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Abstract: Recently, palygorskite (Pal) has become a promising new membrane additive in flux
enhancement and fouling reduction, which is an environmentally friendly nanoclay material under
the 2:1 layer composition with 1D tubular structure. However, the aggregation of Pal due to the
intermolecular forces is still an obstacle to be solved in improving membrane performance. Herein,
Pal nanoparticles were chemically modified by KH550 to weaken the aggregation and improve the
dispersibility, and then incorporated into the organic phase to prepare thin-film nanocomposite
(TFN) membranes. The results showed that the organo-functionalization could effectively improve
the membrane hydrophilicity and dispersion of Pal nanoparticles in the polyamide layer, which
contributed to the enhanced water flux (from 25 to 38 L/m2·h), unchanged salt rejection (98.0%) and
better antifouling capacity (91% flux recovery rate), which suggested that the organo-functionalization
of nanoparticles was an efficient method in further enhancing membrane performance

Keywords: reverse osmosis; palygorskite nanoparticles; organo-functionalization; desalination; an-
tifouling

1. Introduction

Recently, clay nanoparticles have been popular since they are naturally abundant
and cost effective; in particular, the two-dimensional sheet structures and inherent hy-
drophilicity make them potential ideal nanofillers for thin-film nanocomposite (TFN)
membranes [1,2]. Clay materials, such as halloysite nanotubes (HNTs), layered double
hydroxides (LDHs) and montmorillonites (MMTs), have been added into mixed matrix
membranes and presented the positive effect on the TFN membrane performance, not
only the enhanced water flux, but also improved antifouling capacity and chlorine resis-
tance [3–5]. Except for the clays mentioned above, palygorskite (Pal) is another special
class of clay mineral under the 2:1 layer composition with 1D rod-like morphology [6]. The
nanoscale porous structure with the cross-sectional area of 0.37 nm × 0.63 nm could pro-
vide extra parallel nanochannels in the polyamide (PA) layer and make it conducive to the
transport of the water molecules, which has drawn more attention as capable membrane
nanofillers [7,8].

Ji et al. introduced the raw Pal nanoclay in the PVDF ultrafiltration flat sheet mem-
branes, and the pure water flux showed a sharp increase from 106 to 221 L/m2·h [9].
Wei et al. synthesized novel ultrafiltration membranes by incorporating Pal into a polyvinyli-
dene fluoride (PVDF) matrix. The water flux and flux recovery rate (FRR) under bovine
serum albumin (BSA) pollution of the composite membranes were all superior to those
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of the pristine membranes [10]. By a vacuum-assisted filtration self-assembly process,
Zhao et al. fabricated free-standing GOP membranes based on GO nanosheets and Pal
nanorods. The permeate fluxes increased by seven times for GOP membrane with excel-
lent separation performance and anti-oil-fouling properties during oil-in-water emulsion
separation test [11]. In addition, TiO2/Pal and silver/Pal nanoparticles were synthe-
sized by Wang et al., and then were incorporated in the TFN membrane separating layer
through interfacial polymerization [2,6]. The results showed that both TiO2/Pal and
Ag/Pal nanoparticles brought the excellent photocatalytic bactericidal and antifouling
capacities of the TFN membranes.

However, despite the significant achievements in Pal-based membranes, it can not
be ignored that similar to other nanoparticles, the aggregation of Pal also easily occurred
during the membrane fabrication due to the intermolecular forces, which have a negative
influence on the membrane separation performance [12]. Thus, it is essential to weaken
the aggregation of Pal in order to improve the dispersion and avoid introducing a lot of
defects in the membrane. Till now, many attempts have been made, which can be summa-
rized as the following four processes: (1) acidified processing, (2) surfactant processing,
(3) coupling agent surface treatment and (4) ultrasonic wave processing [12]. Among
them, 3-aminopropyltriethoxy silane coupling agent (KH550) was widely used in the Pal
modification due to its special structure, which has been proved to be an effective surface
functionalization method to improve the dispersibility of the nanoparticles. The coupling
process can be accomplished via the chemical reaction between the triethoxy groups of
silane molecules and the hydroxyl groups on the Pal surface, whereas the other functional
group of silane molecule can remain [13]. Zhang et al. modified the Pal nanoparticles by
KH550, and then incorporated into the PVDF matrix to develop a hybrid membrane via
a phase inversion method [12]. The results showed that the saline coupling agent KH550
achieved a more uniform presence of Pal in the polymer matrix than that of the raw Pal, and
the membrane exhibited better hydrophilicity, thermal stability, permeation and antifouling
properties. In addition, Han et al. modified Pal by KH550 to improve the dispersion and
water loss rate of zeolite in asphalt, and the result showed that KH550-Zeolite had better
compatibility and could stay longer in n-heptane [14].

Above all, the modification of Pal by KH550 seems to be an effective method to
improve the dispersibility of the nanoparticles. However, up to now, most of the reported
literature put emphasis on the MF and UF membrane performance based on the addition
of KH550-modified Pal; there are rare studies focusing on the effect of the modification of
Pal by KH550 on the structure, separation and antifouling performance of TFN membranes.
Besides, the effect of particle size and loading content of Pal on the water flux and salt
rejection of TFN membranes has also not been systematically and comprehensively studied.
These motivated our work and was believed to pave a new avenue in enhancing the
dispersion of other nanoparticles in the fabrication of the TFN membranes.

