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Abstract: For the preparation of long-term stable ionic liquid/Ag nanoparticles composites,
we compared the separation performance of 1-butyl-3-methylimidazolium tetrafluoroborate
(BMIM+BF4

−)/Ag, and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM+PF6
−)/Ag

composite membranes with time. Separation performance showed that the BMIM+PF6
−/Ag metal

composite membrane was more stable than the BMIM+BF4
−/Ag metal composite membrane for more

than 160 h. These differences in long-term stability in BMIM+PF6
−/Ag and BMIM+BF4

−/Ag metal
composite membranes was attributable to the phase separation between ionic liquid and nanoparticles.
In particular, the phase separation between ionic liquid and silver nanoparticles was not observed
with time in hydrophobic ionic liquid BMIM+PF6

−, confirmed by X-ray photoelectron spectroscopy.
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1. Introduction

Silver ions can be reversibly reacted with olefin molecules, forming a silver-olefin complex [1–9].
Thus, the silver polymer electrolytes have been investigated as an alternative method in the distillation
process, requiring high cost and space [2,4]. For example, the facilitated transport of propylene and
ethylene through silver polymer electrolyte membranes consisting of AgBF4 or AgCF3SO3 dissolved
in either poly(2-ethyl-2-oxazoline) (POZ), poly(N-vinyl pyrrolidone) (PVP) and poly(ethylene oxide)
(PEO) showed the separation performance of 50 (propylene/propane) in selectivity and 12 GPU ((1 GPU
= 1 × 10−6 cm3 (STP)/(cm2 s cmHg)) in permeance [5]. However, since these metal ion-based systems
could be poisoned by C2H2, CO, and H2S, silver ions were limited in application to the industry
field [10]. Furthermore, M. McKenna et al. reported that the sulfur-containing systems might be
tolerant to H2S and CO, but would react with H2 and C2H2 [11]. Therefore, the development of a new
olefin carrier for separation of propylene/propane is required.

Recently, our group reported that Ag nanoparticles polarized by electron acceptors such as
p-benzoquinone (p-BQ) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) could reversibly interact
with olefin molecules such as propylene and ethylene, resulting in the separation performance for
olefin/paraffin mixtures [12]. For example, when TCNQ was incorporated into PVP/Ag nanoparticle
composites, the selectivity and mixed-gas permeance reached 50 and 3.5 GPU, respectively, for more
than 130 h [12]. On the other hand, p-BQ was utilized into relatively flexible PEO matrix with Ag
nanoparticles, the mixed-gas selectivity was observed as 10 with 15 GPU for more than 240 h [13].
When PEBAX-1657/Ag nanoparticle composites with TCNQ were used as polymer membranes, they
showed separation performance such as selectivity of 12.7 and permeance of 10.2 GPU [14].

Furthermore, our group reported that ionic liquid also could induce partial positive charges on the
surface of silver nanoparticles, reacting reversibly with olefins such as propylene [15]. Such reversible
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interactions in ionic liquids were employed for facilitated olefin transport and membranes for separation
of olefin/paraffin mixtures [15]. These results suggest the new use for ionic liquids as polarizers for Ag
nanoparticles in facilitated olefin transport membranes with p-BQ. In particular, the strong interaction
between the counteranion of ionic liquid and silver nanoparticles caused the surface of the silver metal
to be positively charged and was expected to be utilized as liquid-state membranes for adsorbent
materials. Since the ionic liquids could play a role as matrix for the preparation of membranes due to
relatively high viscosity, they have been widely utilized in liquid-state membranes.

In this paper, we reported the stability of ionic liquid/Ag metal composite membrane and
suggested the stable membrane for facilitated olefin transport membrane as well as the long-term
stable condition for ionic liquids. In particular, the hydrophilic and hydrophobic ionic liquids such
as 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM+BF4

−), and 1-butyl-3-methylimidazolium
hexafluorophosphate (BMIM+PF6

−), respectively, were chosen and compared in viewpoint of the
interactions between Ag particles and ionic liquids (ILs).

2. Materials and Methods

2.1. Materials

Silver nanopowder (<100 nm, 99.5%) was purchased from Aldrich Chemical Co (St. Louis,
MO, USA). The ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM+BF4

−, 98%) and
1-butyl-3-methylimidazolium hexafluorophosphate (BMIM+PF6

−, 98%) were purchased from C-TRI
Co (Gyeonggi-do, Korea). All the chemicals were used as received.

2.2. Separation Performance

The ILs/Ag composite membranes were prepared by dispersing Ag nanopowder in ILs. The ILs’
weight was fixed at 1g and the amount of the Ag nanopowder was varied. For the fabrication of
the separation membranes, the mixed solution was coated onto polyester microporous membrane
supports (Osmonics Inc., Minnetonka, MN, USA, pore 0.1 µm) using an RK Control Coater (Model 101,
Control Coater RK Print-Coat instruments LTD, UK). The solution consisting of ionic liquid and silver
nanoparticles could be maintained as the coating layer as it was on the porous polymer support due to
its high viscosity. Gas flow rates or gas permeances were measured with a mass flow meter (MFM).
The unit of gas permeance is GPU, where 1 GPU = 1 × 10−6 cm3 (STP)/(cm2 sec cmHg). The mixed gas
(50:50 vol % propylene/propane mixture) separation properties of the ILs/Ag composite membranes
were evaluated using a gas chromatograph (Hewlett-Packard G1530A, Palo Alto, CA, USA) equipped
with a TCD detector and a unibead 2S 60/80 packed column.

