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Abstract: In this study, polyacrylonitrile (PAN_P) nanofibers (NFs) were fabricated by electrospinning.
The PAN_P NFs membrane was functionalized with diethylenetriamine to prepare a functionalized
polyacrylonitrile (PAN_F) NFs membrane. TiO2 nanoparticles (NPs) synthesized in the laboratory
were anchored to the surface of the PAN_F NFs membrane by electrospray to prepare a TiO2 NPs
coated NFs membrane (PAN_Coa). A second TiO2/PAN_P composite membrane (PAN_Co) was
prepared by embedding TiO2 NPs into the PAN_P NFs by electrospinning. The membranes were
characterized by microscopic, spectroscopic and X-ray techniques. Scanning electron micrographs
(SEM) revealed smooth morphologies for PAN_P and PAN_F NFs membranes and a dense cloud
of TiO2 NPs on the surface of PAN_Coa NFs membrane. The attenuated total reflectance in the
infrared (ATR-IR) proved the addition of the new amine functionality to the chemical structure
of PAN. Transmission electron microscope images (TEM) revealed spherical TiO2 NPs with sizes
between 18 and 32 nm. X-ray powder diffraction (XRD) patterns and energy dispersive X-ray
spectroscopy (EDX) confirmed the existence of the anatase phase of TiO2. Surface profilometry da-ta
showed increased surface roughness for the PAN_F and PAN_Coa NFs membranes. The adsorption-
desorption isotherms and hysteresis loops for all NFs membranes followed the IV -isotherm and the
H3 -hysteresis loop, corresponding to mesoporous and slit pores, respectively. The photocatalytic
activities of PAN_Coa and PAN_Co NFs membranes against methyl orange dye degradation were
evaluated and compared with those of bare TiO2 NPs.The higher photocatalytic activity of PAN_Coa
membrane (92%, 20 ppm) compared to (PAN_Co) NFs membrane (41.64%, 20 ppm) and bare TiO2

(49.60%, 20 ppm) was attributed to the synergy between adsorption, lower band gap, high surface
roughness and surface area.

Keywords: electrospinning; modified nanofibers; electrospray; TiO2/PAN composite; TiO2 coated
PAN modified nanofibers; photocatalysis; band gap

1. Introduction

Hazardous industrial and agrochemical wastes left untreated pose an immediate
threat to drinking water [1]. Therefore, to avoid water scarcity due to water pollution, the
development of simple, efficient and affordable methods to remove water contaminants
(such as dyes, phenols and pesticides) is crucial [2,3]. Photocatalysis, adsorption, filtration
and sedimentation are some of the techniques used to remove biological and chemical pol-
lutants from wastewater [3,4]. Photocatalysis has attracted a lot of interest from researchers
as it is a simple, efficient, cost-effective and environmentally friendly process that allows
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complete degradation of various organic pollutants [5,6]. Moreover, photocatalysis is a
sustainable method with strong oxidation capacity and lower energy consumption than
other clean processes [7–9]. The most studied and active catalysts for the degradation of
industrial and agrochemical wastes are titanium dioxide (TiO2) NPs, zinc oxide (ZnO)
NPs and tungsten oxide (WO3) NPs. However, TiO2 NPs are widely used photocatalysts
for environmental remediation: due to their chemical inertness, low cost, non-toxicity,
photosensitivity and high oxidizing ability under ultraviolet (UV) light [2,10–12]. How-
ever, since photocatalysts are often in the form of particles, they tend to aggregate, which
makes their removal after the photodegradation reaction a time-consuming and expensive
process. In recent years, many articles have reported the combination of inorganic-organic
hybrid membranes with good compatibility [13,14]. Studies also address the dispersion of
photocatalysts on a large surface area membrane support material to improve their activity
and recycling after use [15,16]. Polymer NFs membranes could be used for this purpose.
The intensity of research on TiO2/NFs is increasing with each day. In the literature, there
are very few research reports on this topic so far [17,18]. In some of the selected reports,
the authors have used different strategies to demonstrate the feasibility of their studies.
For example, Nasr et al. investigated the photocatalytic activity of BN–Ag/TiO2 composite
NFs. They observed good photocatalytic activity for their composite, compared to pristine
TiO2 NPs [19]. Zhuojun et al. prepared the network Au/TiO2 NFs for the photocatalysis
of the rhodamine B (RB) dye. They observed a faster degradation of rhodamine B (RB)
under UV-visible and natural light [20]. Jing et al. prepared mesoporous TiO2 electrospun
NFs. They showed that the TiO2 anatase phase, prepared at 500◦C, was very efficient
against rhodamine B (RB) [21]. Studying the results published in the literature, it can be
assumed that the combination of photolytically active ceramics and polymeric NFs offers
polymer NFs will have advantages in both membrane filtration and photocatalysis of the
industrial and agrochemical wastes. This strategy enables the development of hybrid NFs
membranes with improved removal efficiency and selectivity, leading to a novel water
treatment solution [22,23]. NFs membranes are prepared by various methods. These
methods include drawing, phase separation, template synthesis and self-assembly [24].
However, electrospinning is considered as a flexible and successful technique to fabricate
polymeric NFs with diameters ranging from nanometers to sub-micrometer [17,25]. Elec-
trospinning is important compared to other methods because it is inexpensive, convenient
to use, control of the process and environmental sustainability [26]. PAN: a well-known
polymer with excellent stability, environmental friendliness, economic profitability and
easy spinnability and functionalization has recently received much attention compared to
other polymers [27]. This is because PAN is a versatile polymer: it can be used to proudce
ultrafiltration membranes, hollow fibers for reverse osmosis, fibers for textiles and oxidized
PAN fibers. Electrospun PAN NFs can serve as a potential support for catalytic materials.
Moreover, since electrospun PAN-based NFs have low density and are flexible, they can
easily float on a liquid or fixed at the desired location in reactors [28,29].