Therefore, in the current work, Pal nanoparticles were used as additives in the organic
phase to improve the performance of TFN membranes. The effects of particle size, loading
content and KH550 modification of Pal on the water flux, salt rejection, stability and
antifouling capacity of the prepared TFN membranes were evaluated. Besides, several
characterization methods such as FTIR, XRD, SEM and TEM were undertaken in order to
confirm the structural properties of both Pal nanoparticles and RO membranes. The
chemical modification mechanism of Pal and membrane fabrication procedure were shown
in Figure 1.
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Figure 1. Chemical modification mechanism of Pal and membrane fabrication procedure.

2. Experimental Section
2.1. Materials and Chemicals

Polysulfone (PS) ultrafiltration membrane was supplied by Beijng Originwater Tech-
nology Co., Ltd. (Beijing, China). Palygorskite (Pal) was provided from Jiangsu Shengyi
Nano Technology Co., Ltd. (Jiangsu, China). γ-aminopropyl triethoxysilane (KH550),
humic acid (HA), Trimesoyl chloride (TMC, >98%) and m-phenylenediamine (MPD,
>99%) were all purchased from Shanghai Aladdin Chemistry Co., Ltd. (Shanghai, China).
Ethyl alcohol, sodium dodecyl sulfate (SDS), n-hexane, sodium chloride (NaCl) and mag-
nesium chloride (MgCl2) were obtained from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). All the solutions were prepared using deionized (DI) water as solvent
for RO measurements.

2.2. Preparation of the Modified Pal Nanoparticles

To achieve shorter Pal nanoparticles in diameter, facile grinding technology was
applied [15,16]. In brief, a certain amount of raw Pal was put in miniature omnidirectional
planetary ball mill (Hunan Focucy experimental instrument Co., Ltd., Hunan, China) for
60 min at 60 rpm. Spherical zirconia balls with a diameter of about 5.0 mm were used as
the milling medium. To obtain the KH550-modified Pal, the KH550 was first hydrolyzed
at 25 ◦C for 2 h using 200 mL ethanol and water as solvent (70% ethanol + 30% deionized
water). Then, 5 g of grinded Pal was introduced and the mixture was stirred for another
8 h under N2 atmosphere at 50 ◦C. The mass ratio of KH550 and grinded Pal m/m was 0,
1:4, 3:4, 3:2, 3:1. The resulting salivated material was consecutively rinsed with ethanol,
dried at 120 ◦C under vacuum and stored in the desiccators for next analysis. The raw Pal
was abbreviated as Pal, the grinded Pal was abbreviated as g-Pal and the KH550-modified
Pal was abbreviated as K-Pal.

2.3. Fabrication of RO Membranes

By using an interfacial polymerization (IP) method, TFC and TFN membranes were
prepared [17]. Briefly, the substrate top surface was immersed in the 2 wt% MPD aqueous
solution containing 0.1 wt% SDS for 2 min, in which the pH of the solution had been
adjusted to 8.5. After removing the excessive MPD solution and dried by the nitrogen gas,
0.1 w/v% TMC in n-hexane solution containing various concentration of three types of Pal
nanoparticles, from 0.00 to 0.07 wt% contacted with the MPD immersed membrane surface
for 1 min. Then, the excess organic solution was removed, and the resultant membrane
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was oven-dried for 5 min at 80 ◦C, followed by washing thoroughly with DI water. It is
noticed that ultra-sonication for at least 0.5 h was necessary when Pal nanoparticles were
added in TMC solution, so as to make Pal nanoparticles well dispersed.

Herein, four kinds of Pal-based membrane were fabricated including pristine TFC
membrane, TFN membrane with Pal nanoparticles, TFN membrane with g-Pal nanoparti-
cles (smaller size) and TFN membranes with K-Pal nanoparticles. To distinguish different
TFN membranes, the membranes with Pal nanoparticles, g-Pal nanoparticles (smaller size)
and K-Pal nanoparticles were denoted as TFN-Px, TFN-Gx and TFN-Kx (x was the concen-
tration (wt%) of Pal nanoparticles in the PA layer).

2.4. Characterization of Pal Nanoparticles and Membranes
2.4.1. Transmission Electron Microscope (TEM)

Under ultrasonic wave (100 W), different Pal nanoparticles were dispersed in n-hexane
solution. The suspended nanoparticles were dropped on a copper film and then were dried
in air. The nanostructure of the particles was observed by using TEM (JEM-2100, JEOL,
Tokyo, Japan) working at 200 kV.

2.4.2. Dynamic Light Scattering (DLS)

To measure the average size of different Pal nanoparticles, the nanoparticles were
dispersed in n-hexane solution with the aid of ultrasonic wave (100 W). Then, a certain
amount of particle solution was transformed to the sample cell and analyzed by DLS
(Malvern Zetasizer Nano series, Shanghai, China). The measurement wavelength was
635 nm and the detection angle was 90◦.

