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Abstract: Alzheimer’s disease (AD), as a neurodegenerative disorder, is characterized by mass
neuronal and synaptic loss and, currently, there are no successful curative therapies. Extracellular
vesicles (EVs) are an emerging approach to intercellular communication via transferring cellular
materials such as proteins, lipids, mRNAs, and miRNAs from parental cells to recipient cells, leading
to the reprogramming of the molecular machinery. Numerous studies have suggested the therapeutic
potential of EVs derived from mesenchymal stem cells (MSCs) in the treatment of AD, based on the
neuroprotective, regenerative and immunomodulatory effects as effective as MSCs. In this review,
we focus on the biology and function of EVs, the potential of MSC-derived EVs for AD therapy in
preclinical and clinical studies, as well as the potent mechanisms of MSC-derived EVs actions. Finally,
we highlight the modification strategies and diagnosis utilities in order to make advance in this field.

Keywords: Alzheimer’s disease; mesenchymal stem cells; extracellular vesicles; therapy

1. Introduction

Alzheimer’s disease (AD) is the world’s most common cause of dementia that will
affect over 100 million people by 2050, and which will bring a significant physical, psycho-
logical, social and economic burden to patients, their families, caregivers and society [1].
As a neurodegenerative disease, the clinical symptoms of AD include severe cognitive
impairments, irreversible memory loss and motor abnormalities, which are attributed to
the loss of synapses and neurons in vulnerable regions [2]. AD is characterized by increased
neuritic (senile) plaques composed of β-amyloid (Aβ) peptides [3]. Excess aggregated Aβ

peptide is generally considered to initiate the pathogenic cascade, including propagation
of microtubule-associated tau aggregation throughout the brain [4]. In the past decades,
strategies targeting Aβs are mainstream approaches for the treatment and prevention of
AD; most of the relevant clinical trials have been conducted at the early/pre-symptomatic
stage of AD [5,6]. For instance, the initial trial of aducanumab, an Aβ-directed monoclonal
antibody, has shown that it could significantly slow cognitive decline in patients with early
stages of AD and reduce Aβ plaques in a dose-and time-dependent manner [7]. Addition-
ally, aducanumab has been approved for medical use in the United States by the FDA in
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June 2021, but this decision is still controversial and follow-up study is required [8,9]. When
it comes to Aβ-targeting drugs, most of them did not show positive outcomes in their phase
III trials, e.g., semagacestat, verubecestat, solanezumab and gantenerumab [10–12]. De-
spite that there are five FDA-approved medications for clinical use in dementia, including
three cholinesterase inhibitors (donepezil, rivastigmine, and galantamine), a N-methyl-d-
aspartate (NMDA) receptor inhibitor (memantine), and a combination therapy with the
cholinergic and glutamatergic inhibitors, the symptoms of AD may be improved but the
disease progression fails to be halted [1]. It is apparent that a single remedy targeting Aβs is
not sufficient to cure AD and the optimal therapeutic approach should tackle Aβ-induced
AD pathology as well as prevent cognitive decline simultaneously.

In recent years, mesenchymal stem cells (MSCs) have been used as potential thera-
peutic cells in multiple diseases due to their immunomodulatory and tissue regenerative
properties [13]. MSCs are adult multipotent stem cells that exist in multiple tissues, includ-
ing bone marrow, adipose tissue, umbilical cord and peripheral blood. They are able to
self-renew and differentiate into osteogenic, chondrogenic, adipogenic, myogenic, or stro-
mal lineages. Under different culture conditions, MSCs are reported to differentiate into
neuronal cells, hepatocytes, cardiomyocytes, alveolar and gut epithelial cells, making them
a promising source in the regenerative medicine. Numerous reports have addressed the
beneficial effects of MSCs in damaged tissue repair, including liver failure rescue [14,15],
cardiovascular regeneration [16,17], treatment of stroke [18], spinal cord injury [19] and
lung fibrosis [20]. Since the characteristics of AD include mass loss of synapses and neu-
rons, MSC transplantation is a rational therapeutic strategy for regeneration of neuronal
circuits [21]. Studies have indicated that MSCs are able to reduce Aβ deposition, enhance
neurogenesis, alleviate spatial learning and memory deficits in both cellular models and
animal models of AD [22–24]. Notably, these therapeutic effects in tissue protection and
repair are attributed to the paracrine action of MSCs, and further emphasize the role of
soluble factors including extracellular vesicles (EVs) secreted from MSCs [25,26].

Several published reviews have described the biogenesis and methodology of iso-
lation of EVs in detail [27–32]. In the following paragraphs, we review the origins and
characterization of isolated EVs, summarize the current applications of MSC-derived EVs
in AD treatments and the molecular/cellular mechanisms of MSC derived EVs actions
during therapy, and discuss the potential of drug delivery vehicles and diagnosis utilities
for AD. The electronic searches were performed in PubMed, EMBASE, Google Scholar,
Clinical Trials database, from 2002 to 2021. The following combinations were used in a
search of titles and abstracts in September 2021: Alzheimer’s disease and mesenchymal
stem cells; Alzheimer’s disease and mesenchymal stem cells and extracellular vesicles;
Alzheimer’s disease and mesenchymal stem cells and exosomes; Alzheimer’s disease and
mesenchymal stem cells and microvesicles. The abstracts of all the relevant articles were
reviewed by the authors, who further ensured these relevant articles were included in the
current review.