The present work aims to develop a novel membrane for the treatment of dye-
contaminated wastewater. Two approaches were followed in this study. First, a PAN_P NFs
membrane was prepared by electrospinning. The PAN_P NFs membrane was functional-
ized to a PAN_F NFs membrane. The PAN_F NFs membrane was then electrospray with
TiO2 NPs to produce a PAN_Coa NFs membrane. Second, TiO2 NPs were embedded in the
fibers during electrospinning to produce a PAN_Co NFs membrane. The PAN_Coa and
PAN_Co NFs membranes were used to study their photocatalysis behavior toward methyl
orange. To the best of our knowledge, no report of a similar study has been published in
the literature.

2. Materials and Methods
2.1. Materials

PAN (average molecular weight (Mw) 150,000), dimethylformamide (DMF(C3H7NO)),
diethylenetriamine (DETA (C4H13N3)), methyl orange ((MO) C14H14N3NaO3S), Titanium
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(IV)-n-butoxide (Ti(C4H9O)4), glacial acetic acid (CH3COOH), sulfuric acid (H2SO4) and
sodium hydroxide (NaOH) were supplied by Sigma-Aldrich (St. Louis, MO, USA). Sodium
carbonate anhydrous (Na2CO3) was purchased from Paneac Quimica S.L.U. (Barcelona,
Spain). NANON-01A electrospinning machine (MECC, Fukuoka, Japan) was used to
prepare NFs membranes and electrospray TiO2 NPs onto the surface of the PAN_F NFs
membrane. Distilled water was used as a solvent to prepare dye solutions. All the chemicals
were of analytical grade and were used without further purification. Locally prepared
Teflon frames were used to fix the edges of the membrane during treatment.

2.2. Preparation of the PAN_P NFs Membrane

A 10 wt% PAN solution was prepared by dissolving 1 g PAN powder in 10 mL
DMF. The solution was agitated for 24 h at room temperature on a magnetic stirrer. The
resulting homogeneous PAN solution was transferred to a 5 mL plastic syringe. The plastic
syringe was placed in a controlled flow pump. PAN_P NFs membrane was prepared by
electrospinning at optimized conditions (distance between needle and collector 150 mm,
needle diameter 0.8 mm, applied voltage 20 kV, solution flow rate 0.8 mL/h and the
cylindrical collector speed 100 revolutions per minute (rpm). The NFs membrane was
peeled off the aluminum foil and dried in a vacuum oven at 50 ◦C and −0.1 MPa before
being stored for grafting. The thickness of the membrane was ~0.123 ± 0.5 mm.

