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Abstract: A novel anion exchange membrane was synthesized via crosslinking of the quaternized
polyepichlorohydrin (QPECH) by 1-(3-aminopropyl) imidazole grafted poly(arylene ether ketone)
(PAEK-API). While the QPECH provided an excellent ion conductive property, the rigid rod-structured
PAEK-API played a reinforcing role, along with providing the high conductivity associated with
the pendant API group. The chemical structure of QPECH/PAEK-API membranes was identified
by 1H nuclear magnetic resonace spectroscopy. A variety of membrane properties, such as anion
conductivity, water uptake, length swelling percentage, and thermal, mechanical and chemical
stability, were investigated. The QPECH/PAEK-API1 membrane showed quite high hydroxide ion
conductivity, from 0.022 S cm−1 (30 ◦C) to 0.033 S cm−1 (80 ◦C), and excellent mechanical strength,
associated with the low water uptake of less than 40%, even at 80 ◦C. Such high conductivity at
relatively low water uptake is attributed to the concentrated cationic groups, in a cross-linked
structure, facilitating feasible ion transport. Further, the QPECH/PAEK-API membranes showed
thermal stability up to 250 ◦C, and chemical stability for 30 days in a 4 NaOH solution, without
significant loss of ion exchange capacity.
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1. Introduction

Fuel cells (FC) are applied in many industrial fields, such as portable devices, vehicles and
distributed power generation systems, as a potential eco-friendly power source [1–4]. In the development
of polymer electrolyte membranes, anion exchange membranes (AEM) have recently drawn lots of
attention because they have many advantageous characteristics over proton exchange membranes
(PEM), as well as liquid electrolyte. For example, AEMs significantly reduce the carbonation and
leakage problems of liquid electrolyte [5,6]; AEMs reduce fuel crossover more effectively than PEMs,
because of their anion transfer direction opposite to the fuel [7–9]; AEMFC can accommodate much
cheaper catalysts, such as cobalt, silver and nickel, than PEMFC, where platinum is usually used [10,11].
Furthermore, AEMFC exhibits fast fuel oxidation reactions in a high pH medium [12–19].

There has recently been synthesis of a variety of anion exchange membranes [2], based
on polyetherketone, quaternized poly(aryl ether oxadiazole), poly(aryl ether oxadiazole) and
others [16–18,20–22]. Although many attractive properties of the membrane were reported, some
weaknesses were also pointed out, including low polymerization reaction yield, low anion conductivity,
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and low mechanical strength [23,24]. Recently, great attention has been paid to composite
membrane systems containing reinforcing materials to improve the tensile strength of the polymer
electrolytes [25,26]. These composite membranes, however, still often show a weakness associated
with incompatibility between the polymer matrix and the supporting materials.

Among a variety of anion exchange groups [6], the quaternary ammonium is a well-established
group typically applied in numerous AEMs. When the quaternary ammonium group is introduced
to the polymer electrolyte membrane, many toxic and volatile reactants, such as trimethylamine
and triethylamine, are occasionally released during the chloromethylation or quaternization process.
Further, as aliphatic quaternary ammonium groups often cause the degradation of polymer chains via
Hoffmann elimination and SN2 substitution reactions, this can result in the serious mechanical failure
of the membranes after long-term utilization.

Polyepichlorohydrin (PECH) is a commercially available, cost competitive, high molecular weight
polymer material. The highly concentrated pendant chloromethyl groups in PECH are quite attractive
for their ability to establish high anion conductivity by a simple quaternization reaction, without
external chloromethylation. When the pristine quaternized PECH (QPECH) is prepared as a membrane,
however, it illustrates too-weak mechanical strength in a water environment, and thus it cannot sustain
its role as a membrane throughout long-term operation. On the other hand, 1-(3-aminopropyl) imidazole
grafted poly(arylene ether ketone) (PAEK-API) has shown good thermal, mechanical and chemical
stability under fuel cell operation conditions in the previous works [21,22]. The critical requirement
of PAEK-API membrane is the improvement of its conductivity. As its molecular structure contains
carboxyl acid in pendant sites, it can be chemically cross-linked with chloromethyl groups of PECH,
and thus the final crosslinked membrane structure may provide not only good thermal, mechanical and
chemical stability, but also high anion conductivity. In this study, we used API functional groups, rather
than well-known quaternary ammonium groups, for the ion conductive group, as API is expected
to show higher anion conductivity and chemical stability in a high pH environment than quaternary
ammonium groups, because of the π-conjugated structure of the imidazolium ring.