2. Origins, Classification and Nomenclature of EVs

In general, EVs can be divided into three classes depending on their size and origins,
including exosomes, microvesicles (MVs) and apoptotic bodies (ABs) [33]. Exosomes are
nanoscale vesicles (30~200 nm) secreted from most types of cells, and commonly found
in plasma, tears, urine, breast milk and body fluids [34]. When molecules are transported
through the cell membrane via endocytosis, the cargos are formed and then delivered to
early endosomes. During the maturation of early endosomes, the cargos are sorted to form
interluminal vesicles (ILVs) through the folding back of the endosomal-limiting membrane.
ILVs are the origin of exosomes encapsulated by multivesicular bodies (MVBs); the release
of ILVs in the form of exosomes is switched in the absence of recycling molecules, such as
transferrin receptors or mannose 6-phosphate receptors [35,36].

Different from exosomes, MVs are heterogeneous vesicles with a broad range of size
distribution (45–1000 nm), directly budding from the plasma membrane, then released



Membranes 2021, 11, 796 3 of 19

into the extracellular space [37]. The biogenesis of MVs is dependent on the phospho-
lipid asymmetry, lipid transporter activity and calcium signaling [38]. In contrast, the
biogenesis of exosomes occurs via the endosomal sorting complex required for a transport
(ESCRT)-dependent pathway that is required for the process of cargo ubiquitination in
the pre-MVB/early endosomes. The cargos transferred to endosome are selected by the
ESCRT-binding ubiquitinated proteins [39]. Despite that the biogenesis of MVs has been
reported to be regulated by ESCRT independent pathways, the ESCRT-I subunit TSG101
is found to interact with arrestin domain-containing protein 1 (ARRDC1) to control the
release of MVs. In other words, ESCRT proteins are involved in MVs biogenesis [40].
Unlike the canonical ESCRT pathway, a recent report has addressed that the biogenesis of
exosomes can be modulated by active RAB31, a Ras-related protein, driving the formation
of epidermal growth factor receptor (EGFR)-containing ILV, thereby decreasing GTPase
Rab7 activity to prevent the fusion of MVBs with lysosomes and eventually promoting
exosomes release [41]. There are various factors involved in biogenesis pathways and
the process remains elusive. In addition, apoptotic bodies (ABs), one of EV subtypes,
are released when cells undergo apoptosis. Once the apoptosis is induced, a series of
events happen, including cell shrinking, chromatin condensation, organelles collapse, and
membrane blebbing, leading to the formation of apoptotic bodies (ABs) [42,43]. ABs also
carry various molecules, e.g., proteins, lipids, and RNAs, but the size (1–2 µm) is much
larger than other EV subgroups [44]. Smaller ABs, termed apoptotic vesicles, have been
identified [45]. In fact, ABs present phosphatidylserine (PS) on their surfaces, so they are
cleared quickly. It elucidates that the more precise classification of EVs subtypes is needed.

Over the past decade, the number of publications about EVs research is increasing
exponentially [46]. These studies include the basic research (biogenesis, secretion, up-
take, and pharmacokinetic properties), biomarker identification (EVs, EV-carried proteins,
EV-carried RNA, EV-carried DNA, EV-carried microRNA, and EV-carried lipids), pharma-
ceutical agents (native and engineered EVs), and biomaterial-based drug delivery (loading
with protein, microRNA, or drugs) [47,48]. However, the nomenclature of EVs was not
defined accurately. These irregular terms used to describe vesicles not only have led to
misunderstanding for readers but also caused the findings hard to verify. In 2014, the
International Society for Extracellular Vesicles (ISEV) promulgated guidelines called MI-
SEV (minimal information for studies of extracellular vesicles) for the investigators who
conduct the EVs studies [47], and now also updated to the latest version (MISEV 2018) [49].
According to these guidelines, “extracellular vesicle” is an expert consensus term and is
used to describe the vesicle that cannot replicate and naturally be secreted from the cell
and consists of lipid bilayers. Nevertheless, other terms are not prohibited. For instance,
the term “exosomes” is generally used in industry, which might fascinate costumers to
purchase the related products [50]. In general, the term “EV” is widely used in research
and the use of other terms should be defined carefully and clearly.

3. Recommendations in Characterization of EVs

Based on MISEV 2018, the characterization of protein markers should be verified
using at least three positive markers (one transmembrane/lipid-bound protein is included)
and one negative marker. In terms of characterization of a single particle, one electron or
atomic force microscopy and one single particle analyzer should be included to examine
the size, distribution, and morphology of EVs. Regarding the characterization of protein
markers, tetraspanins (e.g., CD9, CD63, CD81, CD82), MVB biogenesis-related protein
(Alix, and TSG101), and heat-shock proteins (Hsp60, Hsp70, and Hsp90) are generally used
as EVs’ markers [51]. In addition, the proteins specially expressed in cells need to be found
in EVs (as cell-type fingerprint) [52]. For example, EVs secreted from T cells and B cells
contain T cell receptor (TCR) and B cell receptor (BCR), respectively [53]. MSC-derived
EVs bear the markers of CD29, CD44, CD73 and CD90; these markers are widely used in
characterization of MSCs [54].
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As a subtype of EVs, MVs also package the abundant proteins and nucleic acids that
serve as biomarkers for identifying the disease types and the prognosis of disease state [55].
However, the specific markers of MV are still lacking; it is hard to differentiate the MVs from
other subgroups of EVs by proteins markers. Since the results obtained from current studies
have shown that MVs can be used as good biomarkers for diseases without excluding the
existence of other vesicles, pure MVs seem not to be necessary in clinical analysis [56–58].
With the large size, ABs can be easily distinguished from smaller vesicles by transmission
electron microscopy (TEM), dynamic light scattering (DLS) and nanoparticle tracking
analysis (NTA). The specific proteins related to apoptotic process, such as tubulin β-1 and
β-4, integrin β-3, Ras-related protein, Fructose-2-P-Aldolase and Glutathione-S-Transferase
omega-1, are found in ABs [59]. However, increasing studies have indicated that ABs
are not the only secreted vesicles during apoptosis, both apoptotic exosomes (ApoExos)
and apoptotic microvesicles (ApoMVs) are also released from apoptotic cells but exhibit
different origins, heterogeneities and physical characteristics. Thus, the terms “ApoEVs”
are gradually used to describe the EVs released from dying cells rather than “ABs” [60,61].
Collectively, the work of characterizing EVs is under development, and investigators can
follow the guidelines recommended by MISEV 2018 to characterize the vesicles they collect.