To measure the Zeta potential of different Pal nanoparticles, the nanoparticles were
dispersed in water solution with the aid of ultrasonic wave (100 W). Then, a certain amount
of particle solution was transformed to the sample cell and analyzed by DLS under zeta
potential measurement mode. The dispersant was water and the pH of particle solution
ranged from 6.86 to 7.06.

2.4.3. Fourier Transforms Infrared (FTIR)

The surface functional groups of different Pal nanoparticles and membranes were
determined by using FTIR (Nicolet iS50). For Pal nanoparticles, the measurement was
under TR testing mode; for membranes, the measurement was under ATR testing mode.
Each spectrum was recorded at a resolution of 4 cm−1 in the range of 600–4000 cm−1.

2.4.4. X-ray Diffraction (XRD)

To confirm the effect of grinding and chemical modification on the crystal structure of
Pal nanoparticles, XRD (RigakuD/Max 2200PC) with CuKa radiation (λ = 0.15418 nm) at
room temperature with the applied tube voltage and electric current at 40 kV and 20 mA
was used. The 2θ was ranging from 5◦ to 90◦.

2.4.5. Contact Angle Measurement

Water contact angle was measured by an automatic contact angle meter (DSA100,
Kruss, Shanghai, China). A 2 µL drop of distilled water was deposited on the sample
surface using a syringe. When the water drop showed no further change or changed little,
the drop image was registered by a video camera and image analysis software was used to
calculate the contact angle. Each sample was repeated at least three times, so as to improve
the accuracy of the contact angle results. For particle samples, it was measured after being
pressed into thin sheets.

2.4.6. Settling Analysis

The dispersion of Pal, g-Pal and K-Pal in TMC solution was evaluated to obtain
the most suitable modification concentration by settling analysis. 0.03 g Pal, g-Pal and
K-Pal nanoparticles were added in 250 mL n-hexane solution, respectively. The mixture
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was ultrasonic for 1 h and then transferred to the measuring cylinder for sedimentation
observation. The sedimentation height was recorded every 4 h and lasted for 24 h.

2.4.7. Scanning Electron Microscope (SEM)

To observe the surface morphology of different Pal nanoparticles and membranes,
SEM (S-4800, Hitachi, Tokyo, Japan) was applied. All the particles and membranes were
oven-dried overnight prior to analysis. For membranes, dry membrane samples were
frozen in liquid nitrogen and subsequently cracked in order to obtain the cross sections.
All the samples were sputter-coated with gold for 50 s and viewed at 10 kV.

2.4.8. Atomic Force Microscopy (AFM)

By using in situ AFM (Veeco, Plainview, NY, USA), the membrane roughness was
determined under tapping mode in air. The scanning area was 5 µm × 5 µm and Z-scale
was 500 nm. The values of root-mean-squared height (RMS) reflect the magnitude of the
surface roughness.

2.5. RO Performance

Permeability and selectivity of TFC and TFN membranes were measured through
cross-flow permeation test by using RO performance evaluation equipment with three
24 cm2 parallel filtration cells. NaCl and MgCl2 with a concentration about 2 g/L were used
as the feed solution and the operation pressure was 1.6 MPa after compaction at 1.8 MPa
for 0.5 h. Conductivity meter was applied to measure the NaCl and MgCl2 concentrations.
The water flux (J, L/m2·h), water permeability (A, L/m2·h·bar) and salt rejection (R, %) of
the prepared membranes were calculated with the following equations, respectively [18]:

J =
∆V
S·∆t

(1)

A =
J

∆P− ∆π
(2)

R = 1− C2

C1
(3)

where ∆V is the permeate volume, S is the effective membrane area, ∆t is the measuring
time interval, ∆P is the transmembrane pressure, ∆π is the osmotic pressure of the feed
solution and C2 and C1 are the permeate and feed concentration, respectively.

The stability of the membrane directly affects the membrane service life, thus the
prepared TFC and TFN membranes were tested under different temperature, different
operation pressure and long-term RO test using 2 g/L NaCl as feed solution, so as to
determine the stability of the Pal-based TFN membranes.

2.6. Antifouling Ability

In order to determine the antifouling performance of the TFC and TFN membranes,
HA was used as model foulant to conduct a fouling test. After the water flux reached
stability, 0.5 g/L HA was added to the NaCl feed solution and continue the permeation
test. The fouling filtration experiment lasted for 10 h, and then cleaned with DI water
for 2 h. After that, the recovered water flux of the cleaned membrane was remeasured
using a 2 g/L NaCl solution for 3 h. The flux recovery rate (FRR, %) was calculated by the
following Equation [2]:

FRR =
J1

J0
∗ 100% (4)

where J1 is the recovered water flux after cleaning and J0 is the initial flux.
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The fouling resistance were calculated according to the resistance-in-series model as
displayed in Equation (5) [19]:

Rt =
TMP

µJ
= Rm + Rr + Rir (5)

where Rt, Rm, Rr and Rir were the total membrane fouling resistance, intrinsic membrane
resistance, hydraulic reversible and irreversible fouling resistance, which were calculated
by the following equations:

Rm =
TMP
µJ0

(6)

Rt =
TMP
µJ2

(7)

Rr =
TMP
µJ2

− TMP
µJ1

(8)

Rir = Rt − Rm − Rr (9)

where TMP is trans-membrane pressure (Pa), µ is the dynamic viscosity for the feed water
(Pa·A = s) and J2 is the permeate flux at the end of fouling filtration (m/s).

