0
r ) and α(Na

l ). Note that,
for ε = 0, system (10) loses most information. To remedy this degeneracy [7,10,11], we make
a rescaling u = εp and −zc1 − zc2 − z3c3 = εq in system (10). In term of the new variables,
system (10) becomes

φ̇ =p, ε ṗ = q− ε
h′(τ)
h(τ)

p, εq̇ = (z(z− z3)(c1 + c2)− εz3q)p +
Tc

h(τ)
,

ċ1 =− zc1 p− J1

h(τ)
, ċ2 = −zc2 p− J2

h(τ)
, J̇k = 0, τ̇ = 1.

It is again a singular perturbation problem and its limiting slow system is

φ̇ =p, q = 0, p = − Tc

z(z− z3)(c1 + c2)h(τ)
,

ċ1 =− zc1 p− J1

h(τ)
, ċ2 = −zc2 p− J2

h(τ)
, J̇k = 0, τ̇ = 1.

(20)

For system (20), the slow manifold is Sl =
{

q = 0, p = − Tc

z(z−z3)(c1+c2)h(τ)

}
. Therefore,

the limiting slow system on Sl is given by

φ̇ =− Tc

z(z− z3)(c1 + c2)h(τ)
, ċ1 =

Tc

(z− z3)(c1 + c2)h(τ)
c1 −

J1

h(τ)
,

ċ2 =
Tc

(z− z3)(c1 + c2)h(τ)
c2 −

J2

h(τ)
, J̇k = 0, τ̇ = 1.

(21)

For system (21), one has
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Lemma 2. There is a unique solution (φ(x), c1(x), c2(x), J1, J2, J3, τ(x)) of (21) such that (φ(0),
c1(0), c2(0), τ(0)) = (V, L1, L2, 0) and (φ(a), c1(a), c2(a), τ(a)) = (φ[a,l], c[a,l]

1 , c[a,l]
2 , a), where

φ[a,l], c[a,l]
1 and c[a,l]

2 are given in Proposition 2. It is given by

φ(x) =V − Tc

zz3Tm ln
(

1 +
z3Tm H(x)
(z− z3)L

)
,

c1(x) =
L1 J2 − L2 J1

J1 + J2

(
1 +

z3Tm H(x)
(z− z3)L

) Tc
z3Tm

+
LJ1

J1 + J2

(
1 +

z3Tm H(x)
(z− z3)L

)
,

c2(x) =
L2 J1 − L1 J2

J1 + J2

(
1 +

z3Tm H(x)
(z− z3)L

) Tc
z3Tm

+
LJ2

J1 + J2

(
1 +

z3Tm H(x)
(z− z3)L

)
,

τ(x) =x,

(22)

where J1, J2 and J3 are uniquely determined as

J1 =A1B1
L1 − c[a,l]

1 ez(φ[a,l]−V)

H(a)
, J2 = A1B1

L2 − c[a,l]
2 ez(φ[a,l]−V)

H(a)
,

J3 =− z
z3
A1

ln L− ln C[a,l]ez3(φ
[a,l]−V)

H(a)
,

(23)

where A1 = L−C[a,l]

ln L−ln C[a,l] and B1 = ln L−ln C[a,l]ez(φ[a,l]−V)

L−C[a,l]ez(φ[a,l]−V)

Proof. Adding the second equation to the third one in (21), one has

ċ1 + ċ2 =
z3

(z− z3)h(τ)
Tm,

which gives

c1(x) + c2(x) = L +
z3

z− z3
TmH(x). (24)

Substituting (24) into the second equation in (21) to get

ċ1 =
Tc

(z− z3)L + z3Tm H(x)
c1

h(τ)
− J1

h(τ)
.

By the variation of constants formula, we obtain

c1(x) =
L1 J2 − L2 J1

J1 + J2

(
1 +

z3Tm H(x)
(z− z3)L

) Tc
z3Tm

+
LJ1

J1 + J2

(
1 +

z3Tm H(x)
(z− z3)L

)
.

Similarly, c2(x) can be obtained.
Substituting (24) into the first equation in (21) to get

φ̇ = − Tc

z(z− z3)
(

L + z3
z−z3

TmH(x)
)
h(τ)

.

The solution is φ(x) = φL − Tc

zz3Tm ln
(

1 + z3Tm

(z−z3)L H(x)
)

. Evaluating c1(x), c2(x) and φ(x)
at x = a yield the formulas for J1, J2 and J3.

The slow orbit

Λl(x) =
(
φ(x), u(x), c1(x), c2(x), c3(x), J1, J2, J3, τ(x)

)
(25)
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given in Lemma 2 connects ω(N0
r ) and α(Na

l ). Let M̄0
r (resp., M̄a

l ) be the forward (resp.,
backward) image of ω(N0

r ) (resp., α(Na
l )) under the slow flow (21). One has the following

result (the proof follows exactly the same line as Proposition 3.7 in Section 3.1.2 of [43]).

Proposition 3. On the nine-dimensional slow manifold Sl , M̄0
r and M̄a

l intersect transversally
along the unique orbit Λl(x) given in (25).

2.1.2. Singular Orbit on [a, b] with Q(x) = Q0

Following (13), we let

Bb = {(φ[b], u, c[b]1 , c[b]2 , c[b]3 , J1, J2, J3, b) ∈ R9 : u, J1, J2, J3 arbitrary},

and construct a singular orbit on [a, b] connecting Ba to Bb.
Limiting fast dynamics and boundary layers on [a, b] By a similar argument as in

Section 2.1.1, one has the slow manifold

Zm = {u = 0, z(c1 + c2) + z3c3 + Q0 = 0},

and the corresponding limiting fast system,

φ′ =u, u′ = −zc1 − zc2 − z3c3 −Q0, c′1 = −zc1u,

c′2 =− zc2u, c′3 = −z3c3u, J′1 = J′2 = J′3 = 0, τ′ = 0.
(26)

For system (26), similar argument shows that the slow manifold Zm is normally
hyperbolic. We denote the stable (resp. unstable) manifold of Zm by Ws(Zm) (resp.
Wu(Zm)). Let Ma

m be the collection of orbits from Ba in forward time under the flow of
system (26) and Mb

m be the collection of orbits from Bb in backward time under the flow
of system (26). Then, for a singular orbit connecting Ba to Bb, the boundary layer Γa

m at
x = a must lie in Na

m = Ma
m ∩Ws(Zm) and the boundary layer Γb

m at x = b must lie in
Nb

m = Mb
m ∩Wu(Zm). In this section, we will determine the boundary layers Na

m and Nb
m,

and their landing points ω(Na
m) and α(Nb

m) on the slow manifold Zm. The regular layer,
determined by the limiting slow system, will lie in Zm and connect the landing points
ω(Na

m) at x = a and α(Nb
m) at x = b.

Similarly, we have the following result.

Proposition 4. (i) System (26) has the following eight integrals,

H1 = ln c1 + zφ, H2 = ln c2 + zφ, H3 = ln c3 + z3φ,

H4 =
u2

2
− c1 − c2 − c3 + Q0φ, H5 = J1, H6 = J2, H7 = J3, H8 = τ.

(ii) The stable manifold Ws(Zm) intersects Ba transversally at points
(
φ[a], um(a),

c[a]1 , c[a]2 , c[a]3 , J1, J2, J3, a
)
, and the ω-limit set of Na

m = Ma
m
⋂

Ws(Zm) is

ω(Na
m) =

{
(φ[a,m], 0, c[a,m]

1 , c[a,m]
2 , c[a,m]

3 , J1, J2, J3, a)
}

,

where Ji for i = 1, 2, 3 are arbitrary, and φ[a,m] is the unique solution of

zc[a]1 ez(φ[a]−φ) + zc[a]2 ez(φ[a]−φ) + z3c[a]3 ez3(φ
[a]−φ) + Q0 = 0, (27)

where c[a,m]
k = c[a]k ez(φ[a]−φ[a,m]), c[a,m]

3 = c[a]3 ez3(φ
[a]−φ[a,m]) and

um(a) =sgn(φ[a,m] − φ[a])
√
Ka

m, (28)
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where Ka
m = 2C[a](1− ez(φ[a]−φ[a,m])

)
+ 2c[a]3

(
1− ez3(φ

[a]−φ[a,m])
)
− 2Q0(φ

[a] − φ[a,m]).
(iii) The unstable manifold Wu(Zm) intersects Bb transversally at points

(
φ[b], um(b),

c[b]1 , c[b]2 , c[b]3 , J1, J2, J3, b
)
, and the α-limit set of Nb

m = Mb
m
⋂

Wu(Zm) is

α(Nb
m) =

{
(φ[b,m], 0, c[b,m]

1 , c[b,m]
2 , c[b,m]

3 , J1, J2, J3, b)
}

,

where Ji for i = 1, 2, 3 are arbitrary, and φ[b,m] is the unique solution of

zc[b]1 ez(φ[b]−φ) + zc[b]2 ez(φ[b]−φ) + z3c[b]3 ez3(φ
[b]−φ) + Q0 = 0, (29)

where c[b,m]
k = c[b]k ez(φ[b]−φ[b,m]), c[b,m]

3 = c[b]3 ez3(φ
[b]−φ[b,m]) and

um(b) =sgn(φ[b] − φ[b,m])
√
Kb

m, (30)

where Kb
m = 2C[b](1− ez(φ[b]−φ[b,m])

)
+ 2c[b]3

(
1− ez3(φ

[b]−φ[b,m])
)
− 2Q0(φ

[b] − φ[b,m]).
(iv) The boundary layer Γa

m at x = a is determined up to (J1, J2, J3) as follows: the φ-component
satisfies the Hamiltonian system

φ′′ + zc[a]1 ez(φ[a]−φ) + zc[a]2 ez(φ[a]−φ) + z3c[a]3 ez3(φ
[a]−φ) + Q0 = 0,

together with φ(a) = φ[a] and φ(ξ)→ φ[a,m] as ξ → ∞, u(ξ) = φ′(ξ), and

c1(ξ) = c[a]1 ez(φ[a]−φ(ξ)), c2(ξ) = c[a]2 ez(φ[a]−φ(ξ)), c3(ξ) = c[a]3 ez3(φ
[a]−φ(ξ)).