2.3. Preparation of PAN_F NFs Membrane

PAN_F NFs membrane was synthesized by immersing PAN_P NFs membrane in a
250-mL beaker containing 10 mL DETA solution (2.3 M in ethanol) and 100 mL sodium
carbonate (0.83 g in distilled water). The mixture was agitated on a water bath at 90 ◦C for
5 h. After completion of the reaction, the PAN_F NFs membrane was washed several times
with distilled water. After washing, the NFs membrane was dried in an oven at 60 ◦C until
constant weight and stored for characterization. The conversion of the nitrile group to
DETA was calculated as follows.

Cn =
W1 − W0

W0

M0

M1
× 100 (1)

where Cn is the % of the nitrile group in PAN that is converted to the amine group, W0 is
the weight of PAN_P NFs membrane before the reaction, W1 is the weight of PAN_F NFs
membrane after the reaction. M1 is the MW of DETA (103.17 g/mol), and M0 is the MW of
acrylonitrile monomer (53.06 g/mol).

2.4. Synthesis of TiO2

TiO2 NPs were synthesized by the chemical precipitation method. Titanium (IV)-n-
butoxide (Ti (OBu) 4) (26 mL), ethanol (53 mL) and glacial acetic acid (43 mL) were added to
a reaction container. The mixture was stirred at 55 ◦C for 1 h. After mixing, 4 mL of sulfuric
acid was added dropwise to the mixture using a dropper. The reaction was stopped after
gel formation. The residual solvent in the gel was extracted by centrifuging the mixture at
3500 rpm. The gel was dried at 100 ◦C for 2 h before calcination at 600 ◦C for 6 h to produce
the nanocrystalline anatase TiO2 NPs.

2.5. Preparation of PAN_Coa NFs Membrane

The suspension of 2 wt% TiO2 NPs was prepared by dispersing 0.2 mg TiO2 NPs
in 10 mL DMF. The suspension was ultrasonicated (VCX500, Sonics and Material, Inc.,
Newtown, CT, USA) for 10 min. The suspension was added to a 20 mL plastic syringe. The
syringe was placed in a controlled flow pump. The suspension was then electrosprayed
onto the surface of the PAN_F NFs membrane at an applied voltage of 20 kV. The flow rate
of the suspension was 0.8 mL/h. The distance between the collector and the needle tip was
150 mm. The schematic (Scheme 1, Step 3) shows the prepraration, synthesis and coating
of the PAN_Coa NFs membrane.
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Scheme 1. Preparation of PAN_P NFs membrane by electrospinning (Step 1), synthesis of PAN_F NFs membrane (Step 2),
coating of PAN_F NFs membrane with TiO2 by electrospray (Step 3).

2.6. Preparation of PAN_Co NFs Membrane

TiO2/PAN composite solutions were prepared by adding different wt% TiO2 NPs
(1, 2, 4 wt%) to 10 wt% PAN solutions. Each solution was Ultra sonicated (VCX500, Sonics
and Material, INC., Newtown, CT, USA) for 10 min to make the dispersion of TiO2 NPs
homogeneous in the PAN solution. Each solution was added to a 20 mL plastic syringe.
The syringe was placed in the controlled flow pump. Electrospinning of each solution was
carried out at previously optimized conditions (applied voltage 20 kV, solution flow rate
0.8 mL/h and distance between collector and needle tip 150 mm) The scheme (Scheme 2)
shows the preparation of the composite membrane by electrospinning.