3. Results and Discussion
3.1. Characterization of Different Pal Nanoparticles

The XRD and FTIR spectra of Pal, g-Pal and K-Pal nanoparticles were presented
in Figure 2. As shown in Figure 2a, the peaks at 13.9, 16.4, 19.8 and 20.9◦ appeared,
which were induced by the Si–O–Si crystalline layer of Pal [2,20]. The reflections at
2θ = 26.7 and 35.3◦ were inconsistent with the (2 3 1) and (0 0 2) planes of Pal [14,21]. After
grinding or modification by KH550, it was found that the characteristic peaks of all the
samples correspond basically, which suggested that the crystal structure of Pal was not
destroyed [14]. From Figure 2b we can see the FTIR spectra Pal, g-Pal, K-Pal nanoparticles
and KH550. For Pal, The absorbing peaks at 3549 and 3418 cm−1 are attributed to the
to the stretching vibration of water molecules (i.e., zeolitic water and adsorbed water
in the PAL crystal [16]. The band at 1651 cm−1 was mostly induced by the bending
modes of the abovementioned water molecules groups. The absorbing peaks at 1028 and
982 cm−1 were attributued to the stretching vibration of Si–O bonds [15]. When the Pal
nanoparticles were grinded to smaller size, it was seen that little difference was observed
in the FTIR spectra. However, several typical absorbing peaks were investigated for
KH550. The absorption peaks at 2926, 2878 and 1442 cm−1 were attributed to asymmetry
stretching vibration, symmetry stretching vibration and deformation vibration of C–H,
respectively. The absorption peaks at 1167, 2972 and 1595 cm−1 were corresponding to
stretching vibration of C–C and stretching vibration and deformation vibration of N–H.
The absorption peaks at 1338 and 952 cm−1 were C–Si–O [13]. After modification of Pal
nanoparticles by KH550, it was obvious that some new peaks appeared in the K-Pal particle
surface, and these new absorption peaks have been marked with red circle in the FTIR
spectra and were same as the KH550, which demonstrated the successful graft to the
surface of Pal through chemical reaction. Nevertheless, little difference of absorption peaks
was detected in FTIR spectra between K-Pal0.75 and K-Pal3.0.
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Figure 2. XRD patterns (a) and FTIR spectra (b) of different Pal nanoparticles and KH550.

Figure 3 displayed the SEM images and contact angles of Pal, g-Pal and K-Pal nanopar-
ticles and the microstructure characterized by TEM was shown in Figure S1. As shown in
Figure 3a, a typical rod-like morphology of Pal was observed with diameters of 30–50 nm
and length of about 500–1000 nm in which the contact angle was 13.4◦ [1,6]. After grind-
ing, the length was notably shortened to 100–150 nm, but not uniformly as displayed in
Figure 3b. Besides, the contact angle showed a slight decrease, which was induced by
the increased specific surface area and more hydroxyl groups appeared to the surface of
Pal, and thus improved the hydrophilicity. When KH550 was grafted to the surface of
Pal nanoparticles, the surface morphology and microstructure presented little changes.
Nevertheless, when the mass ratio of KH550 and grinded Pal m/m was 3:1, it was found
that some spherical particles appeared in in the surface of Pal as shown in Figure 3f,
which may be induced by the hydrolysis of KH550 to the formation of silicon dioxide
nanoparticles [22]. Furthermore, it was seen that the contact angle of K-Pal gradually
increased from 14.1 to 26.7◦ with the increase in modification concentration of KH550. This
phenomenon was mainly caused by the introduction of alkane chain on Pal surface and
mades its surface less hydrophilic, despite the fact that KH550 also has a polar hydrophilic
group (-NH2). Similar changes in trends were also investigated in KH550-modified Zeolite
nanoparticles [14].

Particle size and zeta potential of Pal, g-Pal and K-Pal nanoparticles were summarized
in Table 1. The Pal exhibited an average particle size about 876.8 nm, accompanied by a
negative charge [2]. However, the poly-dispersion index of Pal was at a relatively high
level, about 0.901, which indicated that the Pal particles were not uniform in particle
length [23]. After grinding, the average particle size decreased to 513 nm, which was
not in accordance with the particle size displayed in SEM and TEM images (100–150 nm).
Though the poly-dispersion index showed an obvious decrease, the g-Pal still tended to
aggregate, thus resulting in the increase in particle size characterized by DLS. When KH550
was grafted to the surface of Pal nanoparticles, the average particle size further decreased
as well as the zeta potential. It was satisfactorily seen that K-Pal0.75 presented an average
particle size about 312.6 nm with a relative lower poly-dispersion index, which means
an improved uniform dispersion despite the aggregation of particles was not completely
eliminated [24]. These results demonstrated the feasibility of the modification by KH550
in weaken the aggregation of Pal, so as to improve the dispersion in the preparation of
TFN membranes.
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Figure 3. SEM images and contact angles (insert) of different Pal nanoparticles. (a) Pal, (b) g-Pal,
(c) K-Pal0.25, (d) K-Pal0.75, (e) K-Pal1.5 and (f) K-Pal3.0.