Similarly, the boundary layer Γb
m at x = b is determined in the following way: the φ-component

satisfies the Hamiltonian system

φ′′ + zc[b]1 ez(φ[b]−φ) + zc[b]2 ez(φ[b]−φ) + z3c[b]3 ez3(φ
[b]−φ) + Q0 = 0,

together with φ(b) = φ[b] and φ(ξ)→ φ[b,m] as ξ → −∞, u(ξ) = φ′(ξ), and

c1(ξ) = c[b]1 ez(φ[b]−φ(ξ)), c2(ξ) = c[b]2 ez(φ[b]−φ(ξ)), c3(ξ) = c[b]3 ez3(φ
[b]−φ(ξ)).

Limiting slow dynamics and regular layers on [a, b] We now turn to the study of
the flow in the vicinity of the slow manifold Zm. Following a similar argument as that in
Section 2.1.1, we make a scaling u = εp and−zc1− zc2− z3c3−Q0 = εq. System (10) becomes

φ̇ =p, ε ṗ = q− ε
h′(τ)
h(τ)

p, εq̇ = (z(z− z3)(c1 + c2)− z3Q0 − εz3q)p +
Tc

h(τ)
,

ċ1 =− zc1 p− J1

h(τ)
, ċ2 = −zc2 p− J2

h(τ)
, J̇k = 0, τ̇ = 1.

It is again a singular perturbation problem and its limiting slow system is

φ̇ =p, q = 0, p = − Tc(
z(z− z3)(c1 + c2)− z3Q0

)
h(τ)

,

ċ1 =− zc1 p− J1

h(τ)
, ċ2 = −zc2 p− J2

h(τ)
, J̇k = 0, τ̇ = 1.

(31)

For system (31), the slow manifold is

Sm =

{
q = 0, p = − Tc(

z(z− z3)(c1 + c2)− z3Q0
)
h(τ)

}
.
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Therefore, the limiting slow system on Sm is given by

φ̇ =− Tc(
z(z− z3)(c1 + c2)− z3Q0

)
h(τ)

,

ċ1 =
Tc(

z(z− z3)(c1 + c2)− z3Q0
)
h(τ)

zc1 −
J1

h(τ)
,

ċ2 =
Tc(

z(z− z3)(c1 + c2)− z3Q0
)
h(τ)

zc2 −
J2

h(τ)
,

J̇k =0, τ̇ = 1.

(32)

Note that, on Zm, one has z(c1 + c2) + z3c3 + Q0 = 0. It follows that

z(z− z3)(c1 + c2)− z3Q0 = z2(c1 + c2) + z2
3c3 > 0.

Since h(τ) > 0 and z(z− z3)(c1 + c2)− z3Q0 > 0, system (32) has the same phase
portrait as that of the following system obtained by multiplying

(
z(z − z1)(c2 + c3) −

z1Q0
)
h(τ) on the right-hand side of system (32):

dφ

dy
=− Tc,

dc1

dy
= Tczc1 − J1

(
z(z− z3)(c1 + c2)− z3Q0

)
,

dc2

dy
=Tczc2 − J2

(
z(z− z3)(c1 + c2)− z3Q0

)
,

dJk
dy

=0,
dτ

dy
= h(τ)

(
z(z− z3)(c1 + c2)− z3Q0

)
.

(33)

Lemma 3. There is a unique solution (φ(x), c1(x), c2(x), J1, J2, J3, τ(x)) of (33) such that (φ(a),
c1(a), c2(a), τ(a)) = (φ[a,m], c[a,m]

1 , c[a,m]
2 , a) and (φ(b), c1(b), c2(b), τ(b)) = (φ[b,m], c[b,m]

1 , c[b,m]
2 ,

b), where φ[a,m], φ[b,m], c[a,m]
1 , c[b,m]

1 , c[a,m]
2 and c[b,m]

2 are given in Proposition 4. It is given by

φ(y) = φ[a,m] − Tcy, c1(y) =
J2c[a,m]

1 − J1c[a,m]
2

J1 + J2
ezTcy − J1 · A3(y),

c2(y) =
J1c[a,m]

2 − J2c[a,m]
1

J1 + J2
ezTcy − J2 · A3(y),∫ τ

a

1
h(s)

ds =
z− z3

z3Tm

(
ezz3Tmy − 1

)(
C[a,m] +

(J1 + J2)Q0

zTm

)
− Tc

Tm Q0y,

(34)

where A3(y) =
Q0

zTm

(
1− ezz3Tmy)− C[a,m]

J1+J2
ezz3Tmy, and J1, J2 and J3 are uniquely determined as,

for some y0 > 0,

φ[b,m] = φ[a,m] − Tcy0, c[b,m]
1 =

J2c[a,m]
1 − J1c[a,m]

2
J1 + J2

ezTcy0 − J1 · A3(y0),

c[b,m]
2 =

J1c[a,m]
2 − J2c[a,m]

1
J1 + J2

ezTcy0 − J2 · A3(y0),

Tm =
(z− z3)(C[b,m] − C[a,m]) + z3Q0(φ

[b,m] − φ[a,m])

z3(H(b)− H(a))
.

(35)

Remark 2. The proof is similar as that of Lemma 2. As for the system (35), note that we are looking
for solutions to reach α(Na

m); that is, whenever τ(y) = b, we require φ(y) = φ[b,m], c2(y) = c[b,m]
2

and c3(y) = c[b,m]
3 . Assume τ(y0) = b for some y0 > 0. Then, φ(y0) = φ[b,m], c2(y0) = c[b,m]

2

and c3(y0) = c[b,m]
3 . Evaluating system (34) at y = y0, by a careful calculation, one has

system (35).



Membranes 2021, 11, 236 14 of 33

It follows that the regular layer solution Λm on [a, b] is given by (34) with J1, J2 and J3
determined by (35). Together with the boundary layers Γa

m and Γb
m described in statement

(iv) of Proposition 4, this gives the singular orbit on the interval [a, b].

2.1.3. Singular Orbit on [b, 1] with Q(x) = 0

Th construction of singular orbits over [b, 1] from Bb to BR is virtually the same as the
construction of singular orbits on [0, a] studied in Section 2.1.1. Instead of repeating the
same process, we will state only the results for later use.

Limiting fast dynamics and boundary layers on [b, 1] The limiting fast system reads

φ′ =u, u′ = −zc1 − zc2 − z3c3, c′1 = −zc1u,

c′2 =− zc2u, c′3 = −z3c3u, J′1 = J′2 = J′3 = 0, τ′ = 0.
(36)

The slow manifold is Zr = {u = 0, z(c1 + c2) + z3c3 = 0}, which consists of the equilibria
of system (36) and is normally hyperbolic with a eight-dimensional center-stable manifold
Ws(Zr) and a eight-dimensional center-unstable manifold Wu(Zr). For the boundary
layers, one has the following proposition.

Proposition 5. Under the condition (15), one has

(i) System (36) has the following integrals:

H1 = ln c1 + zφ, H2 = ln c2 + zφ, H3 = ln c3 + z3φ,

H4 =
u2

2
− c1 − c2 − c3, H5 = J1, H6 = J2, H7 = J3, H8 = τ.

(ii) The stable manifold Ws(Zr) intersects Bb transversally at points
(
φ[b], ur(b), c[b]1 , c[b]2 , c[b]3 , J1,

J2, J3, b
)
, and the ω-limit set of Nb

r = Mb
r
⋂

Ws(Zr) is

ω(Nb
r ) =

{
(φ[b,r], 0, c[b,r]

1 , c[b,r]
2 , c[b,r]

3 , J1, J2, J3, b)
}

,

where Ji for i = 1, 2, 3 are arbitrary, and

φ[b,r] =φb − 1
z− z3

ln
−z3c[b]3

zC[b]
, c[b,r]

k = c[b]k

(−z3c[b]3

zC[b]

) z
z−z3 , c[b,r]

3 = c[b]3

(−z3c[b]3

zC[b]

) z3
z−z3

and

ur(b) = sgn(φ[b] − φ[b,r])

√
2C[b]

(
1− ez(φ[b]−φ[b,r])

)
+ 2c[b]3

(
1− ez3(φ[b]−φ[b,r])

)
. (37)

(iii) The unstable manifold Wu(Zr) intersects BR transversally at points
(
0, u1

l , R1, R2, R3, J1, J2,
J3, 1

)
, and the α-limit set of N1

l = M1
l
⋂

Wu(Zr) is

α(N1
r ) =

{
(φR, 0, cR

1 , cR
2 , cR

3 , J1, J2, J3, 1)
}

,

where Ji for i = 1, 2, 3 are arbitrary, and

φR =0, cR
1 = R1, cR

2 = R2, cR
3 = R3, u1

l = 0.

(iv) The boundary layer Γb
r at x = b is determined up to (J1, J2, J3) as follows: the φ-component

satisfies the Hamiltonian system

φ′′ + zc[b]1 ez(φ[b]−φ) + zc[b]2 ez(φ[b]−φ) + z3cb
3ez3(φ

[b]−φ) = 0,
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together with φ(b) = φ[b] and φ(ξ)→ φ[b,r] as ξ → ∞, u(ξ) = φ′(ξ), and

c1(ξ) = c[b]1 ez(φ[b]−φ(ξ)), c2(ξ) = c[b]2 ez(φ[b]−φ(ξ)), c3(ξ) = c[b]3 ez3(φ
[b]−φ(ξ)).