2. Experiment

2.1. Materials

Polyepicholorohydrin (PECH), 4,4-bis(4-hydroxyphenyl)-valeric acid, potassium carbonate (K2CO3),
N,N′-dicyclohexylcarbodiimide (DCC), N-hydroxysuccinimide (NHS) and methyl iodide (CH3I) were
purchased from Aldrich Chemical Company (Milwaukee, WI, USA). 4,4′-Difluorobenzophenone,
dimethylsulfoxide (DMSO), N,N-dimethylacetamide (DMAc), tetrahydrofuran (THF), 1-(3-aminopropyl)
imidazole (API) and 1-methylimidazole were purchased from Tokyo Chemical Industry (Japan).
Toluene, isopropanol and methanol were purchased from Samchun Chemical Company (Korea), and
hydrochloric acid was from Duksan Chemical Company (Korea).

2.2. Preparation of Anion Exchange Membrane

2.2.1. Synthesis of PAEK-API Precursors

Poly(arylene ether ketone) with pendant -COOH group (PAEK-COOH) was firstly synthesized
from 4,4-bis(4-hydroxyphenyl)-valeric acid and 4,4′-difluorobenzophenone in a DMSO and toluene
mixture, in the presence of K2CO3 [27]. Biproducts were removed from the reaction between
4,4-bis(4-hydroxyphenyl)-valeric acid (0.01 mol) and K2CO3 (0.025 mol) at 145 ◦C for 4 h, followed by
the step-growth polycondensation reaction with 4,4′-difluorobenzophenone (0.01 mol) at 150 ◦C for
12 h, and then at 168 ◦C for 24 h. The synthesized polymer was dissolved in HCl and THF mixture
before precipitation in isopropanol. The final product, PAEK-COOH, was washed several times with
isopropanol and distilled (DI) water, and then dried in a vacuum oven at 60 ◦C for 24 h.
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PAEK-NHS was an intermediate precursor produced from PAEK–COOH. NHS (3.879 mmol) and
DCC (3.879 mmol) were added into PAEK-COOH (3.23 mmol) solution in DMF (15 mL) at 1.2:1 molar
ratio. The NHS substitution reaction was conducted under continuous stirring at room temperature
for 12 h, and then at 40 ◦C for 12 h. After the PAEK-NHS solid product was obtained by precipitation
in isopropanol, it was consecutively washed with isopropanol and methanol several times, before
drying in a vacuum oven at 40 ◦C for 24 h. To prepare API grafted PAEK (PAEK-API), PAEK-NHS
(0.01 mol) was dissolved in 20 mL DMAc under stirring for 5 h. After API (0.012 mol) was added
to the PAEK-NHS solution in the molar ratio of 1.2:1, the solution was stirred for 3 h. The resulting
solution was dropped into IPA for precipitation. The PAEK-API product was washed three times with
isopropanol and then dried in an oven at 60 ◦C overnight. The synthetic scheme of PAEK-API is shown
in Scheme 1.
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Scheme 1. Synthetic pathway of PAEK-API precursors.

2.2.2. Preparation of QPECH/PAEK-API Membranes

QPECH/PAEK-API was synthesized by formation of crosslinks between the API groups of PAEK
and the chloromethyl groups of PECH. Firstly, PAEK-API and PECH were separately dissolved in 10 mL
DMSO, in the different molar ratios of PECH/PAEK-API of 5.8, 3.8, and 2.9. Two solutions were mixed
and stirred with a magnetic bar until the homogeneous solution was obtained. 1-Methylimidazole
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was added into each solution for quaternization with chloromethyl groups with a PECH backbone,
which would remain after the crosslinking reaction. The reaction proceeded at 100 ◦C overnight after
the solution was poured on glass petri dishes. After crosslinking, the products were dried at 60 ◦C
for 12 h in atmosphere, and then at 85 ◦C for 24 h under vacuum. After the membranes were peeled
off from the petri dishes, they were immersed in 1 M NaOH aqueous solution for alkalization for
24 h. The membranes were then washed with distilled water a few times and then immersed in
water for storage. The resulting membranes were homogeneous and transparent. Scheme 2 shows
the synthesis procedure of the QPECH/PAEK-API. In this study, three types of QPECH/PAEK-APIs
were synthesized with different molar ratios: 5.8 (PECH/PAEK-API1), 3.8 (QPECH/PAEK-API2) and
2.9 (QPECH/PAEK-API3).
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2.3. Characterization

2.3.1. Chemical Structure Analysis

1H nuclear magnetic resonance (1H NMR, Varian Unity INOVA 500 MHz, Varian, Palo Alto,
CA, USA) spectrometer was employed to analyze the chemical structure of PAEK, PAEK-NHS
and PAEK-API. For this measurement, the samples were dissolved in DMSO-d6 solvent with a
tetramethylsilane internal standard. Gel permeation chromatography (GPC, Agilent 1100S, Santa Clara,
CA, USA) was employed to measure the number and weight average molecular weights of PAEK-API.
In this measurement, the solvent was THF, and the feed flow rate of injected solution was 1 µL/min−1.
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2.3.2. Ion Exchange Capacity (IEC)

The membrane samples in –OH form were washed with water and dried to measure weight,
Wd (in gram), before being immersed in a HCl solution under an N2 gas environment for ionic exchange
to Cl form. The back titration was conducted using NaOH solution with phenolphthalein indicator.
The IEC (mequiv g−1) values of membranes were calculated from Equation (1):

EC =
M1V1−M2V2

Wd
(1)

Here, M1 (mol mL−1) and V1 (mL) are the molar concentration and volume of the HCl solution,
and M2 and V2 are those of the NaOH solution, respectively.