Table 1. Physical properties of Pal, g-Pal and K-Pal nanoparticles.

Samples Zeta Potential (mV) Mean Diameter (nm) Poly-Dispersion Index (PDI) Settling Rate (cm/s)

Pal −11.7 ± 0.6 876.8 ± 122.8 0.901 ± 0.134 8.67 × 10−4

g-Pal −12.0 ± 0.4 513.0 ± 14.5 0.412 ± 0.126 4.81 × 10−4

K-Pal0.25 −12.8 ± 0.4 436.0 ± 12.2 0.373 ± 0.155 7.47 × 10−5

K-Pal0.75 −13.2 ± 0.8 312.6 ± 6.2 0.113 ± 0.058 1.22 × 10−5

K-Pal1.5 −13.8 ± 0.2 385.3 ± 15.0 0.419 ± 0.119 1.56 × 10−5

K-Pal3.0 −14.5 ± 0.7 411.7 ± 9.0 0.155 ± 0.074 2.08 × 10−5

Table 1 also summarized the settling rate of Pal, g-Pal and K-Pal in n-hexane solution.
As obtained, after modification by KH550, the settling rate presented a sharp decrease
from 8.67 × 10−4 cm/s to 1.22 × 10−5 cm/s. The Pal nanoparticles were abundant with
hydroxyl groups, which made them a strongly polar substance and almost incompatible
with n-hexane [14]. Conversely, the hydroxyl groups of K-Pal were effectively covered by
the KH550 layer graft to the particle surface, and lots of organic groups were introduced to
the Pal surface, and thus made its surface organophilic (hydrophilicity was weak), which
was in accordance with the result of the contact angle. Therefore, compared with Pal,
KH550-modified Pal had better compatibility and could uniformly stay longer in n-hexane,
which was believed to improve the uniform dispersion of particles in the PA layer and
reduce the introduction of a large number of defects, thus leading to a higher performance
of the TFN membranes. Considering the average particle size associated with the low
poly-dispersion index and settling rate, the mass ratio of KH550 and g-Pal m/m at 3:4
(K-Pal0.75) was selected to fabricate TFN membranes.

3.2. FTIR, SEM and AFM Characterization of RO Membranes

FTIR spectra of PSf, TFC, TFN-Px, TFN-Gx and TFN-Kx membranes were shown in
Figure 4a. For PSf, the characteristic peaks appeared at 1150, 1242, 1488 and 1585 cm−1,
which belonged to the asymmetric O=S=O stretching vibrations, asymmetric C–O–C
stretching, symmetric O=S=O stretching and aromatic bands stretching [25]. After in-
terfacial polymerization occurred on the surface of PSf, the typical peaks of the PA layer at
1541, 1610 and 1660 cm−1 were both detected in the TFC and TFN membranes, which was
related to the amide II N–H bending and torsional motion, hydrogen-bonded C=O stretch-
ing vibration and amide I C=O stretching vibrations, respectively [26]. Besides, it was seen
that the FTIR spectra of TFN-Px and TFN-Gx membranes showed little difference, but both
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of them exhibited an intensified broad band at 3330 cm−1 compared to TFC membranes,
which was ascribed to the hydroxyl groups of Pal and g-Pal nanorods [27]. Moreover, the
absorption peak of KH550 at 1381 cm−1 (Figure 2) happened to blue shift and the new peak
at 1449 cm−1 was attributed to the deformation vibration of C–H provided by KH550.

Figure 4. FTIR spectra (a) and contact angle (b) of different membranes.

The contact angles of TFC and TFN membranes were shown in Figure 4b. For TFN-
Px and TFN-Gx membranes, with the increased loading concentration of Pal and g-Pal
nanoparticles in the PA layer, the contact angle presented a declined trend, resulting from
the existence of hydrophilic groups on the Pal nanoparticles [28]. Since the g-Pal nanoparti-
cles was more hydrophilic that has been proven by the contact angle of powder in Figure 3,
more hydrophilic groups existed on the particle surface, thus the TFN-Gx membranes
exhibited a lower contact angle value and indicated higher hydrophilicity than the TFN-Px
membranes. However, the contact angle of TFN-Kx membranes showed a different trend.
For TFN-Kx membranes, when the loading concentration of K-Pal was below 0.03 mg/L,
the contact angle remained in a decreased state with the increase in loading concentration.
Though the hydroxyl groups in the Pal surface was covered by the KH550 layer, the ex-
istence of NH2 in KH550 also played a positive role in enhancing the hydrophilicity of
the TFN-Kx membranes. However, when the loading concentration further increased, the
contact angle of TFN-Kx membranes gradually gained increment. This might be attributed
to the sharp increase in membrane roughness as shown in Figure S2, which hindered the
wettability of the membranes. Besides, the introduced alkane chain of overdosed K-Pal
may be another reason for the contact angle increment despite the fact that KH550 also has
polar hydrophilic group (–NH2) [21,29].