4. Application of MSC-Derived EVs in AD Treatment

EVs act as mediators of intercellular communication through transferring bioactive
molecules such as proteins, lipids, mRNAs, microRNAs (miRNAs), genomic DNA and
mitochondrial DNA. When recipient cells uptake these bioactive molecules, the molecular
machinery of cells is altered in an epigenetic way [51,62,63]. Besides, EVs can serve as drug
delivery vectors to transfer enhanced therapeutic agents through chemically or biologically
engineering to treat diseases or halt disease progression. The beneficial effect of MSC-
derived EVs has been demonstrated in animal models of multiple diseases, such as chronic
kidney disease, ischemic stroke, pulmonary hypertension, indicating that MSC-derived
EVs exert similar effects as MSCs [64–68]. Due to their high stability in the bloodstream
and the capacity to penetrate blood-brain barrier (BBB), MSC-derived EVs have a great
potential for the treatment of neurological and neurodegenerative diseases, which has been
experimentally confirmed as EVs administration through both intravenous and intranasal
routes [25,69–72]. Additionally, an inflammatory state in AD or Parkinson’s disease (PD)
makes the BBB more vulnerable to facilitate EVs transport from the peripheral circulation
to the brain [73–75]. Therefore, it could reasonably be expected that MSC-derived EVs
manifest beneficial effects in AD treatments.

MSC-derived EVs have shown promise in improving the cognitive deficits induced
by Aβ1–42 aggregates and promoting neurogenesis in the hippocampus and subventricular
zone (SVZ), which are of great significance in the transition from short-term memory to
long-term memory [70,76]. In vitro results have addressed that MSC-derived EVs pro-
tect neurons from oxidative stress and synapse damage induced by Aβ oligomers [77,78].
Wang et al. and our lab demonstrated the positive effect of using MSC-derived EVs (BM-
MSCs and WJ-MSCs, respectively) both in vitro and in vivo [71,79]. BM-MSC-derived EVs
significantly reduced Aβs induced inducible nitric oxide synthase (iNOS) expression in cul-
tured primary neurons. Administration of BM-MSC-derived EVs intracerebroventricularly
was shown to improve cognitive behavior, rescue synaptic transmission in hippocampal
CA1 regions and long-term potentiation (LTP) in APP/PS1 transgenic mice. In our research,
the human neuroblastoma cell line overexpressing FAD mutations and J20 transgenic mice
were used to investigate the therapeutic effect of WJ-MSC-derived EVs. Reduced Aβ

expression and restored expression of neuronal memory/synaptic plasticity-related genes
were observed in the cell model. In vivo studies demonstrated improved cognitive func-
tion, restored glucose metabolism, and inhibited astrocytes/microglia activation in mice
that were administrated with WJ-MSC-derived EVs through an intravenous injection [71].
Furthermore, an alternative delivery of MSC-derived EVs for therapeutic intervention in
AD through the intranasal route has been used in recent studies owing to the safety, low
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invasive procedure and a higher amount of EVs reaching the brain [70,80,81]. Similarly,
MSC-derived EVs exhibit neuroprotective and immunomodulatory potential, evidenced by
increased dendritic spine density and decreased microglia activation in treated mice [80].
Another recent study has demonstrated that MSC-derived EVs can lower Aβ plaque burden
and decrease the colocalization between Aβ plaque and glial fibrillary acidic protein (GFAP,
a reactive astrocyte marker) in the brain [81]. The therapeutic effects of MSC-derived EVs
obtained from the cell and animal models of AD are summarized in Table 1.

Table 1. A summary of preclinical studies of MSC-derived EVs-based therapy both in vitro and in vivo models of AD.

Model Source of EVs Protocol Administration Route Reported Effects Ref.