Similarly, the boundary layer Γ1
r at x = 1 is determined in the following way: the φ-component

satisfies the Hamiltonian system

φ′′ + zR1e−zφ + zR2e−zφ + z3R3e−z3φ = 0,

together with φ(1) = 0 and φ(ξ)→ φR as ξ → −∞, u(ξ) = φ′(ξ), and

c1(ξ) = R1e−zφ(ξ), c2(ξ) = R2e−zφ(ξ), c3(ξ) = R3e−z3φ(ξ).

Limiting slow dynamics and regular layers on [b, 1] We now examine the existence
of the regular layer on Zr that connects ω(Nb

r ) and α(N1
r ). It follows from exactly the same

analysis as that in Section 2.1.1, the limiting slow dynamics reads

φ̇ =− Tc

z(z− z3)(c1 + c2)h(τ)
, ċ1 =

Tc

(z− z3)(c1 + c2)h(τ)
c1 −

J1

h(τ)
,

ċ2 =
Tc

(z− z3)(c1 + c2)h(τ)
c2 −

J2

h(τ)
, J̇k = 0, τ̇ = 1.

(38)

For system (38), one has

Lemma 4. There is a unique solution (φ(x), c1(x), c2(x), J1, J2, J3, τ(x)) of (38) such that
(φ(b), c1(b), c2(b), τ(b)) = (φ[b,r], c[b,r]

1 , c[b,r]
2 , b) and (φ(1), c1(1), c2(1), τ(1)) = (0, R1, R2, 1),

where φ[b,r], c[b,r]
1 and c[b,r]

2 are given in Proposition 5. It is given by

φ(x) =φ[b,r] − Tc lnM1(x)
zz3Tm , c1(x) =

c[b,r]
1 J2 − c[b,r]

2 J1

J1 + J2

(
M1(x)

) Tc
z3Tm +

C[b,r] J1

J1 + J2
M2(x),

c2(x) =
c[b,r]

2 J1 − c[b,r]
1 J2

J1 + J2

(
M1(x)

) Tc
z3Tm

+
C[b,r] J2

J1 + J2
M2(x), τ(x) = x,

where M1(x) = 1 + z3Tm(H(x)−H(b))
(z−z3)C[b,r] , M2(x) = 1 + z1Tm(H(x)−H(b))

(z−z3)C[b,r] , and J1, J2 and J3 are
uniquely determined as

J1 =A2B2
c[b,r]

1 − R1e−zφ[b,r]

H(1)− H(b)
, J2 = A2B2

c[b,r]
2 − R2e−zφ[b,r]

H(1)− H(b)
,

J3 =− z
z3
A2

ln C[b,r] − ln Re−z3φ[b,r]

H(1)− H(b)
,

(39)

where A2 = C[b,r]−R
ln C[b,r]−ln R

and B2 = ln C[b,r]−ln Re−zφb,r

C[b,r]−Re−zφ[b,r] .

The regular solution Λr that connects ω(Nb
r ) and α(N1

l ), together with Γb
r and Γ1

l in
statement (iv) of Proposition 5 yields the singular orbit on [b, 1].

2.1.4. Matching and Singular Orbits on the Whole Interval [0, 1]

A singular orbit over the whole interval [0, 1] will be the union of the singular or-
bits constructed on each of the subintervals (see Figure 1). The matching conditions are



Membranes 2021, 11, 236 16 of 33

ul(a) = um(a), um(b) = ur(b), and J1, J2 and J3 have to be the same on all subintervals;
that is, from (18), (23), (27)–(30), (35), (37) and (39),

0 = C[a]
(

ez(φ[a]−φ[a,m]) − ez(φ[a]−φ[a,l])
)
+ c[a]3

(
ez3(φ

[a]−φ[a,m]) − ez3(φ
[a]−φ[a,l])

)
+ Q0(φ

[a] − φ[a,m]),

0 = C[b]
(

ez(φ[b]−φ[b,r]) − ez(φ[b]−φ[b,m])
)
+ c[b]3

(
ez3(φ

[b]−φ[b,r]) − ez3(φ
[b]−φ[b,m])

)
−Q0(φ

[b] − φ[b,m]),

0 = zc[a]1 ez(φ[a]−φ[a,m]) + zc[a]2 ez(φ[a]−φ[a,m]) + z3c[a]3 ez3(φ
[a]−φ[a,m]) + Q0,

0 = zc[b]1 ez(φ[b]−φ[b,m]) + zc[b]2 ez(φ[b]−φ[b,m]) + z3c[b]3 ez3(φ
[b]−φ[b,m]) + Q0,

J1 = A1B1
L1 − c[a,l]

1 ez(φa,l−V)

H(a)
= A2B2

c[b,r]
1 − R1e−zφ[b,r]

H(1)− H(b)
,

J2 = A1B1
L2 − ca[,l]

2 ez(φa,l−V)

H(a)
= A2B2

c[b,r]
2 − R2e−zφ[b,r]

H(1)− H(b)
,

J3 = − z
z3
A1

ln L− ln C[a,l]ez3(φ
a,l−V)

H(a)
= − z

z3
A2

ln C[b,r] − ln Re−z3φ[b,r]

H(1)− H(b)
,

φ[b,m] = φ[a,m] − Tcy0, c[b,m]
1 =

J2c[a,m]
1 − J1c[a,m]

2
J1 + J2

ezTcy0 − J1 · A3(y0),

c[b,m]
2 =

J1c[a,m]
2 − J2c[a,m]

1
J1 + J2

ezTcy0 − J2 · A3(y0),

Tm =
(z− z3)(C[b,m] − C[a,m]) + z3Q0(φ

[b,m] − φ[a,m])

z3(H(b)− H(a))
.

(40)

where, for k = 1, 2,

φL = V, cL
1 = L1, cL

2 = L2, cL
3 = L3, φ[a,l] = φ[a] − 1

z− z3
ln
−z3c[a]3

zC[a]
,

c[a,l]
k = c[a]k

(−z3c[a]3

zC[a]

) z
z−z3 , c[a,l]

3 = c[a]3

(−z3c[a]3

zC[a]

) z3
z−z3 ,

c[b,r]
k = c[b]k

(−z3c[b]3

zC[b]

) z
z−z3 , cb,r

3 = c[b]3

(−z3c[b]3

zC[b]

) z3
z−z3 ,

φ[b,r] = φ[b] − 1
z− z3

ln
−z3c[b]3

zC[b]
, φR = 0, cR

1 = R1, cR
2 = R2, cR

3 = R3,

c[a,m]
k = c[a]k ez(φ[a]−φ[a,m]), c[a,m]

3 = c[a]3 ez3(φ
[a]−φ[a,m]),

c[b,m]
k = c[b]k ez(φ[b]−φ[b,m]), c[b,m]

3 = c[b]3 ez3(φ
[b]−φ[b,m]),

A1 =
L− C[a,l]

ln L− ln C[a,l]
, B1 =

ln L− ln C[a,l]ez(φ[a,l]−V)

L− C[a,l]ez(φ[a,l]−V)
, A2 =

C[b,r] − R
ln C[b,r] − ln R

,

B2 =
ln C[b,r] − ln Re−zφ[b,r]

C[b,r] − Re−zφ[b,r] , A3(y) =
Q0

zTm

(
1− ezz3Tmy)− C[a,m]

J1 + J2
ezz3Tmy.

(41)

Recall that (φ[a], c[a]1 , c[a]2 , c[a]3 ) and (φ[b], c[b]1 , c[b]2 , c[b]3 ) are the unknown values preas-
signed at x = a and x = b, J1, J2 and J3 are the unknown values for the flux densities
of the three ion species. There are also three auxiliary unknowns φ[a,m], φ[b,m] and y0
in (40). The total number of unknowns in (40) is fourteen, which matches the total number
of equations.
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A qualitative important question is whether the set of nonlinear Equation (40) (a gov-
erning system) has a unique solution. This can be studied through bifurcation analysis and
numerical simulations. However, this is beyond the aim of this work.

2.1.5. Existence of Solutions near the Singular Orbit

Note that any solution of the set of algebraic equations determines a singular orbit
for the connection problem. Once a singular orbit is constructed, one can apply geometric
singular perturbation theory to show that, for ε > 0 small, there is a unique solution that is
close to the singular orbit.