The surface morphology of the TFN membranes under different loading concentration
of Pal, g-Pal and K-Pal particles were presented in Figure 5, and the images of other
prepared membranes were displayed in Figure S2. Apparently, a typical “ridge-and-
valley” structure occurred on both TFC and TFN membranes, suggesting the successful
formation of PA layer on the PSf substrate [25,26]. When Pal, g-pal and K-Pal were added in
organic phase, the “ridge-and-valley” structure changed to larger “leaf-like” morphological
structures of all the TFN membranes, and the thickness of the PA layer showed a slight
increase in thickness compared to TFC membranes as seen in the cross-section images
(Figure S2). This phenomenon was induced by enhanced miscibility of aqueous and organic
phases upon the addition of hydrophilic nanoparticles, thus the expanded interfacial
polymerization reaction zone that has been detailed explained by previous studies [30,31].
For TFN-Px and TFN-Gx membranes, when the loading concentration of particles was
0.012 wt%, slight aggregation of Pal or g-Pal was observed in the membrane surface
and further increment of loading concentration resulted in more severe aggregation. By
contrast, the TFN-Kx showed a uniform dispersion of K-Pal nanoparticles till a slight
aggregation occurred when the loading concentration at 0.05 wt%. This satisfied result was
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mainly caused by the graft of KH550 to the Pal surface and enhanced the compatibility
between K-Pal nanoparticles and TMC organic phase, which was in accordance with the
settling analysis.

Figure 5. Surface morphology and cross-section of TFN-Px (a–a3), TFN-Gx (b–b3) and TFN-
Kx (c–c3) membranes.

The surface roughness of the RO membranes was investigated by AFM, and the 3D
images were displayed in Figure 6. Compared to TFC membrane, the surface roughness of
the TFN membranes were all increased, which was mainly caused by the larger “leaf-like”
morphological structures induced by incorporation of Pal, g-Pal and K-Pal nanoparticles.
The increased surface roughness may lead to more contact area with water molecules, and
hereby contributed to enhancing the water flux [2]. It is noticed that the surface roughness
of TFN-P0.012 and TFN-G0.012 membranes was higher than TFN-K0.03 membranes, which
was induced by the slight aggregation of nanofillers in accordance with the SEM images.

3.3. Separation Performance of RO Membranes

Figure 7 reveals the water flux and salt rejection trends of the nanocomposite mem-
branes prepared with Pal, g-Pal and K-Pal nanoparticles under different conditions, re-
spectively. As obtained from Figure 7a, the TFC membrane exhibited a water flux of
25.17 L/m2·h with 98.5% NaCl rejection. All the three types of TFN membranes showed an
increment in water flux after incorporation of Pal, g-Pal, and K-Pal in the rejection layer and
the higher the concentration, the greater the flux obtained. As discussed above, addition of
Pal, g-Pal, and K-Pal was benefited to improve the membrane roughness and hydrophilicity,
which enlarged the contact area with water molecules and facilitated the water solubiliza-
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tion and diffusion through the rejection layer [32]. Besides, the tubular structure of Pal
with a cross-sectional area 0.37 × 0.63 nm2 could provide more high-speed nanochannels
for water transport [33]. It was notable that the salt rejection presented different change
trends of the three types of TFN membranes. For TFN-Px and TFN-Gx membranes, the salt
rejection showed a visible drop even at a low loading concentration. The slight aggregation
of Pal and g-Pal at low loading concentration may bring nanocorridors between nanofillers
and polyamide matrix in the rejection layer, resulting in the declination of NaCl rejection [2].
In addition, the larger particle size may hinder the IP process, and destroy the integrity of
the PA layer [34]. When the loading concentration exceeded 0.012 wt%, the decline was
more obvious, resulting from the severe aggregation, and more defects were generated on
the membrane surface as observed in SEM images. Furthermore, it was emphasized that
the extent of the reduction in NaCl rejection for TFN-Gx membranes was much lower than
that for TFN-Px membranes, which can be explained by the decreased particle size that
tended to be covered more in the PA layer [35].

Figure 6. AFM images of (a) TFC, (b) TFN-P0.012, (c) TFN-G0.012 and (d) TFN-K0.03 membranes.