In vitro models

N2a cells ADSCs 500 µg/well, 24 h Co-culture

Decreased
extracellular and

intracellular
Aβs levels

[82]

SH-SY5Y-APPswe cells UC-MSC 2 µg/well for 24 h Co-culture

Decreased
extracellular and

intracellular
Aβs levels

[83]

SH-SY5Y-APP(S/L) cells WJ-MSCs 50 µg/well, twice a
week for 1 week Co-culture

Decreased Aβs
expression and

restored the
expression of neuronal

memory/synaptic
plasticity-related genes

[71]

NSCs isolated from
Tg2576 mice ADSCs 200 µg/mL for

24 or 48 h Co-culture

Reduced Aβ levels
and the Aβ

42/40 ratio, increased
neurite growth and

alleviated cell
apoptosis

[84]

Cortical neuron culture
from newborn
APP/PS1 mice

BM-MSCs 100 µg/mL
for 12 h Co-culture Reduced Aβs induced

iNOS expression [79]

Hippocampal neuron
culture from rat
embryos (E18)

BM-MSCs
isolated from

Wistar rats

2.4 × 108 particles
for 22 h

Co-culture
(Pretreatment with

500 nM of AβOs for 2 h)

Protected neurons
from AβOs-induced
oxidative stress and

synapse damage

[77]

Hippocampal neuron
culture from rat
embryos (E18)

WJ-MSCs 6 × 108 particles
for 22 h

Co-culture
(With 500 nM of AβOs

for 2 h)

Protected neurons
from AβOs-induced
oxidative stress and

synapse damage

[78]

Cortical neurons culture
from C57BL/6 mice
embryos (E13–15)

ADSCs 0.05, 0.1, 1 µg/mL
for 24 h

Co-culture
(Pretreatment with

20 µM of AβOs)

Alleviated
AβOs-induced

neuronal toxicity
[70]

In vivo models

APP/PS1 mice

No age indicate BM-MSCs
100 µg/5 µL,

once per 2 days for
2 weeks

i.c.v.

Improved cognitive
behavior, rescued

impairment of CA1
synaptic transmission

and LTP

[79]
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Table 1. Cont.

Model Source of EVs Protocol Administration Route Reported Effects Ref.

7-month-old UC-MSC
30 µg/100 µL,
every 2 weeks,

four times
i.v.

Reduced Aβ deposition,
improved cognitive behavior;

enhanced expression of IDE and
NEP; modulated the activation

of microglia

[85]

7-month-old PC-BM-MSCs
150 µg/80 µL,
biweekly for

4 months
i.v.

Improved cognitive behavior,
reduced Aβ deposition;

decreased proinflammatory
factors and increased

anti-inflammatory factors

[86]

7-month-old RVG-BM-
MSCs

5 × 1011

particles/100 µL,
monthly for

4 months

i.v.

Improved cognitive behavior,
reduced Aβ deposition, and

restored the levels of
inflammatory cytokines

[87]

5-month-old BM-MSCs 22.4 µg/4 µL i.c.v

Reduced Aβ deposition and the
amount of dystrophic neurons

in both the cortex
and hippocampus

[88]

9-month-old UC-MSC

2 mg/mL,
continuously at
0.25 µL/h for

14 days

i.c.v.

Reduced Aβ deposition,
improved cognitive behavior

and inhibited the inflammatory
and oxidative stress

[83]

7-month-old BM-MSCs
50µg/80µL, every

2 weeks for
16 weeks

i.v.

Reduced Aβ deposition,
promoted cognitive function

recovery and increased
NeuN expression

[89]

4-month-old
miRNA-22-

loaded mouse
ADSCs

100 µg/mL, every
7 days until

30 days
i.v.

Improved cognitive behavior,
inhibited the inflammatory

factors expression and reduced
the nerve cell damage

[90]

9-month-old ADSCs
1 mg/kg in 10 µL,
every two days for

2 weeks
IN

Ameliorated neurologic
damage in the whole brain

areas, increased neurogenesis,
reduced Aβ deposition and

decreased microglia activation

[70]

J20 mice

9-month-old WJ-MSCs
50 µg/100 µL,

once a week for
4 weeks

i.v.

Restored the expression of
neuronal memory/synaptic

plasticity-related genes,
improved brain glucose

metabolism and cognitive
function; inhibited astrocyte

and microglia activation

[71]

3 × Tg

7-month-old
Cytokine-

preconditioned
BM-MSCs

30µg/100 µL IN
Decreased microglia activation

and increased dendritic
spine density

[80]
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Table 1. Cont.

Model Source of EVs Protocol Administration Route Reported Effects Ref.

5 × FAD

2-month-old BM-MSCs

20 × 108 particles
in 5 µL every
4 days until

4 months of age

IN

Improved cognitive behavior,
reduced Aβ deposition in the
hippocampus and decreased
colocalization between GFAP

and Aβ plaques

[81]

1.5–2.5-month-old
5.0–6.5-month-old hNSC

2.25 × 107 particles
in 50 µL

hibernation buffer
i.v. via RO injection

Restored fear extinction
memory consolidation and

reduced anxiety related
behaviors; reduced the dense
core Aβ plaque number and

microglial activation; restored
synaptophysin in the AD brain

and homeostatic levels of
pro-inflammatory cytokines

[91]

Administration of
Aβ peptides into
the dentate gyrus
of C57BL/6 mice

8-week-old

MSCs
(No source
indicated)

10 µg/2 µL of PBS i.c.v. into the dentate
gyrus

Promoted neurogenesis in the
SVZ and alleviated

Aβ1–42-induced cognitive
impairment

[76]

Administration of
Aβ peptides into

the lateral ventricle
of SD rats

(7-week-old)

BM-MSCs
isolated from

SD rats

30 µg/100 µL,
once a month for

2 months

i.c.v. into the lateral
ventricle

Reduced Aβ deposition,
reduced the levels of

inflammatory cytokines,
elevated NEP and IDE

expressions, increased neuron
viability and reduced

apoptosis rate

[92]

Abbreviation: ADSC, adipose tissue-derived mesenchymal stem cells; WJ-MSCs, Wharton’s jelly mesenchymal stem cells; UC-MSC,
umbilical cord mesenchymal stem cells; BM-MSCs, bone marrow-derived mesenchymal stem cells; PC, hypoxia-preconditioned; NSCs,
neuronal stem cells; SD rat, Sprague–Dawley rat; RVG, rabies viral glycoprotein; i.v., intravenous injection; i.c.v, intracerebroventricular
injection; IN, intranasal; RO, retro-orbital sinus; AβOs, Aβ oligomers; LTP, long-term potentiation; SVZ, subventricular zone; GFAP, glial
fibrillary acidic protein; NEP, neprilysin; IDE, insulin-degrading enzyme.