For our case, the singular orbit consists of nine pieces: two boundary layers Γ0
l

and Γ1
r ; four internal layers Γa

l , Γa
m, Γb

m and Γb
r ; and three regular layers Λl , Λm and Λr

(see Figure 1). More precisely, with J = (J1, J2, J3),

1. The boundary layer Γ0
l connects the point

(
V, u0

r , L1, L2, L3, J, 0
)
∈ BL to the point(

φL, 0, cL
1 , cL

2 , cL
3 , J, 0

)
∈ ω(N0

l ) ⊂ Zl ;
2. The regular layer Λ1 connects the point

(
φL, 0, cL

1 , cL
2 , cL

3 , J, 0
)
∈ ω(N0

l ) ⊂ Zl to the

point
(
φ[a,l], 0, c[a,l]

1 , c[a,l]
2 , c[a,l]

3 , J, a
)
∈ α(Na

l ) ⊂ Zl ;

3. The internal layer Γa
l connects the point

(
φ[a,l], 0, c[a,l]

1 , c[a,l]
2 , c[a,l]

3 , J, a) ∈ α(Na
l
)
⊂ Zl to

the point
(
φ[a], ul(a), c[a]1 , c[a]2 , c[a]3 , J, a

)
∈ Ba;

4. The internal layer Γa
m connects the point

(
φ[a], ul(a), c[a]1 , c[a]2 , c[a]3 , J, a

)
∈ Ba to the point(

φ[a,m], 0, c[a,m]
1 , c[a,m]

2 , c[a,m]
3 , J, a

)
∈ ω(Na

m) ⊂ Zm;

5. The regular layer Λm connects the point
(
φ[a,m], 0, c[a,m]

1 , c[a,m]
2 , c[a,m]

3 , J, a
)
∈ ω(Na

m) ⊂
Zm to the point

(
φ[b,m], 0, c[b,m]

1 , c[b,m]
2 , c[b,m]

3 , J, b
)
∈ α(Nb

m) ⊂ Zm;

6. The internal layer Γb
m connects the point

(
φ[b,m], 0, c[b,m]

1 , c[b,m]
2 , c[b,m]

3 , J, b
)
∈ α(Nb

m) ⊂
Zm to the point

(
φ[b], um(b), c[b]1 , c[b]2 , c[b]3 , J, b

)
∈ Bb;

7. The internal layer Γb
r connects the point

(
φ[b], um(b), c[b]1 , c[b]2 , c[b]3 , J, b

)
∈ Bb to the point(

φ[b,r], 0, c[b,r]
1 , c[b,r]

2 , c[b,r]
3 , J, b

)
∈ ω(Nb

r ) ⊂ Zr;

8. The regular layer Λr connects the point
(
φ[b,r], 0, c[b,r]

1 , c[b,r]
2 , c[b,r]

3 , J, b
)
∈ ω(Nb

r )

⊂ Zr to the point
(
φR, 0, cR

1 , cR
2 , cR

3 , J, 1
)
∈ α(N1

r ) ⊂ Zr;
9. The boundary layer Γ1

r connects the point
(
φR, 0, cR

1 , cR
2 , cR

3 , J, 1
)
∈ α(N1

r ) ⊂ Zr to the
point

(
0, u1

l , R1, R2, R3, J, 1
)
∈ BR.

Figure 1. Schematic picture of a singular orbit projected to the space of (u, ∑ zkck, τ) with Q(x)
defined in (6).



Membranes 2021, 11, 236 18 of 33

The following result can be established by the exchange lemma (see, for exam-
ple, [48,50,51]) of the geometric singular perturbation theory (see also [7,10–12]).

Theorem 1. Let Γ0
l ∪Λl ∪ Γa

l ∪ Γa
m ∪Λm ∪ Γb

m ∪ Γb
r ∪Λr ∪ Γ1

r be the singular orbit of the con-
necting problem system (10) associated with BL and BR in system (12). There exists ε0 > 0 small,
so that if 0 < ε < ε0, then the boundary value problem (8) and (9) has a unique solution near the
singular orbit Γ0

l ∪Λl ∪ Γa
l ∪ Γa

m ∪Λm ∪ Γb
m ∪ Γb

r ∪Λr ∪ Γ1
r .

Proof. Fix δ > 0 small to be determined. Let

BL(δ) =
{
(V, u, L1, L2, L3, J1, J2, J3, 0) ∈ R9 : |u− u0

r | < δ, |Ji − Jl
i | < δ

}
,

which is a neighborhood of Γ0
l ∩ BL =

{
(V, u0

l , L1, L2, L3, Jl
1, Jl

2, Jl
3, 0)

}
in BL.

For ε > 0, let M0
l (ε) be the forward trace of BL(δ) under the flow of system (10).

We will show that M0
l (ε) intersects BR transversally near the point Γ1

r ∩ BR =
{
(0, u1

r , R1, R2,
R3, Jr

1, Jr
2, Jr

3, 1)
}

.
The evolution of M0

l (ε) will undergo 3 stages one over each subinterval [0, a], [a, b] and
[b, 1]. In the first stage over [0, a], it will start close to the point (V, u0

l , L1, L2, L3, Jl
1, Jl

2, Jl
3, 0),

follow the singular layer Γ0
l toward the slow manifold Zl , move along the regular layer Λl ,

and leave the vicinity of Zl along the singular layer Γa
l toward the point (φ[a,l], ul(a), c[a,l]

1 ,

c[a,l]
2 , c[a,l]

3 , Jl
1, Jl

2, Jl
3, a). It then continues the evolution over each subsequent subintervals in

a similar fashion until it reaches the vicinity of the point (0, u1
r , R1, R2, R3, Jr

1, Jr
2, Jr

3, 1) ∈ BR.
To track this evolution of M0

l (ε), we apply the exchange lemma successively (three times)
along the stages in order described above. During the first stage, we track the evolution of
M0

l (ε) along the singular orbit Γ0
l ∪Λl ∪Γa

l . The Exchange Lemma ([48,50,51], etc.) indicates
that , at the end of the first stage and near Γa

l , M0
l (ε) is C1O(ε)-close to Wu(α(Na

l ) · (−ρ, ρ))
for some ρ > 0 independent of ε, provided that the following conditions are satisfied:

(i) M0
l (0) ∩Ws(Zl) is transversal along Γ0

l , which is established in Proposition 2;
(ii) the vector field on Zl is not tangent to ω(N0

l ) at (φL, 0, cL
1 , cL

2 , cL
3 , Jl

1, Jl
2, Jl

3, 0) ∈ Zl ,
which follows from τ̇ = 1 in (21).

Let Σl = Wu(α(Na
l ) · (−ρ, ρ) ∩ {τ = a}. then, near Γa

l , M0
l (ε) is close to the forward

trace of Σl under the flow of system (10) with Q = Q0. We can then apply the Exchange
Lemma again to Ml(ε) along Γa

m ∪Λm ∪ Γb
m 0ver [a, b]. At the end of this stage, one has

that Ml(ε) is C1O(ε)-close to Wu(α(Nb
m) · (−ρ, ρ)).

Let Σm = Wu(α(Nb
m) · (−ρ, ρ) ∩ {τ = b}. then, near Γb

m, M0
l (ε) is close to the for-

ward trace of Σm under the flow of system (10) with Q = 0. We can then apply the
Exchange Lemma again to Ml(ε) along Γb

r ∪Λr ∪ Γ1
r 0ver [b, 1]. At the end of this stage,

one has that Ml(ε) is C1O(ε)-close to Wu(α(N1
r ) · (−ρ, ρ)). Since the latter is transversal

to BR near the point (0, u1
l , R1, R2, R3, Jr

1, Jr
2, Jr

3, 1), M0
l (ε) intersects BR transversally near

(0, u1
l , R1, R2, R3, Jr

1, Jr
2, Jr

3, 1). Note that dim M0
l (ε) = dim BL + 1 = 5 and dim BR = 4.

Therefore, dim(M0
l (ε) ∩ BR) = dim M0

l (ε) + dim BR − 9 = 0; that is, the intersection near
(0, u1

l , R1, R2, R3, Jr
1, Jr

2, Jr
3, 1) is a singleton. This completes the proof.

2.2. Regular Perturbation Analysis: Expansions along Small Q0

We expand all unknown quantities in the governing system (40) and (41) in Q0 under
the assumption that |Q0| is small, for example, for k = 1, 2, 3, we write

φ[a] =φ
[a]
0 + φ

[a]
1 Q0 + φ

[a]
2 Q2

0 + o(Q2
0), φ[b] = φ

[b]
0 + φ

[b]
1 Q0 + φ

[b]
2 Q2

0 + o(Q2
0),

c[a]k =c[a]k0 + c[a]k1 Q0 + c[a]k2 Q2
0 + o(Q2

0), c[b]k = c[b]k0 + c[b]k1 Q0 + c[b]k2 Q2
0 + o(Q2

0),

y0 =y00 + y01Q0 + y02Q2
0 + o(Q2

0), Jk = Jk0 + Jk1Q0 + Jk2Q2
0 + o(Q2

0).

(42)
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We will determine the coefficients of the zeroth order and first order terms for domi-
nating effects on ionic flows from the permanent charge. We introduce

α =H(a)/H(1), β = H(b)/H(1), (43)

and, corresponding to (16) and (19),

Tm
0 = J10 + J20 + J30, C[a]

i =c[a]1i + c[a]2i , Cb
i = c[b]1i + c[b]2i , i = 0, 1. (44)

Careful calculations (tedious but straightforward) give

Proposition 6. The zeroth order solution in Q0 of (40) and (41) is given by

φ
[a,l]
0 = φ

[a,m]
0 = φ

[a]
0 =

ln C[a]
0 − ln R

ln L− ln R
V, φ

[b,m]
0 = φ

[b,r]
0 = φ

[b]
0 =

ln C[b]
0 − ln R

ln L− ln R
V,

c[a,l]
k0 = c[a,m]

k0 = c[a]k0 =
C[a]

0
(

Lk − Rke−zV)+ (LRk − LkR)e−zφ
[a]
0

L− Re−zV ,

c[b,m]
k0 = c[b,r]

k0 = c[b]k0 =
C[b]

0
(

Lk − Rke−zV)+ (LRk − LkR)e−zφ
[b]
0

L− Re−zV ,

Jk0 =
L− R

H(1)(ln L− ln R)
ln L− ln R + zV

L− Re−zV

(
Lk − Rke−zV

)
,

J30 = − z
z3

L− R
H(1)(ln L− ln R)

(ln L− ln R + z3V),

y00 =
H(1)

(
ln B− ln C[a]

0
)

z(z− z3)(R− L)
, c[a]30 = − z

z3
C[a]

0 , c[b]30 = − z
z3

C[b]
0 ,

where C[a]
0 = L + α(R− L) and C[b]

0 = L + β(R− L).