2.7. Characterization

The surface morphologies of PAN_P, PAN_F, PAN_Coa and PAN_Co NFs membranes
were studied using an SEM (JSM-2100F, Jeol, Tokyo, Japan). The membrane samples
for the SEM study were attached to holders with carbon tape. The holders were placed
in the platinum sputtering machine and the samples were coated with platinum. The
surface morphology of the platinum-coated membrane samples was then examined using
SEM under high vacuum. An ATR spectrometer (Nicolet iN10 FTIR microscope with a
germanium microtip, Thermo Scientific, Winsford, UK,) was used to study the ART-FTIR
spectra of PAN_P, PAN_F, PAN_Coa and PAN_ Co NFs membranes in the spectral range
900–2300 cm−1. TEM (JEM-2100F, Jeol, Tokyo, Japan) images were also used to examine the
shape, size and crystallinity of the green-produced TiO2 NPs. The EDX of the TiO2 NPs was
also taken using the EDX available with the TEM. The surface area, pore size, pore-volume
and total area in the pores of PAN_P, PAN_F, PAN_Coa and PAN_Co NFs membranes were
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determined using Micromeritics (Gemini VII, 2390 Surface Area and Porosity, Norcross,
GA, USA). Prior to analysis, the sample was degassed at 150 ◦C for 120 min under N2 flow
to remove moisture. The N2 adsorption-desorption isotherm was examined at STP in the
relative pressure range of 0.0 to 0.1. XRD data were recorded at 40 kV and 30 mA with
Cu Kα radiation (1.540 Å). The XRD diffractograms were recorded in the 2θ◦ range from
20◦ to 80◦ (Bruker AXS D8 Advance XRD, Billerica, MA, USA). Surface roughness was
determined using a contour GT-K 3D optical microscope (Bruker®, Billerica, MA, USA),
non-contact 3D surface metrology and interferometry. Vertical scanning interferometry
was used to measure the samples, with a 5× Michelson magnification lens, a field of view
of 1.0 × 1.0 mm2, a Gaussian regression filter, a scan speed of 1× and a threshold of 4.
The samples were placed on the stage and manually adjusted to obtain an image on the
screen. The microscope is controlled by Vision 64 software (Bruker®, Billerica, MA, USA),
which handles instrument settings, data analysis and graphical output. Vertical scanning
interferometry, which uses a broadband (usually white) light source, was used for the
measurement. It is efficient for measuring objects with rough surfaces as well as objects
with adjacent pixel-height differences greater than 135 nm. Each sample was scanned
at three different locations with three different intervals and then averaged to obtain the
roughness value (Ra).
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membrane.

2.8. Degradation of Methyl Orange

PAN_Coa and PAN_Co NFs membranes and bare TiO NPs were used to degrade
methyl orange dye. Different weights PAN_Coa (20, 40, 60 mg) of the membranes were
added separately to 100 mL of the 10, 20 and 30 ppm methyl orange dye solutions. From
the results, the optimum dose of membrane photocatalysts and the concentration of the dye
were determined. 60 mg PAN_Co (containing 1, 2 and 4 wt% TiO2 NPs) membranes and
bare TiO2 NPs were added separately to a photocatalyst reactor containing 20 ppm methyl
orange solution. The catalytic material and methyl orange were stirred in the dark for
1 h to establish adsorption-desorption equilibrium. During the photocatalytic reaction, an
incandescent bulb (450 W) served as the light source. The concentration of methyl orange
in the solution was determined every 30 min using a UV/visible spectrophotometer. The
kinetics of the photocatalytic oxidation of the methyl orange on PAN_Coa and PAN_Co
NFs membranes followed pseudo-first-order kinetics (Equation (2)). The degradation of
methyl orange is calculated according to Equation (3) [23].
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ln
(

A0

At

)
= kK = Kappt (2)

Degradation = 1 − At

A0
(3)

where A0 is the initial UV/visible spectrum of methyl orange, At is the UV/visible spectrum
of methyl orange at illumination time t, k is the reaction rate constant and K is the absorption
coefficient of the reactant. A plot of ln(A0/At) versus time represents a straight line whose
slope corresponds to the apparent first-order rate constant Kapp [30].