5. Therapeutic Mechanisms of MSC-Derived EVs Actions in AD

Accumulating studies have uncovered that the considerable therapeutic benefits of
MSC-derived EVs can be attributed to the ability to degrade Aβs, modulate immunity and
protect neurons in the brain (Figure 1). In this context, MSC-derived EVs are considered to
be ideal potential therapeutics for AD.

5.1. Aβ Degradation

The Aβ plaques are composed of Aβ peptides, a 40–42 amino acids proteolytic frag-
ment of amyloid precursor protein (APP) [93]. These Aβ peptides undergo an aggregation
process resulting in the formation of soluble oligomeric species and insoluble fibrillar
species, eventually ending with the deposition of plaques [94]. Numerous reports have
described that the excess accumulation might be of a result of a metabolic imbalance be-
tween the production and clearance of Aβs, thereby triggering synaptic deficits, neuronal
alterations and neurodegeneration [95–97]. In clearance systems of the brain, Aβ related
degradation clearance is contributed by different proteases, such as neprilysin (NEP),
matrix metalloproteinases (MMPs), and glutamate carboxypeptidase II [98,99]. Among
them, the critical role of NEP in AD has been intensively studied and thus regarded as
a potential target for the treatment of AD [100,101]. Moreover, the expression and ac-
tivity of NEP are significantly reduced in patients with AD [102]. Enzymatically active
NEP expressed in AD-MSC-derived EVs was suggested to decrease both extracellular
and intracellular Aβ levels in the N2a cells (a mouse neuroblastoma cell line) [82]. In our
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study, WJ-MSCs-derived EVs also expressed active NEP on their membranes by means of
Western blot and NEP-specific activity assay [71]. Furthermore, MSCs-derived EVs-treated
AD rodent models exhibited elevated NEP and IDE expressions along with decreased
Aβ depositions [85,92]. Taken together, these reports have demonstrated the potential of
MSCs-derived EVs in the treatment of AD and further reflect the feasibility to lower brain
Aβ levels by delivering NEP or other Aβ-degrading enzymes.

Figure 1. The illustration of potential mechanisms of MSC-derived EVs actions in AD. The therapeutic benefits of MSC-
derived EVs are attributed to (1) the ability to degrade Aβs by membrane-bound Aβ-degrading enzymes, such as NEP and
IDE; (2) the capability to regulate various cells in the brain including immunomodulation or neuroregeneration; (3) the
reprogramming of the molecular machinery in recipient cells via proteins, mRNAs, and miRNAs transferred by EVs.

5.2. Neuroprotection and Neuroregneration

Neuronal networks, astrocytes, microglia and oligodendrocytes contribute to a com-
plex cellular phase of AD evolving over decades. In view of the critical role of neurons
in CNS, dysfunction of the brain with AD is mediated by reduction in synaptic plasticity,
changes in homeostatic scaling and disruption of neuronal connectivity, which characterize
AD dementia [103]. The neuroprotection and neurogenesis contributed by MSC-derived
EVs have been demonstrated in vitro and in vivo as addressed above; some of them have
delineated the mechanisms of MSC-derived EVs actions. De Godoy et al. reported that
the catalase contained in MSC-derived EVs was responsible for neuroprotection from
AβOs-induced oxidative stress, and the capacity was checked by a membrane-permeant
specific catalase inhibitor [77]. Our study addressed that one potential mechanism of the
upregulation of neuronal memory/synaptic plasticity-related genes was in part due to the
epigenetic regulation of a class IIa histone deacetylase [71]. On the other hand, EVs isolated
from hypoxia preconditioned MSCs culture medium were found to increase the level of
miR-21 in the brain of treated AD mice. The replenishment of miR-21 restored the cognitive
deficits in AD mice, suggesting that miR-21a act as a regulator in this process [86]. Addition-
ally, in a rat model of traumatic brain injury, MSC-derived EVs transferred miR-133b into
astrocytes and neurons to enhance neurogenesis and improve functional recovery [104].
Thus, understanding the detailed mechanisms of MSC-derived EVs actions involved in
neuroprotection and neuroregneration is beneficial to enhance the therapeutic potential
in AD.