Proposition 7. The first order solution in Q0 of (40) and (41) is given by, with k = 1, 2,

c[a]k1 =

(
Lk − Rke−zV)(C[a]

1 + zφ
[a]
1 C[a]

0
)

L− Re−zV − zφ
[a]
1 c[a]k0 ,

c[b]k1 =

(
Lk − Rke−zV)(C[b]

1 + zφ
[b]
1 C[b]

0
)

L− Re−zV − zφ
[b]
1 c[b]k0 ,

φ
[a]
1 =

(1 + zλ)(1 + z3λ)
(
C[a]

0 − C[b]
0
)(

ln L− ln C[a]
0
)

z(z− z3)C
[a]
0 C[b]

0 (ln L− ln R)
+

1 + 2zz3α
(
φ
[b]
0 − φ

[a]
0
)
λ

2z(z− z3)C
[a]
0

,

φ
[b]
1 =

(1 + zλ)(1 + z3λ)
(
C[a]

0 − C[b]
0
)(

ln R− ln C[b]
0
)

z(z− z3)C
[a]
0 C[b]

0 (ln L− ln R)
+

1 + 2zz3(1− β)
(
φ
[b]
0 − φ

[a]
0
)
λ

2z(z− z3)C
[b]
0

,

y01 =

(
C[a]

0 (β− 1)− C[b]
0 α
)(

φb
0 − φa

0
)

z(z− z3)C
[a]
0 C[b]

0 Tm
0

+

(
ln C[a]

0 − ln C[b]
0
)(

φb
0 − φa

0
)

z(z− z3)(R− L)Tm
0

+

(
C[b]

0 − C[a]
0
)
(z3(J10 + J20) + zJ30)

z2z3(z− z3)C
[a]
0 C[b]

0
(
Tm

0
)2

,

Jk1 =
Lk − Rke−zV

L− Re−zV
A(1 + zλ)(z3(1− B)λ + 1)

(z− z3)H(1)
, J31 =

A(1 + z3λ)(z(1− B)λ + 1)
(z3 − z)H(1)

,
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where

C[a]
1 =

z3α
(
φ
[b]
0 − φ

[a]
0
)

z− z3
− 1

2(z− z3)
, C[b]

1 =
z3(β− 1)

(
φ
[b]
0 − φ

[a]
0
)

z− z3
− 1

2(z− z3)
,

λ =
V

ln L− ln R
, A =

(R− L)
(
C[a]

0 − C[b]
0
)

C[a]
0 C[b]

0 (ln L− ln R)
,

B =
ln C[b]

0 − ln C[a]
0

A
=

C[a]
0 C[b]

0 (ln L− ln R)
(

ln C[b]
0 − ln C[a]

0
)

(R− L)
(
C[a]

0 − C[b]
0
) .

For convenience, we introduce f0(L, R) and g0(L, R; V), which are defined by

f0(L, R) =
L− R

ln L− ln R
, f1(L, R; V) =

ln L− ln R + zV
L− Re−zV .

Lemma 5. One has

(i) if L 6= R, then f0(L, R) > 0;
(ii) if L 6= Re−zV , then f1(L, R; V) > 0.

From Propositions 6 and 7, one has

Corollary 1. Assume the electroneutrality boundary conditions (15). For k = 1, 2, one has

Jk0 =
f0(L, R) f1(L, R; V)

H(1)

(
Lk − Rke−zV

)
,

J30 = − z
z3

f0(L, R)
H(1)

(ln L− ln R + z3V),

Jk1 = f1(L, R; V)
A(z3(1− B)V + ln L− ln R)
(z− z3)H(1)(ln L− ln R)2

(
Lk − Rke−zV

)
,

J31 =
A(z3V + ln L− ln R)(z(1− B)V + ln L− ln R)

(z3 − z)H(1)(ln L− ln R)2 ,

(45)

where A = (α−β)(L−R) f0(L,R)
ω(α)ω(β)

, B = ln ω(β)−ln ω(α)
A with ω(x) = (1− x)L + xR.

For convenience in our following analysis, we introduce a function γ(t) for t > 0 with

γ(t) =
t ln t− t + 1
(t− 1) ln t

, for t 6= 1, and γ(1) =
1
2

. (46)

For γ(t), one can easily established the following properties.

Lemma 6. For t > 0, one has 0 < γ(t) < 1, γ′(t) > 0, limt→0 γ(t) = 0 and lim
t→∞

γ(t) = 1.

Lemma 7. Set t = L/R. A has the same sign with that of R− L, that is, if t > 1, then A < 0,
and if t < 1, then A > 0.

Definition 1. We define the critical potentials V1, V2 and V5 by

L− Re−zV1 = 0, z3(1− B)V2 + ln L− ln R = 0, Ld − Rde−zV3 = 0,

where LdRd > 0. Furthermore,

V1 =
1
z

ln
R
L

, V2 =
1

z3(1− B)
ln

R
L

, V3 =
1
z

ln
Rd
Ld

.
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We would like to point out that for the discussion in Section 3.1, the sign of the term
A(1− B) is critical. While the sign of A can be determined by R− L as stated in Lemma 7,
we now establish the result, which characterizes the sign of 1− B.

Lemma 8. Assume t = L/R > 1 and γ(t) be as in (46). Then B > 0, and 1− B → 0 as
t→ 1. Furthermore,

(i) if γ(t) ≤ α, then z
z3

< 0 < 1− B and V1 < 0 < V2;
(ii) if α < γ(t) < α− z

z3 ln t , then, there exists a unique β1 ∈ (α, 1) such that

(ii1) z
z3

< 1− B < 0 and V2 < V1 < 0, for β ∈ (α, β1);
(ii2) z

z3
< 1− B = 0, for β = β1;

(ii3) z
z3

< 0 < 1− B and V1 < 0 < V2, for β ∈ (β1, 1).

(iii) if γ(t) > α− z
z3 ln t , then, there exists a unique β∗1 ∈ (α, β1) such that

(iii1)1− B < z
z3

< 0 and V1 < V2 < 0, for β ∈ (α, β∗1);
(iii2)1− B = z

z3
< 0 and V2 = V1 < 0, for β = β∗1;

(iii3) z
z3

< 1− B < 0 and V2 < V1 < 0, for β ∈ (β∗1, β1);
(iii4) z

z3
< 1− B = 0, for β = β1;

(iii5) z
z3

< 0 < 1− B and V1 < 0 < V2, for β ∈ (β1, 1).

Proof. The statement that B > 0 follows from the fact that both A and ln ω(β)− ln ω(α)
have the same sign with that of R− L.

Rewrite 1− B as

1− B =
g(β)

(β− α)(t− 1)2 ,

where g(β) = ((1 − α)t + α)((1 − β)t + β) ln t ln (1−β)t+β
(1−α)t+α

+ (β − α)(t − 1)2. It follows
directly that lim

t→1
(1− B) = 0. Careful computations yield

d(1− B)
dβ

=
g1(β)

(β− α)2(t− 1)2 ,

where g1(β) = −((1 − α)t + α)2 ln t ln (1−β)t+β
(1−α)t+α

+ (β − α)(t − 1)2((α− γ(t)) ln t− 1),
and further

g′1(β) = −((1− α)t + α)2 1− t
(1− β)t + β

ln t + (t− 1)2((α− γ(t)) ln t− 1),

g′′1 (β) =

(
(1− α)t + α

(1− β)t + β

)2

(1− t)2 ln t.

One has g′′1 (β) > 0 for all t > 1, that is, g1(β) is concave upward for t > 1. Further-
more, one has lim

β→α
g1(β) = 0 and lim

β→α
g′1(β) = 0, which indicate that g1(β) > 0 for β > α.

Note that lim
β→α

d(1− B)
dβ

= ln t/2 > 0 for t > 1. Then, d(1−B)
dβ > 0 for β > α, and 1− B

is strictly increasing on (α,+∞). Note also that lim
β→α

(1− B) = (α− γ(t)) ln t. One has,

for t > 1,

• if α ≥ γ(t), then, z
z3

< 0 < 1− B, which implies V1 < 0 < V2; this completes the proof
of statement (i).

• For the case with α < γ(t), we first claim that there exists a unique β1 ∈ (α, 1) such that
1− B = 0 for β = β1. In fact, based on the facts that lim

β→α
(1− B) = (α− γ(t)) ln t < 0
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and 1− B is strictly increasing on (α,+∞), it suffices to show that 1− B > 0 for β = 1,
which follows from g(1) > 0. For convenience, for t > 1, we set

g2(α) := g(1) = −((1− α)t + α) ln t ln((1− α)t + α) + (1− α)(t− 1)2.

Direct calculations give g′′2 (α) = − (1−t)2 ln t
(1−α)t+α

< 0 for all t > 1, and hence, g2(α) is
concave downward for t > 1. Further, g(1) > 0 is implied by g2(0) ≥ 0, since
g2(1) = 0. To prove g2(0) ≥ 0, set

g3(t) := g2(0) = −t(ln t)2 + (t− 1)2.

It is easy to check that g′3(t) = −(ln t)2− 2 ln t+ 2(t− 1) and g′′3 (t) =
2
t (t− 1− ln t) > 0.

Further one arrive at the conclusion that g3(t) = g2(0) > 0 based on the facts that
g3(1) = g′3(1) = 0 and g′′3 (t) > 0 for t > 1.

– If α < γ(t) < α − z
z3 ln t , then one can easily obtain z

z3
< 1− B for all β > α,

and more specifically, z
z3

< 1− B < 0, which implies V2 < V1 < 0, for β ∈ (α, β1),
z
z3

< 1− B = 0, for β = β1, z
z3

< 0 < 1− B, which indicates V1 < 0 < V2,
for β ∈ (β1, 1); this completes the proof of statement (ii).