3. Results and Discussion
3.1. SEM Analysis

Figure 1 shows SEM micrographs of PAN_P, PAN_F, PAN_Coa and PAN_ Co NFs
membranes. The PAN_P NFs membrane had a smooth and uniform morphology. Simi-
larly, no cracks or degradation of NFs were observed in the PAN_F NFs membrane. The
consistent physical texture of the membranes is an indication that the fibers resisted mor-
phological deformation during chemical treatment. The conversion of nitrile to DETA
calculated using Equation (1) was ~50% [31]. Embedding TiO2 NPs in NFs (PAN_Co)
during electrospinning without changing the spinning conditions resulted in elongated
beaded fibers that appeared as dark clouds in the SEM micrographs. The appearance of
these dark clouds is attributed to an increase in PAN solution viscosity due to the addition
of TiO2 NPs. TiO2 NPs in a polymer matrix lead to physical crosslinking interactions be-
tween the polymer molecules. The Ti-O bond in TiO2 is polar. Hydrogen bonding between
the oxygen of TiO2 and the polar hydrogen of the polymer molecules has been reported
in the literature [32]. Crosslinking increases the viscosity of the solution. The increase in
solution viscosity beyond a threshold value not only hinders the flow of solution through
the needle tip, but also reduces the evaporation of the solvent during the flight of fibers
between the needle tip and the collector. These two factors lead to the formation of beaded
fibers [33]. Electrospraying of TiO2 NPs onto the surface of PAN_F membrane resulted
in dense clouds of TiO2 NPs on the membrane [34]. The 3D surface plots, which can be
seen in the inset of the micrographs show a significant change in surface roughness. The
measurements and the values of the surface roughness of the membranes are discussed in
the surface roughness section.

3.2. TiO2 NPs Morphology and Phase

The TiO2 NPs synthesized by the homogeneous precipitation method at 600 ◦C were
characterized by TEM, EDX and XRD (Figure 2). TEM images showed that the average
particle size varied between 18 and 35 nm. Moreover, the particles were spherical and
of good crystallinity. The HRTEM images showed well-resolved lattice features and
distinct lattice fringes with no structural deviations from the anatase phase. The spacing
of ~0.35 nm between adjacent lattice fringes of the anatase plane (101), confirms the XRD
results discussed below [3]. The 3D surface plots of TiO2 NPs were prepared from the
HRTEM images and highlighted with green-blue color lines. Examination of the 3D
surface plots revealed that calcination had no effect on the long range atomic organization.
Therefore, the surfaces appeared atomically flat. EDX spectroscopy for elemental analysis
performed using EDX coupled with TEM, confirmed "Ti" as the major element. The XRD
diffraction pattern confirmed the anatase phase of the TiO2 NPs. The diffraction pattern of
anatase phase was found in crystal planes (101), (004), (200), (105), (211), (204), (116), (220),
(215) and (303) crystal planes (JCPDS-21-1272). The anatase phase of TiO2 NPs reported in
the literature has been shown to be photoactive and useful for wastewater treatment and
purification [35,36].
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3.3. ATR-FITR Study

The ATR-IR spectra of PAN_P, PAN_F, PAN_Coa and PAN_Co NFs NFs membranes
are shown in Figure 3. The spectrum of PAN_P NFs showed bands at 1739 cm−1 (C=O
stretching), 1000–1475 cm−1 (C–N and C–H stretching) and 2246 cm−1; –C≡N stretching,
i.e., acrylonitrile unit [37,38]. During the synthesis of PAN_F NFs membrane, the intensity
of the band decreased at 2246 cm−1. The decrease in the intensity of the band at 2246 cm−1

during the synthesis of PAN_F NFs membrane indicates that –C≡N was the reaction site.
The band at 1596 cm−1 in the spectrum of PAN_F NFs membrane, which increased in
intensity, was assigned to the N-H in the amine group [39–41]. The decrease in band
intensity at 2246 cm−1 and the increase in band intensity at 1596 cm−1 in the spectrum of
PAN_F NFs membrane both show the conversion of the –C≡N group to an amine group.
The bands for PAN_Coa and PAN_Co NFs NFs membrane showed no change in their
positions and intensities.
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3.4. XRD of Membranes