2.3. Characterization

X-ray photoelectron spectroscopy (XPS) data were acquired using a Perkin-Elmer Physical
Electronics PHI 5400 X-ray photoelectron spectrometer (Waltham, Massachusetts, United States). This
system was equipped with a Mg X-ray source operated at 300 W (15 kV, 20 mA). The carbon (C 1s) line
at 285.0 eV was used as the reference in our determinations of the binding energies of the silver.

3. Results

3.1. Performance in Separation of Propylene/Propane Mixtures

The separation of propylene/propane mixtures using BMIM+BF4
− and BMIM+PF6

− membranes
was evaluated with varying concentrations of the silver nanoparticles. The BMIM+BF4

− and
BMIM+PF6

− membranes without silver nanoparticles exhibited low gas permeation and no separation
of the propylene/propane mixtures; mixed gas permeance is ca. 0.1 GPU (1 GPU = 1 × 10−6 cm3(STP)
cm−2 s−1cmHg−1) and the selectivity of propylene/propane is nearly unity. Figure 1 shows the
selectivity and total permeance of propylene over propane through BMIM+BF4

− and BMIM+PF6
−



Membranes 2020, 10, 191 3 of 8

membranes containing silver nanoparticles. The presence of silver nanoparticles in the BMIM+BF4
−

and BMIM+PF6
− membranes resulted in an increase in both the selectivity and the permeance. It was

thought that the interactions between the silver nanoparticle and the counteranion of the ionic liquid
would cause the silver nanoparticles to be partially polarized, resulting in the facilitated olefin transport.
The selectivity of propylene/propane and the mixed gas permeance in BMIM+BF4

−/Ag membrane
increased to 17 and 2.7 GPU, respectively. However, at weight ratios higher than 0.7, the propylene
permeance decreased with the increasing amount of silver metal, presumably due to the aggregation of
the nanoparticles and consequently the loss of the carrier activity. Furthermore, the aggregation of Ag
nanoparticles could play a role as barriers for gas transport, resulting in the decrease in gas permeance.
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Figure 1. Separation performance: (a) mixed gas selectivity and (b) total permeance of BMIM+BF4
−

and BMIM+PF6
− membranes with various weight ratios of silver nanoparticles.

On the other hand, for the BMIM+PF6
−/Ag membrane, the selectivity of propylene/propane and

the mixed gas permeance increased to 19 and 1.1 GPU, respectively, as shown in Table 1. Interestingly,
BMIM+PF6

−/Ag membrane showed the higher selectivity than BMIM+BF4
−/Ag membrane, even at a

low silver concentration. It was thought that the interaction between PF6
− and silver nanoparticle was

stronger than that between BF4
− and silver nanoparticle. Since the surface polarity of Ag nanoparticles

increased, the reversible interaction with olefin molecules was enhanced, resulting in the increase in
selectivity for propylene/propane mixtures. On the other hand, low permeance of BMIM+PF6

−/Ag
membrane was attributable to the hydrophobicity of BMIM+PF6

−, capturing the propylene and
propane molecules in ionic liquid. Furthermore, the viscosity of BMIM+BF4

− was 0.0325 Pa · s, while
that of BMIM+PF6

− was 0.05 Pa · s, as shown in Table 2. Higher viscosity of BMIM+PF6
− indicated the

relatively higher interactions between cations and counteranions, resulting in the diminishment of
mixed-gas permeance. Thus, the hydrophobic properties and higher viscosity played a role as factors
for low mixed-gas permeance.

The stability of BMIM+BF4
− and BMIM+PF6

−/Ag composite membranes was also tested by
measuring the separation performances of propylene/propane mixtures for up to 160 h. Figures 2 and 3
show the selectivity and mixed gas permeance with respect to propylene/propane of the BMIM+BF4

−

and BMIM+PF6
− membranes containing the silver nanoparticles, respectively. The weight ratio of

silver nanoparticles to ionic liquid was fixed at 1/0.7. The BMIM+BF4
−/Ag composite membrane

showed stability up to 100 h, but decreased after 100 h, possibly due to the particle aggregation in the
membrane. It was thought that these aggregation phenomena of Ag nanoparticles in BMIM+BF4

− was
attributable to the relatively weak interaction between the surface of the metal and the hydrophilic
ionic liquid since the utilized metal had hydrophobic properties.