– if γ(t) > α− z
z3 ln t , then, the straight line w = z

z3
and w = 1− B have the unique

intersection (β∗1, w(β∗1)), which means that there exists a unique β∗1 ∈ (α, β1) such
that 1− B < z

z3
< 0, which suggests V1 < V2 < 0, for β ∈ (α, β∗1), 1− B = z

z3
< 0

and further V2 = V1 < 0, for β = β∗1, z
z3

< 1− B < 0, which yields V2 < V1 < 0,
for β ∈ (β∗1, β1), z

z3
< 1 − B = 0, for β = β1, z

z3
< 0 < 1 − B, which hints

V1 < 0 < V2, for β ∈ (β1, 1); this completes the proof of statement (iii).

3. Results
3.1. Competitions between Cations

We now consider the competition between two positively charged ion species due
to the small permanent charges, which further depends on the nonlinear interplays with
other system parameters, such as channel geometry (α, β), diffusion coefficients (D1, D2)
and boundary concentrations (L1, L2, R1, R2). The study is closely related to the selectivity
phenomena of ion channels.

For convenience, we define J1,2 as

J1,2 =D1 J1 − D2 J2 = J 0
1,2 + J 1

1,2Q0 + O(Q2
0), (47)

where J 0
1,2 = D1 J10 − D2 J20 and J 1

1,2 = D1 J11 − D2 J21 are given by

J 0
1,2 =

f0(L, R)
H(1)

ln L− ln R + zV
L− Re−zV

(
Ld − Rde−zV

)
,

J 1
1,2 =

Azz3(1− B)

(z− z3)H(1)(ln L− ln R)2
(V −V1)(V −V2)

L− Re−zV

(
Ld − Rde−zV

)
,

(48)

where Ld and Rd is defined in (16). In particular, for B = 1, one has

J 1
1,2 =

ln L− ln R + zV
L− Re−zV

A
(

Ld − Rde−zV)
(z− z3)H(1)(ln L− ln R)

. (49)

J 1
1,2 is the leading term that contains the effect from small permanent charges, and will

be our main focus. The study on J 1
1,2 could provide important insights and better under-

standing of the selectivity of cations, and meanwhile demonstrates the critical role played
by the small permanent charge in the selectivity of ion channels. The two expressions for
J 1

1,2(V) will be alternatively chosen for convenience in our following discussion.
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In terms of the interplay between the diffusion coefficients and boundary concentra-
tions, there are six cases to discuss, more precisely, one has

(i)
D1

D2
=

L2

L1
; (ii)

D1

D2
=

R2

R1
; (iii)

D1

D2
< min

{
L2

L1
,

R2

R1

}
; (iv)

D1

D2
> max

{
L2

L1
,

R2

R1

}
;

(v)
R2

R1
<

D1

D2
<

L2

L1
; (vi)

L2

L1
<

D1

D2
<

R2

R1
.

In this work, we will just focus on case (i), (iii) and (v), since the discussions for case (ii), (iv)
and (vi) are very similar. Interested readers can work on them following our arguments.

In our following discussion, we examine J 1
1,2(V) from two directions for each case:

the sign of J 1
1,2(V) and the monotonicity of J 1

1,2(V) in the electric potential V.

3.1.1. Case Study with D1
D2

= L2
L1

In this section, we study J1,2(V) under the condition D1
D2

= L2
L1

, which is equivalent to
Ld = 0.

We first consider a special case.

Theorem 2. Suppose B = 1 and D1
D2

= L2
L1

. One has J 1
1,2(V) < 0 (resp. J 1

1,2(V) > 0) if D1
D2

< R2
R1

(resp. D1
D2

> R2
R1

), that is, the (small) positive Q0 reduces (resp. enhances) J1,2. Furthermore,

J 1
1,2(V) is increasing (resp. decreasing) in the potential V if D1

D2
< R2

R1
(resp. D1

D2
> R2

R1
).

Proof. With D1
D2

= L2
L1

and B = 1, directly from (49), one has

J 1
1,2 = − ln L− ln R + zV

L− Re−zV
ARde−zV

(z− z3)H(1)
(

ln L− ln R
) .

From Lemmas 5 and 7, together with z− z3 > 0 and H(1) > 0, one has J 1
1,2 < 0 (resp.

J 1
1,2 > 0) if D1

D2
< R2

R1
(resp. D1

D2
> R2

R1
). To see the monotonicity of J 1

1,2(V) in the potential V,
we calculate

dJ 1
1,2(V)

dV
= − zRd Ae−zV

(z1 − z3)H(1)(ln L− ln R)
h0(V)

(L− Re−zV)2 ,

where h0(V) = L− Re−zV − L(ln L− ln R + zV). Direct calculation shows that h0(V) is
concave downward for all V and attains its global maximum 0 at V1 = 1

z ln R
L . Note that

lim
V→V1

h0(V)

(L− re−zV)2 = − 1
2L

. One then has
dJ 1

1,2(V)

dV < 0 (resp.
dJ 1

1,2(V)

dV > 0 ) if Rd > 0, that is,

D1
D2

> R2
R1

(resp. Rd < 0, that is, D1
D2

< R2
R1

). This completes our proof.

We next consider the more general case with B 6= 1.

Theorem 3. Suppose that B 6= 1. If D1
D2

= L2
L1

, one has

(i) if A(1− B)Rd > 0, then, J 1
1,2 < 0 (resp. J 1

1,2 > 0), for V < V2 (resp. V > V2), that is,
the (small) positive Q0 reduces (resp. enhances) J1,2;

(ii) if A(1− B)Rd < 0, then, J 1
1,2 > 0 (resp. J 1

1,2 < 0), for V < V2 (resp. V > V2), that is,
the (small) positive Q0 enhances (resp. reduces) J1,2.

Proof. The statements follow directly from (49) and Lemma 5.

Theorem 4. Suppose that B 6= 1 and D1
D2

= L2
L1

. One has
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(i) if A(1− B)Rd > 0, then, there exists a critical potential V21
c with V21

c > V2 such that J 1
1,2

increases on (−∞, V21
c ) and decreases on (V21

c , ∞).
(ii) if A(1− B)Rd < 0, then, there exists a critical potential V22

c with V22
c > V2 such that J 1

1,2
decreases on (−∞, V22

c ) and increases on (V22
c , ∞).

Proof. We will just provide a detailed proof for the first statement, and the second one can
be discussed similarly. With D1

D2
= L2

L1
, one has

J 1
1,2(V) =

−zz3 A(1− B)Rd

(z− z3)H(1)(ln L− ln R)2
(V −V1)(V −V2)

LezV − R
.

It follows that

dJ 1
1,2

dV
=

−zz3 A(1− B)Rd

(z− z3)H(1)(ln L− ln R)2
ezV

(LezV − R)2 fd(V),

where fd(V) = (2V −V1 −V2)
(

L− Re−zV)− zL(V −V1)(V −V2), and further

f ′d(V) =
d fd
dV

=
(

L− Re−zV
)
(2− z(2V −V1 −V2)).

It is easy to see that f ′d(V) has two zeros given by V1 and Vd = 1
2
(
V1 + V2 +

2
z
)
.

Furthermore, one can easily verify that V1 < Vd if 2 − z(V1 −V2) > 0; V1 = Vd if
2− z(V1 −V2) = 0; and V1 > Vd if 2− z(V1 −V2) < 0.

If V1 < Vd2, then, fd(V) decreases on (−∞, V1), increases on (V1, Vd), and decreases on
(Vd, ∞). Note that fd(V1) = 0, which is a local minimum of fd(V), lim

V→−∞
fd(V) = ∞ and

lim
V→∞

fd(V) = −∞. The function fd(V) has a second zero, denoted by V21
c , with V21

c > V1.

Furthermore, for A(1− B)Rd > 0, we have

lim
V→V1

dJ 1
1,2(V)

dV
=
−z3 A(1− B)RdR(2− z(V1 −V2))

2(z− z3)H(1)(ln L− ln R)2L2e2zV1
> 0,

since 2− z(V1 −V2) > 2− z(2Vd −V1 −V2) = 0, which can be obtained from the fact

that 2 − z(2V −V1 −V2) decreases on (−∞, Vd) and V1 < Vd. Therefore,
dJ 1

1,2(V)

dV > 0

if V < V21
c , and

dJ 1
1,2(V)

dV < 0 if V > V21
c . This holds for the case with V1 ≥ Vd by a

similar argument. Note that lim
V→∞

J 1
1,2(V) = 0 and lim

V→−∞
J 1

1,2(V) = −∞. Statement (i)

then follows.

3.1.2. Case Study with D1
D2

< min
{

L2
L1

, R2
R1

}
We study the term J 1

1,2(V), which provides information of the preference of the ion

channel over different cation under the condition D1
D2

< min
{

L2
L1

, R2
R1

}
.

We first characterize the sign of A(1− B) under the further restriction D1
D2

< min
{

L2
L1

, R2
R1

}
,

and the order of the critical potentials V2 and V3.

Corollary 2. Let t = L
R > 1 and γ(t) be as in (46). Suppose D1

D2
< min

{
L2
L1

, R2
R1

}
. One has

A(1− B) > 0 and V2 > V3 if t < Ld
Rd

, γ(t) > α− z
z3 ln t and β ∈ (α, β∗1].

Corollary 3. Let t = L
R > 1 and γ(t) be as in (46). Suppose D1

D2
< min

{
L2
L1

, R2
R1

}
. One has

A(1− B) < 0 and V2 > V3 under one of the following conditions

(i) Ld
Rd

> 1 and γ(t) ≤ α;
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(ii) Ld
Rd

> 1 and α < γ(t) < α− z
z3 ln t and β ∈ (β1, 1);

(iii) Ld
Rd

> 1 and γ(t) > α− z
z3 ln t and β ∈ (β1, 1).