XRD was used to study the diffraction patterns and crystallinity of PAN_P, PAN_F,
PAN_Coa and PAN_ Co NFs membranes (Figure 4a). The XRD diffraction patterns of
PAN_P, PAN_F, PAN_Co and PAN_Coa NFs membranes showed a broad amorphous halo
at 2θ≈ 30◦ and a crystalline peak at 2θ≈ 17◦corresponding to the (110) and (100) crystalline
planes [41,42] The diffraction patterns of PAN_Co and PAN_Coa NFs membranes also
showed the diffraction pattern for the anatase phase of TiO2. The diffraction pattern
of TiO2 NPs in the anatase phase is explained in Section 3.2. The appearance of the
diffraction pattern of TiO2 NPs in the anatase phase in the diffraction patterns of PAN_Co
and PAN_Coa NFs membranes confirms the presence of TiO2 in these. The % crystallinity
of TiO2 NPs, PAN_P, PAN_F, PAN_Co and PAN-Coa NFs membrane was calculated using
Origin 18 software and Equation (4) (Figure 4b). The % crystallinity showed a variation
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in the crystallinity of these samples. The crystallinity of TiO2 was 79.50%. A similar
crystallinity for the anatase phase of TiO2 NPs is also reported in the literature [39–43].

Crystallinity (%) = Acrystal/Atotal × 100 (4)
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PAN_P NFs membrane had a slightly higher % crystallinity than PAN_F and PAN_Co
NFs membranes. The higher % crystallinity of PAN_P NFs membrane was attributed to
the robust arrangement of polymer chains and their packing into a crystalline structure.
PAN_F and PAN_Co NFs membranes showed a significant decrease in % crystallinities.
The decrease in % crystallinity of the PAN_F NFs membrane is attributed to the disrup-
tion of polymer chain packing due to the incorporation of amine functionality into the
chemical structure of PAN. A similar effect can also be attributed to the decrease in the
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% crystallinity of PAN_Co NFs membrane due to the addition of TiO2 NP [32,44,45]. In
addition to the above reasons, we can also conclude that the crystallization in PAN_F and
PAN_Co NFs membranes was inhibited by varying the solvent evaporation and polymer
solidification [42]. The % crystallinities of the PAN_Coa and PAN_P NFs membranes
were comparable. The significant improvement in the % crystallinity for PAN_Coa NFs
membrane can be attributed to the balancing effect of the crystallinities of PAN_F NFs
membranes and the coated TiO2 NPs.

3.5. Surface Roughness

The surface profilometry results for PAN_P, PAN_F, PAN_Co and PAN_Coa NFs
membranes are shown in Figure 5. The roughness of the membrane surfaces varied as a
function of treatment and composition. PAN_P NFs membrane had the lowest surface
roughness, while PAN_Coa NFs membrane had the highest, followed by PAN_F and
PAN-Co NFs membranes. The highest surface roughness of PAN_Coa NFs membranes
is attributed to the synergy of chemical treatment and random deposition of TiO2 NPs
on the membrane surface. Similar results indicating increased surface roughness of the
membrane due to the chemical modification of the membrane and the random deposition
of TiO2 NPs on the membrane surface have been reported in the literature [46,47]. The
increased surface roughness of the PAN_F and PAN_Co NFs membranes compared to the
PAN_P NFs membrane could be explained by the chemical modification of the membrane
((PAN_F) as mentioned earlier) and the random dispersion of TiO2 NPs in the polymer
matrix(PAN_Co) [32].
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3.6. Porosity and Surface Areas

BET was used to evaluate the surface area and porosity of PAN_P, PAN_F, PAN_Co and
PAN_Coa NFs membranes using nitrogen gas as the adsorbate. BET is the most commonly
used technique to evaluate porous materials with meso(diameter range 2–50 nm) and micro
(diameter 2 nm) pore dimensions. Figure 6 shows the adsorption-desorption isotherms
and hysteresis for PAN_P, PAN_F, PAN_Co and PAN_Coa NFs membranes. The porosity
of a material is defined: as the ratio of the volume of pores and voids to the total volume of
the material. The International Union of Pure and Applied Chemistry (IUPAC) convention
is a standard used to classify isotherms and hysteresis to represent the associated different
pore sizes and pore channels in materials There are six types of isotherms described in the
literature that characterize the porosity of materials. These are type I (microporous), II,
III and VI (non-porous or macroporous), and IV and V (mesoporous) (Figure 6) [48–50].