Different from the TFN-Px and TFN-Gx membranes, the decline of NaCl rejection of
TFN-Kx membrane appared till the loading concentration increased to 0.05 wt%. The graft
of KH550 to the Pal may weaken the aggregation and enhance the uniform dispersion
in PA layer, and the existence of NH2 in K-Pal surface may react with TMC molecules
and improve the compatibility between nanoparticles and PA layer, thus leading to less
defects and the better separation performance. However, when the loading concentration
of K-Pal further increased to 0.07 wt%, the membrane also displayed a decrease in NaCl
rejection. It must be emphasized that the chemical modification was only the way to
weaken the aggregation of inorganic nanoparticles and increase the loading concentration
in the membrane-selective layer without affecting the membrane performance, but not to
elimate the aggregation. Thus, it was essential to define the optimal loading concentration
by using inorganic nanoparticles as nanofillers rather than the more the better. Figure 7b
depicted the separation performance of TFN-P0.05 and TFN-G0.05 membranes by using
2 g/L MgCl2 as feed solution. Though the two membranes exhibited bad rejection to NaCl
at 0.05 wt% loading concentration caused by the severe aggregation of Pal and g-Pal, the
rejection to MgCl2 reached 97.1% for TFN-P0.05 and 99.2% for TFN-G0.05 membranes with
excellent enhanced water flux, respectively. Since the Mg2+ has a bigger hydrated ionic
radius, it was harder to be transparent across the membrane despite some defects occurring
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in the PA layer. Simultaneously, the counter-ions (Cl−) were rejected by the Donnan effect,
which contributed to the higher rejection of MgCl2 [18,36].

Figure 7. Water flux and NaCl rejection of the TFN membranes with different loading concentration of Pal, g-Pal and K-Pal
(a), water flux and MgCl2 rejection of TFN-P0.05 and TFN-G0.05 membranes (b), water flux and NaCl rejection of TFN-K0.03

under different temperature (c) and water flux and NaCl rejection of TFC, TFN-G0.012 and TFN-K0.03 membranes under
long-term RO test (d).

Several studies have reported that the polymer membrane is very sensitive to the
changes in the feed temperature [37]. Figure 7c showed the separation performance of
TFN-K0.03 membranes by adjusting the temperature of the feed solution. It was obvious
that up to a 60% enhancement in water flux when the feed temperature was adjusted
from 25 to 55 ◦C, which may be caused by the changes in the physical properties of the
polymeric membrane such as the pore size or possibly the diffusivity of water molecules
in the membrane [38]. Besides, the increase in temperature may effectively decrease the
degree of concentration polarization (CP) resistance, which also contributed to the high
transmembrane flux [39]. It was satisfied that the salt rejection remained unchanged under
different temperatures of the feed solution, suggesting the stability of K-Pal nanoparticles
in the PA layer which was ascribe to the successful graft of KH550 in the particle surface.

In order to investigate the membrane stability, a 48 h RO test was conducted and the
separation performance was shown in Figure 7d. As obtained, the water flux and rejection
of TFC and TFN-K0.03 membranes exhibited slight increases during 48 h filtration, which
indicated that robust rejection layers were formed and K-Pal nanoparticles stably existed in
the rejection layer. The slight enhancement of water flux was mostly caused by the changes
in the physical properties of the polymeric membrane discussed above. On the contrary,
the rejection of TFN-G0.012 gradually decreased, especially after 32 h operation. Compared
to g-Pal, the K-Pal nanoparticles could uniformly disperse in the PA layer and the reaction
between NH2 in K-Pal surface and TMC molecules could make the particle firmly fixed in
the rejection layer. While the G-Pal nanoparticles were kept in the PA layer only by physical
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package, it could easily induce membrane defects under the constant rush of water at high
pressure, thus leading to the deterioration of salt rejection [7]. Furthermore, the effect of
operating pressure on the membrane separation performance was also studied, which was
displayed in Figure S3.

Table 2 compares the RO performance with different porous nanomaterials. The
TFN-Kx membrane in this work exhibited a better flux increase ratio and rejection than
some other nanoparticles, though it was not the best. These results demonstrated the
positive effect of modification of Pal by KH550, which could effectively improve the
membrane performance.

Table 2. Comparisons of separation performances with differert porous nanomaterials.

Nanoparticles Loading at Best
Performance a Pressure (bar) PWP (L/m2·h·bar) b NaCl Rejection (%) b

MCM-48 [26] nanoparticles 0.10 wt/v% (O) 16.0 1.50→ 2.18 97.0→ 97.0
Halloysite nanotubes [3] 0.05 wt/v% (O) 15.0 1.27→ 2.41 97.2→ 95.6

ZIF-8 [40] 0.15 wt% (O) 20.0 1.72→ 2.61 98.2→ 98.6
Layered double hydroxides [41] 0.2 wt% (O) 20.0 1.49→ 2.75 98.5→ 99.05

Pal/TiO2 [2] 75 mg/L (A) 16.0 1.53→ 2.13 98.2→ 98.0
Pal/Ag [6] 7.5 mg/L (A) 16.0 1.50→ 2.49 98.5→ 98.3

Pal-KH550 (this work) 0.03 wt% (O) 16.0 1.57→ 2.38 98.5→ 98.0
a (A) means the nanoparticles are in the water phase, while (O) means in the organic phase. b The left numbers are the performances of the
control membranes, while the right ones are the performances corresponding to the optimal loadings.