Corollary 4. Let t = L
R > 1 and γ(t) be as in (46). Suppose D1

D2
< min

{
L2
L1

, R2
R1

}
. One has

A(1− B) > 0 and V2 < V3 under one of the following conditions

(i) t > 1 > Ld
Rd

, α < γ(t) < α− z
z3 ln t and β ∈ (α, β1);

(ii) t > Ld
Rd

> 1, α < γ(t) < α− z
z3 ln t and β ∈ (α, β1);

(iii) t > 1 > Ld
Rd

, γ(t) > α− z
z3 ln t and β ∈ (α, β1);

(iv) t > Ld
Rd

> 1, γ(t) > α− z
z3 ln t and β ∈ (β∗1, β1).

We comment that the proofs of Corollaries 2–4 can be directly discussed based on
Lemmas 7 and 8. We skip the details here.

Theorem 5. Suppose that B = 1 and D1
D2

< min
{

L2
L1

, R2
R1

}
. One has, J 1

1,2(V) < 0 (resp.

J 1
1,2(V) > 0) if V < V3 (resp. V > V3), that is, the (small) positive Q0 reduces (resp. enhances)
J1,2(V). Furthermore, J 1

1,2(V) increases in the potential V.

Theorem 6. Suppose that B 6= 1 and D1
D2

< min
{

L2
L1

, R2
R1

}
. Then,

(i) For A(1− B) > 0 and V2 > V3, one has, J 1
1,2(V) > 0 (resp. J 1

1,2(V) < 0) if V < V3
or V > V2 (resp. V3 < V < V2), that is, the (small) positive Q0 enhances (resp. reduces)
J1,2(V);

(ii) For A(1− B) < 0 and V2 > V3, one has, J 1
1,2(V) < 0 (resp. J 1

1,2(V) > 0) if V < V3
or V > V2 (resp. V3 < V < V2), that is, the (small) positive Q0 reduces (resp. enhances)
J1,2(V);

(iii) For A(1− B) > 0 and V2 < V3, one has, J 1
1,2(V) > 0 (resp. J 1

1,2(V) < 0) if V < V2
or V > V3 (resp. V2 < V < V3), that is, the (small) positive Q0 enhances (resp. reduces)
J1,2(V).

Theorem 7. Suppose that B 6= 1 and D1
D2

< min
{

L2
L1

, R2
R1

}
. One has

(i) If A(1 − B) > 0, then, there exists a critical V1
c between V2 and V3 such that J 1

1,2(V)

decreases on (−∞, V1
c ) and increases on (V1

c ,+∞);
(ii) If A(1 − B) < 0, then, there exists a critical V2

c between V2 and V3 such that J 1
1,2(V)

increases on (−∞, V2
c ) and decreases on (V2

c ,+∞).

3.1.3. Case Study with R2
R1

< D1
D2

< L2
L1

In this section, we study the term J 1
1,2(V) for the case with R2

R1
< D1

D2
< L2

L1
, which is

equivalent to Ld < 0 and Rd > 0. By similar arguments as those in Sections 3.1.1 and 3.1.2,
we obtain the following results.

Theorem 8. Suppose that B = 1 and R2
R1

< D1
D2

< L2
L1

. Then, J 1
1,2(V) > 0, that is, the (small)

positive Q0 enhances J1,2(V).

Theorem 9. Suppose that B 6= 1 and R2
R1

< D1
D2

< L2
L1

. One has

(i) For A(1− B) > 0,

(i1) J 1
1,2(V) < 0 (resp. J 1

1,2(V) > 0) if V < V2 (resp. V > V2), that is, the (small) positive
Q0 reduces (resp. enhances) J1,2(V);

(i2) J 1
1,2(V) either always increases or there exist two critical V3

c and V4
c with V3

c < V4
c such

that J 1
1,2(V) increases on (−∞, V3

c ), decreases on (V3
c , V4

c ) and increases on (V4
c , ∞);
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(ii) For A(1− B) < 0,

(ii1) J 1
1,2(V) > 0 (resp. J 1

1,2(V) < 0) if V < V2 (resp. V > V2), that is, the (small) positive
Q0 enhances (resp. reduces) J1,2(V).

(ii2) J 1
1,2(V) either always decreases or there exist two critical V5

c and V6
c with V5

c < V6
c such

that J 1
1,2(V) decreases on (−∞, V5

c ), increases on (V5
c , V6

c ) and decreases on (V6
c , ∞).

3.1.4. Studies on the Magnitude of J 1,2(V)

For convenience in the argument, we let S1 represent the first cation corresponding to
the flux J1 and S2 be the cation corresponding to the flux J2.

Recall that, with Q0 > 0 small, one has J1,2(V, Q0) = J 0
1,2(V) + Q0J 1

1,2(V) + o(Q0).

Further depending on the interaction among D1
D2

, R2
R1

and L2
L1

, in Sections 3.1.1–3.1.3, we an-
alyze the leading term J 1

1,2(V) that contains the effects from small permanent charges,
in particular,

(i) the sign of J 1
1,2(V), which characterizes the small positive permanent charge effects on

the competition between two cations. To be specific, if J 1
1,2(V) > 0 (resp. J 1

1,2(V) < 0),
then, the small positive permanent charge enhances (resp. reduces) J1,2(V; Q0), and in
either way, it affects the preference of the ion channel over different cation, which is
closely related to the selectivity phenomena of the ion channel.

(ii) the monotonicity of J 1
1,2(V) in the electric potential V, which further reduces or

strengthens the preference by adjusting/controlling the boundary membrane potential.

Taking the case
dJ 1

1,2(V)

dV > 0 for example, if J 1
1,2(V) > 0, then, one can increase the

boundary electric potential to further strengthen the individual flux J1(V), which
indicates that more cation S1 will go through the ion channel; while if J 1

1,2(V) < 0,
one then need to decrease the boundary electric potential for more cation S1 to go
through the ion channels.

On the other hand, J 1
1,2(V) > 0 (resp. J 1

1,2(V) < 0), indicates J1,2(V, Q0) > J1,2(V; 0)
(resp. J1,2(V, Q0) < J1,2(V; 0)), but it does not provide any information on the relation of
|J1,2(V; Q0)| and |J1,2(V, 0)|, which contains complementary information for the competi-
tion, and further depends on the sign of J 0

1,2(V).
Recall form Lemma 7 that A < 0 if L > R, together with (48) and (49), one has

Theorem 10. Suppose that B = 1. One has J 0
1,2(V)J 1

1,2(V) < 0, that is, the (small) positive Q0
reduces |J1,2(V)|.

Theorem 11. Suppose that B 6= 1. For t = L/R > 1, one has A < 0 and

(i) if either α ≥ γ(t), or α < γ(t) and β ∈ (β1, 1), then 1− B > 0 and

(i1) for V > V2, J 0
1,2(V)J 1

1,2(V) > 0, equivalently, (small) positive Q0 enhances |J1,2(V)|;
(i2) for V < V2, J 0

1,2(V)J 1
1,2(V) < 0, equivalently, (small) positive Q0 reduces |J1,2(V)|;

(ii) if α < γ(t) and β ∈ (α, β1), then 1− B < 0 and

(ii1) for V < V2, J 0
1,2(V)J 1

1,2(V) > 0, equivalently, (small) positive Q0 enhances |J1,2(V)|;
(ii2) for V > V2, J 0

1,2(V)J 1
1,2(V) < 0, equivalently, (small) positive Q0 reduces |J1,2(V)|;

Proof. From (48), one note that the sign of J 0
1,2(V)J 1

1,2(V) is determined by the sign of
Az3(1− B)(V−V2). Together with Lemmas 7 and 8, one can easily established the result.

We point out that the studies provides further information of the preference of the ion
channel over distinct cations. To be specific, we take J 0

1,2(V)J 1
1,2(V) > 0 for example.

(i) if J 0
1,2(V) > 0 and J 1

1,2(V) > 0, then, the ion channel prefers the cation S1 over the
cation S2, and the small positive permanent charge further enhances this preference;

(ii) if J 0
1,2(V) < 0 and J 1

1,2(V) < 0, then, the ion channel prefers the cation S2 over the
cation S1, and the small positive permanent charge further enhances this preference.
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Similar argument can be applied to the case J 0
1,2(V)J 1

1,2(V) < 0.

3.2. Numerical Simulations

In this part, numerical simulations are performed to provide more intuitive illustra-
tions of some analytical results. To get started, we rewrite the system (8) and (9) as a system
of first order ordinary differential equations. Upon introducing u = εφ̇, one has

εφ̇ =u, εu̇ = −z1c1 − z2c2 − z3c3 −Q(x)− ε
hx(x)
h(x)

u,

εċ1 =− z1c1u− ε
J1

h(x)
, εċ2 = −z2c2u− ε

J2

h(x)
, εċ3 = −z3c3u− ε

J3

h(x)
,

J̇1 = J̇2 = J̇3 = 0

(50)

with boundary conditions

φ(0) = V, ck(0) = Lk; φ(1) = 0, ck(1) = Rk, k = 1, 2, 3. (51)

In our simulations to system (50) and (51), we take z1 = z2 = −z3 = 1, D1 = 2,
D2 = 8, D3 = 10, ε = 0.01, Q0 = 0.01,

Q(x) =


0, 0 < x < a,
Q0, a < x < b,
0, b < x < 1,

and h(x) =


π
(
− x + r0 + a

)2, 0 ≤ x < a,
πr2

0, a ≤ x < b,
π
(
x + r0 − b

)2, b ≤ x < 1.