Membranes 2021, 11, 785 11 of 18

Similarly, IUPAC has also divided hysteresis into four types. Hysteresis characterizes the
pore channels in materials. These are H1 (cylindrical- pore channels or agglomerates of
generally homogeneous spheres), H2 ( bottleneck-type pores or constrictions), H3 (slit
pores) and H4 (smaller slit pores)(Figure 6) [51]. The adsorption-desorption isotherms and
hysteresis for PAN_P, PAN_F, PAN_Co and PAN_Coa NFs membranes were identical and
classified as type IV(mesopores) and H3 (slit-like pores). Similar results for the pores of NFs
membranes have been published in the literature [52,53]. The surface area of the PAN_F
NFs membrane showed no significant change by chemical treatment. However, the pore
volume, pore size and total area in the pore increased (Table 1). These changes in the PAN_F
NFs membrane are attributed to the relaxation of polymer chains after chemical treatment.
The surface area, the pore volume, pore size and total area in the pore for PAN_Co, and
PAN_Coa NFs membranes increased (Table 1). This increase for PAN_Co NFs membrane
could be attributed to the addition of the TiO2 NPs and for PAN_Coa NFs membrane could
be attributed to the synergy of the chemical treatment and TiO2 NPs coating.
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Table 1. Surface area and porosity of the NFs membranes.

Samples Name
(NFs)

Surface Area
(m2/g)

Pore Volume
(cm3/g) Pore Size (A◦) Total Area in

Pores (m2/g)

PAN 15.94 0.05 128.71 8.16
PAN Co 17.28 0.07 167.81 10.12
PAN-f 15.22 0.06 155.23 8.76

PAN Coa 22.70 0.08 157.37 8.80

3.7. Photocatalytic Study onto Synthesized Membranes

TiO2: a semiconductor material that has recently been the subject of intense study
because of its low cost, photocatalytic activity, biocompatibility, nontoxicity and good
stability. It occurs in a variety of forms. These include rutile, brookite and anatase. The
band gap energy of rutile TiO2 is 3.03 eV and anatase is 3.2 eV. These band gaps correspond
to a wavelength in the near UV range (380–387 nm). Thus, they can be excited in the
UV range.

It is already known that the values of the band gap are influenced by the synthesis
process, the doping of the crystalline network with other materials (ceramic or carbon)
and the crystal size of the semiconductor. However, there are very few studies on the
combination of ceramic particles with polymers for photocatalysis. Coating the surface
of NFs membrane with TiO2 NPs by electrospray has hardly been explored [54]. Figure 7
shows the photocatalytic abilities of the PAN_Coa NFs membrane to degrade a methyl
orange dye solution using a UV light source. Blank experiments conducted with the PAN_P
NFs membrane resulted in negligible dye degradation. However, studies conducted with
the PAN_Coa NFs membrane and in the absence of a light source showed slight adsorption
of the dye on the NFs membrane. The adsorption was attributed to the presence of the
amine group in the membrane. The optimization of the dosage of PAN_Coa NFs membrane
is shown in Figure 7a–f. Figure 8a–f shows the optimization of the concentration of methyl
orange. As shown in Figure 7a–f, increasing the dose of PAN_Coa NFs membrane from
20 mg to 60 mg resulted in maximum dye degradation (10 ppm, 99.59% (Figure 7f). Using
60 mg dose and changing methyl orange concentration from 10 ppm to 30 ppm (Figure 8a–f)
showed that increasing the concentration decreased the photocatalyst membrane activity
(Figure 8f). The optimum methyl orange concentration with maximum photocatalyst
activity was 20 ppm. Therefore, 60 mg dosage and 20 ppm were selected as the optimum
values for further experiments.