5.3. Immunomodulation

Increasing evidence suggests that AD pathogenesis is closely associated with the neu-
roinflammation, which might occur at early stage or mild cognitive impairment (MCI) even
before Aβ plaque formation [105,106]. MSC-based therapy has been widely conducted
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in various disease treatments based on their ability to limit tissue inflammation microen-
vironments through the release of immunomodulatory factors such as prostaglandin E2
(PGE2), hepatic growth factor (HGF), transforming growth factor-β (TGF-β), indolamine
2,3-dioxygenase-1 (IDO-1), interleukin-10 (IL-10) and nitric oxide [65]. In terms of MSC-
derived EVs, they acquire a lot of immunologically active molecules to regulate immune
cells and thus exert similar therapeutic effects to their parental MSCs [107]. As evidenced
by Harting and colleagues, MSCs exposed to TNF-α and IFN-γ generated EVs with a
distinctly different profile, including the protein and nucleic acid composition. These EVs
were found to partially alter the COX2/PGE2 pathway to enhance their anti-inflammatory
properties [108]. In the recent research, cytokine-preconditioned MSC-derived EVs were
intranasally administrated into AD mice and found to induce immunomodulatory and
neuroprotective effects, evidenced by the inhibition of microglia activation and an incre-
ment in the dendritic spine density [80]. Given that EVs isolated from cytokine-pretreated
MSCs exhibit more remarkable anti-inflammatory abilities than naïve EVs, it implies that
preconditioned MSC-derived EVs might be a better option in the treatment of AD or other
inflammatory diseases. It is necessary to compare the therapeutic effect on AD between
cytokine-preconditioned MSC-derived EVs and naïve MSC-derived EVs.

MSC-derived EVs can regulate enzyme activity to suppress inflammatory response.
Aβs-induce iNOS in glial cells and the subsequent release of high levels of nitric oxide
(NO) inhibit integrated mitochondrial respiration, resulting in cell death [109]. Wang et al.
demonstrated that BM-MSC-derived EVs not only reduced the expression of iNOS in
cultured primary neurons but also significantly alleviated the deficits of CA1 synaptic
transmission in APP/PS1 mice [79]. In a similar manner, BM-MSC-derived EVs were
able to decrease iNOS expression in a model of osteoarthritis [110]. Additionally, levels
of inflammatory cytokines, including IL-1β, IL-6 and TNF-α, were also decreased after
MSC-derived EVs treatment [80,92].

Plenty of studies mainly focus on the status of microglia regulated by MSC-derived
EVs. In line with other findings, our study also showed that MSC-derived EVs inhibited
astrocytes and microglia activation in the brain of AD mice, indicating that these effects
are attributed to immunomodulatory properties of EVs [70,71,81]. It should be noted that
neuronal networks, astrocytes microglia, oligodendrocytes and the vascular system all
contribute to a complex cellular phase of the disease. Once the cellular homeostasis is
no longer maintained, the clinical phase of AD is initiated [111]. MSC-based therapy is
considered to exert a dynamic homeostatic response that assists in tissue preservation,
as well as function recovery, as do the MSC-derived EVs [108,112]. Thus, the effect of
MSC-derived EVs on oligodendrocytes and vascular system involved in AD pathogenesis
is worthy of further investigation.

6. Clinical Trials of MSC-Derived EVs in AD

The concept of using MSC-derived EVs as a regenerative medicine for neurological
diseases or conditions is relatively new. Despite that the results obtained from cell and
mouse models of AD have suggested that MSC-derived EVs therapies are promising,
few clinical studies for AD currently registered in the National Institutes of Health clinical
trials database (Table 2). To date, only one clinical trial has been approved to explore the
safety and effectiveness of MSC-derived EVs in patients with mild to moderate dementia
(NCT04388982). The researchers plan to give patients three doses of ADSC-derived EVs
(5, 10 and 20 µg) via nasal drip, twice a week for 12 weeks. Besides the measurements
of liver or kidney function and treatment-related adverse events for safety, the cognitive
function tests, quality of life, MRI and PET neuroimaging, and Aβ levels in serum and CSF
are further evaluated by schedule. As a good example, the clinical trial of MSC-derived EVs
therapy for acute ischemic stroke is implemented based on the finding of EVs mediated
delivery of miR-124 inducing neurogenesis after ischemia (NCT03384433) and this study
will be completed in December 2021 [113]. Of note, emerging clinical trials using MSC-
derived EVs in the treatment of COVID-19 or viral pneumonia are planned for the next
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two years (NCT04276987, NCT04491240, NCT04657458, NCT04493242), which emphasizes
the role of immunomodulation and regeneration of MSC-derived EVs in various diseases.

Table 2. Clinical trials using MSC-derived EVs in therapies.

Disease/Condition Clinical Trial Number Title Sponsor

“Exosome” used in title

Alzheimer’s disease NCT04388982

The Safety and the Efficacy Evaluation of
Allogenic Adipose MSC-Exos in Patients

with Alzheimer’s Disease (Adipose
MSC-derived exosomes)

Ruijin Hospital

Cerebrovascular disorders NCT03384433
Allogenic Mesenchymal Stem Cell Derived

Exosome in Patients with Acute
Ischemic Stroke

Isfahan University of
Medical Sciences

Acute respiratory
distress syndrome (ARDS) NCT04602104

A Clinical Study of Mesenchymal Stem Cell
Exosomes Nebulizer for the

Treatment of ARDS
Ruijin Hospital

Coronavirus NCT04276987
A Pilot Clinical Study on Inhalation of

Mesenchymal Stem Cells Exosomes Treating
Severe Novel Coronavirus Pneumonia

Ruijin Hospital

Healthy NCT04313647
A Tolerance Clinical Study on Aerosol
Inhalation of Mesenchymal Stem Cells

Exosomes in Healthy Volunteers
Ruijin Hospital

Macular holes NCT03437759 MSC-Exos Promote Healing of MHs Tianjin Medical University