Remark 3. The choice of h(x) is based on the fact that the ion channel is cylindrical-like, and the
variable cross-section area is chosen to reflect the fact that the channel is not uniform and much
narrower in the neck (a < x < b) than other regions [9]. We further take r0 = 0.5 and the function
h(x) is then continuous at the jumping points x = a and x = b. Different models for h(x) may be
chosen, and similar numerical results should be obtained.

Our numerical simulations consist of two parts focusing on some cases discussed
in Sections 3.1.1–3.1.3, respectively, and further verify some analytical results stated in
Theorems 3, 4, 6, 7 and 9 for some carefully selected system parameters. Other related
results can also be numerically illustrated by choosing different parameter values, and we
leave that to interested readers.

Recall that

L = L1 + L2, R = R1 + R2, Ld = D1L1 − D2L2, Rd = D1R1 − D2R2,

α =
H(a)
H(1)

, β =
H(b)
H(1)

, t =
L
R

.

It turns out that our numerical simulations with nonzero but small ε are consistent with
our analytical results. To be specific,

(i) By choosing L1 = 24, L2 = 6, R1 = 9, R2 = 2, a = 1/3 and b = 0.7, one has

α =0.265139, β = 0.751381,
D1

D2
=

1
4

,
L2

L1
=

1
4

, t =
30
11

, β1 = 0.804956,

γ(t) =0.57531, Rd = 2 > 0.

It follows that

D1

D2
=

L2

L1
, α < γ(t) < α− z

z3 ln t
= 1.261902, β ∈ (α, β1),
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which is consistent with the conditions stated in (ii) of Lemma 8, and indicates that
1− B < 0. Together with Lemma 7, we have A(1− B) > 0. Therefore, A(1− B)Rd > 0,
which is consistent with the condition (i) stated in Theorems 3 and 4, respectively.
Our numerical results show that (see Figure 2) J 1

1,2(V; ε), approximation of J 1
1,2(V) =

D1 J11(V)− D2 J21(V) defined in (48), which is given by

J 1
1,2(V; ε) = D1[J1(V; Q0; ε)− J1(V; 0; ε)]− D2[J2(V; Q0; ε)− J2(V; 0; ε)],

has a unique zero V2, and a critical point Vs1
c > V2 such that J 1

1,2(V; ε) < 0 if V < V2

and J 1
1,2(V; ε) > 0 if V > V2; furthermore, J 1

1,2(V; ε) increases in the potential V if
V < Vs1

c , and decreases in the potential V if V > Vs1
c .

We remark that the numerical result is consistent with our analytical result, more
precisely, statement (i) of both Theorems 3 and 4.
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Figure 2. Identification of critical potentials V2 and Vs1
c and approximation of J 1

1,2(V) with D1
D2

= L2
L1

for ε = 0.01.

(ii) By choosing L1 = 5, L2 = 50, R1 = 0.5, R2 = 6, a = 1/3 and b = 1/2, one has

α =0.324324, β = 0.594595,
D1

D2
=

1
4

,
L2

L1
= 10,

R2

R1
= 12, t = 8.461538,

Ld
Rd

=8.297872, β1 = 0.826171, γ(t) = 0.665753.

It follows that

D1

D2
< min

{
L2

L1
,

R2

R1

}
, α < γ(t) < α− z

z3 ln t
= 0.792592,

β ∈ (α, β1), t >
Ld
Rd

> 1,

which is consistent with the conditions stated in (ii) of Corollary 4.
Our numerical results show that (see Figure 3) J 1

1,2(V; ε), approximation of J 1
1,2(V) =

D1 J11(V)− D2 J21(V) defined in (48), which is given by

J 1
1,2(V; ε) = D1[J1(V; Q0; ε)− J1(V; 0; ε)]− D2[J2(V; Q0; ε)− J2(V; 0; ε)],
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has two zeros V2 and V3 with V2 < V3, and a critical point V1
c between V2 and V3

such that J 1
1,2(V; ε) > 0 if V < V2 or V > V3, and J 1

1,2(V; ε) < 0 if V2 < V < V3;
furthermore, J 1

1,2(V; ε) decreases in the potential V if V < V1
c , and increases in the

potential V if V > V1
c .

We remark that the numerical result is consistent with our analytical result, more
precisely, statement (iii) of Theorem 6 and statement (i) of Theorem 7.
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Figure 3. Identification of critical potentials V2, V3 and V1
c and approximation of J 1

1,2(V) with
D1
D2

< min
{

L2
L1

, R2
R1

}
for ε = 0.01.

(iii) By choosing L1 = 5, L2 = 50, R1 = 15, R2 = 3, a = 1/3 and b = 1/2, one has

α =0.324324, β = 0.594595,
D1

D2
=

1
4

,
L2

L1
= 10,

R2

R1
=

1
5

, t =
55
18

,

β1 =0.782204, γ(t) = 0.591200.

It follows that

R2

R1
<

D1

D2
<

L2

L1
, α < γ(t) < α− z

z3 ln t
= 1.219610, β ∈ (α, β1).

From Lemma 7, one has A < 0 and from Lemma 8 (statement (ii1)), one has 1− B < 0,
and hence, A(1− B) > 0, which satisfies the condition required in the statement (i) of
Theorem 9.
Our numerical results show that (see Figure 4) J 1

1,2(V; ε) has one zero V2 and two
critical points V3

c and V4
c with V3

c < V4
c such that J 1

1,2(V; ε) > 0 if V > V2 and
J 1

1,2(V; ε) < 0 if V < V2; furthermore, J 1
1,2(V; ε) increases in the potential V if V < V3

c ,
decreases in the potential V if V3

c < V < V4
c , and increases in the potential V if

V > V4
c .

We remark that the numerical result is consistent with our analytical result stated in (i)
of Theorem 9.
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Figure 4. Identification of critical potentials V2, V3
c and V4

c and approximation of J 1
1,2(V) with

R2
R1

< D1
D2

< L2
L1

for ε = 0.01.

4. Concluding Remarks

We study a one-dimensional steady-state Poisson–Nernst–Planck system with three
ion species, two cations having the same valence and one anion. Nonzero but small
permanent charge, the major structural quantity of an ion channel, is included in the model.
The cross-section area of the channel is included in the system, and it provides certain
information of the geometry of the three-dimensional channel, which plays crucial roles in
our analysis. Two specific structures of the PNP model

(i) the existence of a complete set of first integrals (Proposition 1, first statement (i) in
Proposition 4 and Proposition 5, respectively);

(ii) the observation made in Section 2.1.2 allows one to transform the limit slow system (32)
to a linear system (33) with constant coefficients;

allows one to reduce the singularly perturbed boundary value problem to an algebraic
system-the governing system (40). The significance of the governing system is:

(i) it includes almost all relevant physical parameters;
(ii) once a solution of the governing system is obtained, the singular orbit (the ze-

roth order approximation (in ε) solution of the boundary value problem) can be
readily determined.

Based on these specific structures of this concrete model, under the framework of the
geometric singular perturbation theory, a singular orbit is obtained, from which explicit
expressions of Jk0 and Jk1 are extracted. This makes it possible for one to further analyze
the competition between cations, which further depend on the complicated nonlinear inter-
plays among system parameters, such as the diffusion coefficients (D1, D2), the channel
geometry in terms of (α, β), the boundary conditions (Lk, Rk; V), k = 1, 2, 3, particularly,
the interaction among D1

D2
, R2

R1
and L2

L1
plays a critical role in characterizing the competition

between cations (Sections 3.1.1–3.1.3). Among others, we find

(i) As functions of the membrane potential V (fixing other system parameters),

(i1) J 1
1,2 = D1 J11 − D2 J21 and ∂VJ 1

1,2 can be positive (resp. negative), which further
depends on the nonlinear interaction among boundary concentrations and dif-
fusion coefficients. The sign of J 1

1,2 provides critical information related to the
selectivity phenomena of ion channels, while the sign of ∂VJ1,2 provides efficient
ways to further adjust/control the preference of the ion channel over distinct
cation (Characterized in Theorems 2–9);
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(i2) |J1,2|, the magnitude of J1,2, which is equivalent to J 0
1,2J 1

1,2 for small positive Q0,
is analyzed, which provides further information of the ion channel over distinct
cations (Theorems 10 and 11).

(ii) Critical potentials that balance the small permanent charge effects on J 1
1,2 (such as V2

and V3) are identified (Definition 1). Those critical potentials can be experimentally
estimated. Taking V2 for example, one can take an experimental curve as J1,2(V; Q0)
and numerically (or analytically) compute J 0

1,2(V; 0) for ideal case that allows one to
get an estimate of V2 by considering the zeros of J1,2(V; Q0)−J 0

1,2(V; 0). The critical
potentials play critical roles in characterizing permanent charge effects on ionic flows
through membrane channels.

Finally, we comment that the setup in this work is relatively simple, and may raise
the concern about the feasibility. Indeed, cPNP is known to be reliable when the ionic
mixture is dilute, but with more ion species and nonzero permanent charges included,
the ionic mixture would be crowded. On the other hand, the setup is reasonable for semi-
conductor problems and for synthetic channels. The detailed analysis in this work is not
only important in understanding the behavior of such fluxes across channels but can also
better help in understanding the fundamental mechanistic principles of metabolite fluxes
in engineered synthetic biological channels [52]. Furthermore, the study in this work is
the first step for analysis of more realistic models. The simple model considered in this
work allows us to obtain more explicit expressions of the ionic fluxes in terms of physical
parameters of the problem so that we are able to extract concrete information on small
permanent charge effects. Moreover, the analysis in this simpler setting provides important
insights for the analysis and numerical studies of more realistic models.
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