On the other hand, the selectivity and the permeance of BMIM+PF6
−/Ag composite membrane

were nearly invariant for the duration of the experiment up to 160 h, which suggested that particles
aggregation did not happen. It was supposed that the interaction between the hydrophobic BMIM+PF6

−

and silver nanoparticles was stronger than that between the hydrophilic BMIM+BF4
− and silver
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nanoparticles. These favorable interactions between BMIM+BF4
− and silver nanoparticles caused

the metal to be maintained as non-aggregated state even under gas transport with time. From these
results, the hydrophobic properties in ionic liquid-based composite membranes were more desirable
for long-term stable membranes.

Table 1. Separation performance of BMIM+BF4
−/Ag and BMIM+PF6

−/Ag composite membranes.

Mixed-Gas Selectivity Permeance (GPU)

BMIM+BF4
−/Ag 17 2.7

BMIM+PF6
−/Ag 19 1.1

Table 2. Properties of BMIM+BF4
- and BMIM+PF6

-.

BMIM+BF4− BMIM+PF6−

Chemical structure
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Figure 2. Separation performance: (a) mixed gas selectivity and (b) total permeance of 1/0.7
BMIM+BF4

−/Ag membranes as a function of time (40 psig and 20 ◦C).

These experimental results suggest that the ionic liquids could cause a favorable interaction
between the silver particles and olefin, resulting in facilitated olefin transport and improved
separation performance for olefin/paraffin mixtures. In particular, the hydrophobic BMIM+PF6

−

ionic liquid was more desirable for the long-term stable membrane than hydrophilic BMIM+BF4
−, even

though BMIM+BF4
−/Ag membranes showed higher mixed-gas permeance. These stable separation

performances were related to the sustainable polarity of silver nanoparticles. Thus, the stability of
polarity in silver particles was characterized in the following sections in terms of the changes in binding
energy, as examined by spectroscopy.
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3.2. Change of Binding Energies

X-ray photoelectron spectroscopy (XPS) was used to observe the change in the chemical
environment with time around the silver nanoparticles in ionic liquid/Ag metal composite. It was well
known that the d5/2 orbital of Ag was observed at 368.26 eV and could be shifted by a change in electron
density in the metal [15]. Interestingly, the binding energy of the d5/2 orbital of the silver particle
in the 1/0.7 BMIM+BF4

−/Ag metal composite system increased gradually from 368.26 to 369.12 eV,
as shown in Figure 4. This indicated that the binding energy of the valence electrons in the silver atoms
increased due to the interactions between the silver atoms and BMIM+BF4

−, and that the surface of
the silver nanoparticles was partially positively charged [15]. These results indicate that the ionic
liquid could change the state of electron density in the surface of Ag metal, resulting in the positive
polarity on metal [15]. However, after 1 week, the binding energy of the d5/2 orbital of the silver
particle decreased from 369.12 to 368.56 eV due to the phase separation, resulting in the deterioration of
separation performance. As shown in Scheme 1, the Ag nanoparticles in the ionic liquid BMIM+BF4

−

were stabilized and positively polarized, showing the facilitated propylene transport. However, the Ag
nanoparticles were aggregated with time due to the relatively weak interaction between the surface of
the metal and the ionic liquid, resulting in poor long-term stability.Membranes 2020, 10, x FOR PEER REVIEW 6 of 8 
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Figure 4. Binding energy of Ag in 1/0.7 BMIM+BF4
−/Ag composites after preparation and after 1 week.
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Scheme 1. Ag nanoparticles in ionic liquid BMIMBF4 with time.

On the other hand, the binding energy of the d5/2 orbital of the silver particle in the 1/0.7
BMIM+PF6

−/Ag metal composite system increased gradually from 368.26 to 369.21 eV, as shown in
Figure 5. The increased binding energy of Ag metal indicated the positive polarity of surface, resulting
in the facilitated propylene transport. Surprisingly, the binding energy remained constant even after
1 week, indicating that the phase was not separated, as shown in Scheme 2, consistent with long-term
stable separation performance.

Therefore, it can be concluded that the hydrophobic ionic liquid was more desirable than
the hydrophilic ionic liquid for facilitated olefin transport membrane from the viewpoint of
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−/Ag composites after preparation and after 1 week.
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4. Conclusions

In summary, we succeeded in preparing for the long-term stable composites consisting of
BMIM+PF6

− and Ag metal for liquid-based membranes. BMIM+PF6
−/Ag nanocomposite membranes

showed long-term stability for more than 160 h, while the deterioration of separation performance in
BMIM+BF4

−/Ag nanocomposite membranes was observed. In fact, the binding energy of Ag metal in
BMIM+PF6

− remained constant even after 1 week due to a strong interaction between the surface of
Ag and ionic liquids. The separation performance and the XPS data indicated that the hydrophobic
BMIM+PF6

−/Ag metal composite membrane was more stable than hydrophilic BMIM+BF4
−/Ag metal

composite membrane, since the surface of silver metal was hydrophobic, resulting in the long-term
stable attraction between ionic liquid and surface of nanoparticles. From these results, we could
suggest the crucial factor for long-term stability in liquid-based membranes.
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