The comparison of PAN_Coa with PAN_ Co NFs membranes at constant dosage
(60 mg), dye concentration (20 ppm) and loading of TiO2 NPs (4 wt%) is shown in
Figures 8b,f and 9c,f. From the figures, it can be seen that PAN_Coa NFs membrane
outperformed PAN_Co NFs membrane in terms of photocatalytic activity. PAN_Coa and
PAN_Co NFs membranes had a degradation efficiency of 92.68 and 41.64%, respectively
(Figures 8d,f and 9d,f). Rate constant for TiO2 coated DETA-f-PAN NFs membrane with
variation in wt.% of TiO2/PAN membrane was shown in Figure S1. Rate constant for TiO2
coated DETA-f-PAN NFs membrane with variation in membrane concen-tration of methyl
orange was depicted in Figure S2. However, increasing the amount of TiO2 NPs from
1 wt% to 4 wt% in the PAN_ Co showed a slight increase in dye degradation from 19.37 to
41.64% (Figure 9f). The comparison of the above results with the photocatalytic activity
of the bare TiO2 NPs (using the optimized photocatalyst dosage and dye concentration)
showed that the photocatalytic activity of the bare TiO2 NPs (49.60%) was comparable
only to the PAN_Co NFs membrane (Figures S3 and S4). Therefore, it was concluded that
the PAN_Coa NFs membrane not only exhibited better photocatalytic activity than the
PAN_Co NFs membrane, but also that of the bare TiO2 NPs [55]. The better photocat-
alytic activity of the PAN_Coa NFs membrane can be attributed to several factors. These
factors include the adsorption of methyl orange on the PAN_Coa NFs membrane due to
amine functionality [56], the lower band gap energy (~2.25 eV for PAN_Coa and 3.2 eV
for PAN_C) (Figure 10), which is due to the interaction of TiO2 NPs with the nitrogen of



Membranes 2021, 11, 785 13 of 18

amine in PAN_Coa NFs membrane; and the higher surface roughness of the membrane (Ra
13.14 µm), which promotes the photocatalytic activity by reflecting the photons, resulting
in higher photon absorption [57,58].
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4. Conclusions

In this work, the PAN_P NFs membrane was prepared by electrospinning. The PAN_P
NFs membrane was functionalized to the PAN_F NFs membrane. TiO2 NPs were anchored
on the PAN_F NFs membrane to prepare PAN_Coa. A composite membrane (PAN_Co)
was also prepared by embedding TiO2 NPs into the NFs. The PAN_P, PAN_F, PAN_Coa
and PAN_Co NFs membranes were characterized by standard microscopic, spectroscopic
and X-ray techniques prior to their application for the photocatalytic degradation of methyl
orange. SEM micrograph showed a smooth morphology for the PAN_P NFs membrane;
the morphology remained the same after functionalization (PAN_F). SEM micrograph
also showed a dense cloud of TiO2 NPs on the surface for PAN_Coa. The incorporation
of amine functional group into the chemical structure of PAN was confirmed by ATR-IR
spectra. TEM images showed that the particle size of TiO2 NPs varied between 18 and
32 nm. The particles tended to be spherical and highly crystalline. The anatase phase of
the TiO2 NPs was confirmed by the XRD pattern. EDX and XRD confirmed the presence
of TiO2 NPs in PAN_Coa and PAN_Co NFs membranes. Surface profilometry showed
that surface roughness increased with functionalization and coating. The BET analysis
showed that all NFs membranes had comparable isotherms and hystereses. According to
IUPAC, the isotherms and hystereses were categorized as type IV and H3, corresponding
to mesopores and slit pores. The higher photocatalytic activity of PAN_Coa NFs membrane
(92%, 20 ppm) compared to PAN_Co NFs membrane (41.64%) and bare TiO2 NPs (49.60%)
was attributed to the synergy in adsorption, smaller band gap, high surface roughness and
surface area.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/membranes11100785/s1, Figure S1: Rate constant for TiO2 coated DETA-f-PAN NFs membrane
with variation in wt.% of TiO2/PAN membrane Keeping the concentration of methyl orange 20 ppm
and dose 60 mg, Figure S2: Rate constant for TiO2 coated DETA-f-PAN NFs membrane with vari-
ation in membrane concentration of methyl orange keeping the dose constant (60 mg), Figure S3.
Spectrophotometer spectra of the 20 ppm methyl orange at 0 min and 240 min. TiO2 NPs dose was
60 mg, Figure S4. Comparative data of the bare TiO2 NPs, PAN_Co and PAN_Coa at 20 ppm methyl
orange and 60 mg dose.
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