Multiple organ failure NCT04356300

Exosome of Mesenchymal Stem Cells for
Multiple Organ Dysfuntion Syndrome After

Surgical Repaire of Acute Type A
Aortic Dissection

Fujian Medical University

Dry eye NCT04213248
Effect of UMSCs Derived Exosomes on Dry

Eye in Patients With cGVHD
(Umbilical MSCs derived exosomes)

Zhongshan Ophthalmic
Center, Sun Yat-sen

University

Drug-resistant NCT04544215
A Clinical Study of Mesenchymal Progenitor
Cell Exosomes Nebulizer for the Treatment

of Pulmonary Infection
Ruijin Hospital

Sepsis
Critical illness NCT04850469 Study of MSC-Exo on the Therapy for

Intensively Ill Children
Children’s Hospital of

Fudan University

Periodontitis NCT04270006

Effect of Adipose Derived Stem Cells
Exosomes as an Adjunctive Therapy to

Scaling and Root Planning in the Treatment
of Periodontitis: A Human Clinical Trial
(Adipose derived stem cells exosomes)

Beni-Suef University

COVID-19
SARS-CoV-2 Pneumonia NCT04491240

Evaluation of Safety and Efficiency of
Method of Exosome Inhalation in

SARS-CoV-2 Associated Pneumonia

State-Financed Health
Facility “Samara Regional
Medical Center Dinasty”

“Extracellular vesicle” used in title

Bronchopulmonary Dysplasia NCT03857841
A Safety Study of IV Stem Cell derived

Extracellular Vesicles (UNEX-42) in Preterm
Neonates at High Risk for BPD

United Therapeutics

Dystrophic epidermolysis
Bullosa NCT04173650 MSC Evs in Dystrophic

Epidermolysis Bullosa Aegle Therapeutics

COVID-19
ARDS

Hypoxia
Cytokine storm

NCT04657458

Expanded Access Protocol on Bone Marrow
Mesenchymal Stem Cell Derived

Extracellular Vesicle Infusion Treatment for
Patients With COVID-19 Associated ARDS

(BM-MSC derived EVs)

Direct Biologics, LLC

COVID-19
ARDS

Pneumonia, Viral
NCT04493242

Extracellular Vesicle Infusion Treatment for
COVID-19 Associated ARDS

(BM-MSC derived EVs)
Direct Biologics, LLC

According to clinicaltrials.gov as of 30 August 2021.

clinicaltrials.gov
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Although using MSC-derived EVs as cell-free therapy is promising, several major
issues should be addressed. The safety and doses for clinical use are certainly priorities;
other issues include the establishment of the optimal cell culture conditions, the protocol
for isolation, characterization and quantification of MSC-derived EVs, and therapeutic
schedules [10,114].

7. Strategies for EV-Based Therapies

As nanoscale biomaterials, various molecules including proteins, RNAs, DNAs, hy-
drophilic and hydrophobic drugs have been successfully loaded into EVs [115]. The effect
induced by these powerful agents in MSC-derived EVs are considered to reflect the “hom-
ing” ability of their parental cells, therefore, several studies have demonstrated that the
lesions can attract MSC-derived EVs to their vicinity [116,117]. Generally, EVs tend to
accumulate in organs that belong to mononuclear phagocyte system (MPS) such as liver
and spleen, whereas the uptake by other organs is much lower and the clear-up is much
faster [118–120]. In the brain, the accumulation of MSC-derived EVs is hardly found due to
the BBB. Although MSC-derived EVs with the property of homing should pass through the
tight junction in a pathological state expectedly, it is still necessary to enhance the efficacy
by increasing the uptake and accumulation in the brain. Several approaches have been
investigated to broaden or enhance their therapeutic properties through the modification
of EVs and the route of administration applied (Table 3).

EVs can be chemically or biologically modified to insert membrane-binding species
(e.g., peptides) into the membrane surface and package materials (e.g., drug, miRNA or
small interfering RNA) into their vesicle interior [121–123]. To improve the brain targeting
ability of MSC-derived EVs, Alvarez-Erviti et al. engineered dendritic cells to express
Lamp2b, a membrane protein in EVs, fused to the neuron-specific rabies viral glycoprotein
(RVG) peptide [69]. These RVG-tagged EVs were additionally loaded with exogenous
siRNA specific to β-secretase 1 (BACE1), a key protease implicated in Aβ production.
These modified EVs manifested therapeutic potential in AD therapy, demonstrated by
the delivery of siRNA specifically to neurons, microglia, oligodendrocytes in the brain
and the strong knockdown of BACE1. In a similar manner, this strategy has been applied
for guiding MSC-derived EVs to the brain to alleviate AD pathology and deliver certain
nucleic acids (DNA aptamer or shRNA specific to α-synuclein) to reduce the α-synuclein
aggregates in the PD model [87,124,125]. The utilization of RGD peptides led the EVs to
pass the BBB and target the ischemic lesion; meanwhile, the curcumin loaded in EVs was
successfully delivered to repress the inflammatory response and cellular apoptosis [126].
Furthermore, EVs can be used as a theranostic agent, combining both targeted imaging
and therapeutic effects. Jia et al. loaded superparamagnetic iron oxide nanoparticles
(SPIONs) and curcumin into the EVs conjugated with neuropilin-1-targeted peptide and
subsequently found the diagnostic and therapeutic effects on glioma were significantly
enhanced [127].