3.4. Antifouling Capacity

Membrane fouling is an important and inevitable phenomenon that impairs the
performance of membranes during RO application [42]. In the current study, HA was
used as model foulant to conduct the fouling tests so as to evaluate the effect of particle
size and modification of KH550 on the antifouling ability of the TFN membranes, and the
results were shown in Figure 8. As shown in Figure 8a, the same initial flux of 25.5 L/m2·h
was first adjusted for TFC, TFN-G0.012 and TFN-K0.03 membranes to obtain an identical
transverse hydrodynamic force for each membrane [2]. For TFC membranes, it suffered a
sharp decline and reached a relative steady state after about 8 h when HA was added in the
feed solution, and the final water flux was only 38% of the initial flux. This phenomenon
suggested that membrane fouling caused by HA was fast but could reach a balance in a
certain time. As a kind of hydrophilic polymer, HA could accumulate at the membrane
surface and add the hydraulic resistance, thus aggravating water flux decline [43]. After
cleaning, the water flux merely recovered to 62%, which was caused by the inevitable
membrane fouling. Since RO is a pressure-driven process, the HA molecule accumulated
on the membrane surface would be compacted during the filtration process, the boundary
layer was hardly flushed away under high cross-flow rate and the membrane pores were
completely covered, leading to the great resistance to the water molecules passing across
the membrane, resulting in the low recovery of the water flux [44].

Compared to TFC, TFN-G0.012 and TFN-K0.03 membranes showed a relatively slow
decline trend and lower pollution level. The flux recovery was 80% for the TFN-G0.012
membrane and 91% for the TFN-K0.03 membrane. Since the initial flux was operated to the
same by adjusting the pressure, the operating pressure of the TFN-G0.012 and TFN-K0.03
membrane was much lower than TFC, thus the boundary layer was more loose than that
on the TFC membrane surface and more easily flushed away under a high cross-flow rate,
thereby enhancing the flux recovery rate [5]. Besides, the enhanced hydrophilicity of the
TFN-G0.012 and TFN-K0.03 membrane surface may have also contributed to the higher
final flux and flux recovery rate. Furthermore, it was noticed that TFN-K0.03 membranes
exhibited higher flux recovery rate than TFN-G0.012 membranes, and the lower surface
roughness of TFN-K0.03 membranes may be the most plausible explanation [45].
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Figure 8. The antifouling capacity of the TFC, TFN-G0.012 and TFN-K0.03 membranes. (a) Time-dependent flux for HA;
(b) FRR of TFC, TFN-G0.012 and TFN-K0.03 membranes and (c) fouling reversibility.

The fouling reversibility displayed in Figure 8c further suggested the membrane
fouling phenomenon. TFC membranes suffered the most severe reversible and irreversible
fouling, with fouling resistances of 2.51 × 1013 and 1.55 × 1013 m−1, respectively. The high
level of irreversible fouling was mainly caused caused by the pore blocking of the TFC
membranes, and it was hardly removed by the simple hydraulic backwash, thus inducing
the severe flux decline and low FRR. On the contrary, the TFN-K0.03 membranes displayed
the lowest reversible and irreversible fouling, with the fouling resistances of 1.29 × 1013

and 0.19 × 1013 m−1. The result of fouling reversibility showed that reversible fouling
played a dominant role in TFN-K0.03 membranes [19]. Furthermore, it is noticed that the
irreversible fouling of TFN-K0.03 membranes was much lower than that of TFN-G0.012
membranes, which was attributed to the well dispersion of K-Pal nanoparticles and lower
surface roughness of the membrane surface. Less defects, enhanced hydrophilicity and
lower surface roughness of TFN-K0.03 membranes made a great contribution to the higher
FRR and lower irreversible fouling than both TFN-G0.012 and TFC membranes.

4. Conclusions

In the current study, Pal, g-Pal and K-Pal nanoparticles were incorporated into the
PA layer to evalute the effect of particle size, loading content and KH550 modification of
Pal on the water flux, salt rejection, stability and antifouling capacity of the prepared TFN
membranes. The results showed that when the mass ratio of KH550 and g-Pal was 3:4,
the K-Pal possessed the lowest particle size (312 nm) and settling rate (1.22 × 10−5 cm/s).
The RO separation performance suggested that the membrane with K-Pal performed the
best in enhancing the water flux and maintaining the salt rejection. When the loading
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concentration of K-Pal was 0.03 wt%, the water flux increased from 25 to 38 L/m2·h and the
salt rejection remained almost unchanged. On the contrary, the rejection of the membrane
with raw Pal and g-Pal exhibited declination even at a low incorporating concentration.
However, it was noticed that these two kinds of membranes showed excellent rejection
to MgCl2: 97.1% for TFN-P0.05 and 99.2% for TFN-G0.05 membranes, at the concentration
of 0.05 wt% with excellent water flux. Finally, the membrane with K-Pal exhibited better
stability, fouling resistance and FRR than the TFN-Gx and TFC membranes and the FRR
even exceeded 90% of the TFN-K0.03 membranes, which contributed to the improved
hydrophilicity and lower roughness of the membrane surface than TFN-G0.012 membranes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/membranes11110889/s1, Figure S1. TEM images of different Pal nanoparticles, Figure S2. SEM
images of TFC, Figure S3. Water flux and NaCl rejection of TFC.
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