To our knowledge, robust neurogenesis was observed after MSC-derived EVs treat-
ment primarily via intracerebroventricular injection or intranasal route in comparison with
that via systemic route, suggesting that the amount of MSC-derived EVs accumulated in
brain reflects the therapeutic efficacy [70,76,80,81,128]. In addition to intranasal delivery,
it is feasible to induce permeability by a temporary disruption of the BBB, such as pulsed
focused ultrasound (pFUS). Bai et al. reported that pFUS increased the homing of blood
serum-derived EVs to the brain by 4.45-fold and thus the glioma growth significantly was
suppressed [129]. Noteworthy, the increased homing to the brain might be attributed to
the use of different sources of EVs that certainly express different homing factors on the
surface membrane. For example, macrophage-derived EVs were characterized to express
the integrin lymphocyte function-associated antigen 1 (LFA-1) and thus was able to interact
with intercellular adhesion molecule 1 (ICAM-1), upregulated in inflammation, to promote
the uptake of EVs in the BBB cells [130].
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Table 3. A summary of strategies that enhance the efficacy of EV-based therapy for brain diseases.

Strategies Cargo-Loaded
Molecules Source of EVs Disease Reported Effects Ref.

Peptide-tagged

Rabies viral
glycoprotein (RVG)

Nucleic acid
siRNAs specific to

BACE1
Dendritic cells AD

Significant knockdown of
BACE1 in mRNA and

protein levels
[69]

Naturally production BM-MSCs AD

Improved cognitive
behavior, reduced

Aβ deposition, and
restored the levels of

inflammatory cytokines

[87]

miR-124 Mouse BM-MSCs Ischemic stroke Promoted cortical
neurogenesis [113]

siRNAs specific to
α-synuclein Dendritic cells PD

Decreased α-synuclein
aggregation and

rescued the loss of
dopaminergic neurons

[124]

DNA aptamers that
recognize the α-synuclein HEK293T PD

Reduced α-synuclein
aggregation and improved

motor impairments
[125]

RGD peptides Drug loaded
Curcumin Mouse BM-MSCs Ischemic stroke

Strong suppression of the
inflammatory response and

cellular apoptosis
[126]

T7 peptide
Antisense miRNA

oligonucleotides against
miR-21 (AMO-21)

HEK293T Glioblastoma Reduction of tumor sizes [131]

NRP-1-targeted
RGE peptide

Superparamagnetic iron
oxide nanoparticles

(SPIONs) and curcumin

Raw264.7 cells, a
macrophage cell line Glioma

Delayed tumor recurrence,
extended the survival of

tumor-bearing
mice and had

targeted-imaging ability

[127]

Low-density
lipoprotein (LDL)

Drug loaded
Methotrexate

L929, a mouse
fibroblastic cell line Glioma Prolonged the median

survival period [132]

Natural production

LFA-1 expression BDNF Macrophage PD
Enhanced delivery and

accumulation in
inflamed brain

[130]

Unidentified Paclitaxel and
doxorubicin

Brain endothelial
cells Brain cancer Induction of cytotoxic

effects against brain cancer [133]

Administration route

IN Unmodified ADSCs AD Decreased AβOs-induced
neuronal toxicity [70,81]

Cytokine-stimulated BM-MSCs AD

Increased dendritic spine
density, reduced Aβ

deposition and
microglia activation

[80]

Drug loaded
Curcumin,

JSI-124, a Stat3 inhibitor
EL-4, a T cell line

Inflammation-
mediated disease
models, including
LPS-induced brain

inflammation model,
EAE model and a

GL26 brain
tumor model

Selectively taken up by
microglia and

induced apoptosis
[134]

Disruption of BBB
by pFUS Unmodified Blood serum Glioma Suppressed glioma growth

with no obvious side effects [129]

Abbreviation: IN, intranasal; NRP-1, Neuropilin-1; LFA-1, lymphocyte function-associated antigen 1; ICAM-1, intercellular adhesion
molecule 1; pFUS, pulsed focused ultrasound; BACE 1, Beta-secretase 1; Stat3, signal transducer and activator of transcription 3; BDNF,
brain-derived neurotrophic factor; LPS, lipopolysaccharide; EAE, experimental autoimmune encephalitis.
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Therefore, based on the achievements of abovementioned studies in brain diseases,
MSC-derived EVs not only can be applied as active drug themselves but also can be used
as a drug delivery vehicle after exogenously re-engineering and modification.

8. Conclusions and Prospects

Taken together, MSC-derived EVs have a lot of potential as therapeutics for AD. In ad-
dition to the therapeutic effects, similar to their parent cells, concomitantly they have a
lower risk of teratoma formation and the capacity to cross BBB. Currently, the comprehen-
sive works regarding nomenclature, classification and characterization of EVs and their
subgroups should be urgently integrated to accelerate research on EVs. The safety, toxicity
and doses also need to be further investigated to support the development from bench to
bedside. For the EVs’ industry, the address of issues such as the robustness of manufac-
ture, uniformity of production, and scale-up of processes are their priority. In addition,
the strategies in accelerating EVs delivery and the action mechanisms should be further
clarified. The underlying cellular and molecular mechanisms could stimulate studies
about the understanding of pathogenesis and the employment of therapeutic strategies
for AD. Especially, the importance of non-neuronal cells in the brain affected by AD is
unneglectable. Despite that the utilization of MSC-derived EVs in the treatment of AD is
promising, the clinical translation remains a huge challenge and further studies should
be carried out to tackle the complicated pathology and promiscuous signaling pathway
of AD.
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