2.3.3. Anion Conductivity

The membranes were immersed in water and then cut into 3 cm (length) × 1 cm (width) × ~100 µm
(thickness) dimension to measure anion conductivity. The sample was placed in the 4-probe cell
(BEKKTECH, USA) and the in-plane anion conductivity was measured by alternating current (AC)
impedance spectroscopy (Zahner IM6e, Germany) at the frequency range from 1 Hz to 1 MHz, at 5 mV,
under 100 % relative humidity. The bulk resistance of the membrane was directly obtained from the
impedance curve, and the hydroxide ion conductivity of the membrane was determined from the
resistance using Equation (2):

σ =
L

Z W T
(2)

Here, σ is the hydroxide ion conductivity of the membrane in S/cm, L is the distance in the direction
of the ion flow between the measurement probes in cm, Z is the bulk resistance of the membrane in
ohm, W is the width of the membrane in cm, and T is the thickness of the membrane in cm.

2.3.4. Water Uptake and Length Swelling Percentage

The membrane sample (3 cm × 1 cm) was completely dried at 80 ◦C for 24 h in a vacuum oven to
measure its dry weight, Wd. Then, the dry membrane sample was soaked in DI water until equilibrium
uptake at different temperatures. When the sample weight was invariant, the membrane sample was
removed from the water and its surface was quickly wiped with tissue to measure its wet weight Ws.
The water uptake was calculated from Equation (3):

% Water uptake =
Ws−Wd

Wd
×100 (3)

Furthermore, the length swelling percentage was calculated from Equation (4):

Length swelling percentage =
Ls−Ld

Ld
(4)

where Ls is the length of the wet sample and Ld is the length of the dry sample.

2.3.5. Ion Cluster Dimension

The average dimension of the ionic clusters, d, in the membranes was investigated using small
angle X-ray scattering (SAXS) spectroscopy (SAXSess, Anton Paar GmbH, Austria). The membrane of
the dimension 20 mm × 3 mm was immersed in DI water at room temperature. The membrane sample
was placed inside the SAXS instrument with X-ray synchrotron radiation (λ = 0.154 nm). The operation
was running for 30 min while the imaging plate was recording the signal of the exposing X-ray. The
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reader (Cyclone Plus, Perkin Elmer, Waltham, MA, USA) converted the image of the plate into digital
data. The average ionic cluster dimension, d, was calculated from Equation (5):

d =
2π
q

(5)

where q (nm) is the scattering vector.

2.3.6. Thermal, Mechanical, and Chemical Stability

A thermogravimetric analyzer (TGA, Seiko Exstar 6000, Japan) was used to investigate the thermal
stability of the QPECH/PAEK-API membranes. The dry membrane sample was thermally scanned at
10 ◦C/min−1 from 30 ◦C to 550 ◦C under a nitrogen atmosphere.

The samples were prepared into 4 cm × 1 cm dimension. The samples were soaked in water
overnight at room temperature until equilibrium, before measuring the mechanical properties. After
the sample surface was blotted dry with a soft tissue, the tensile property of the sample was measured
by a universal tensile machine (UTM model 5565, Lloyd, Fareham, UK) with a load of 250 N.

Several pieces of QPECH/PAEK-API alkaline membranes (1 cm × 3 cm) were immersed in 4
M NaOH solution for a month at 60 ◦C. Each sample was taken out of the solution to be washed
with water every week. After drying, the IEC value was measured by the method mentioned above.
Four IEC values for each QPECH/PAEK-API membrane over a month were collected for their chemical
stability analysis in alkaline solution.

3. Results and Discussion

3.1. Chemical Structure Analysis

PAEK-API was synthesized before crosslinking with PECH. The weight average molecular weight
of PAEK-COOH was 6.68 × 104 g/mol from GPC analysis. PAEK-NHS, an intermediate product,
was produced by modification of PAEK-COOH for feasible conversion to PAEK-API. One part of the
chloromethyl groups of PECH played a role in the crosslinking reaction with the imidazolium groups
of PAEK-API, while the remaining chloromethyl groups of PECH were reacted with 1-methylimidazole
for quarternization. 1H NMR spectra of the three samples of PAEK-COOH, PAEK-NHS and PAEK-API
are shown in Figure 1. In Figure 1, the protons of the benzene rings of the PAEK backbone led to
NMR signals at 7.05, 7.26, and 7.75 ppm. A characteristic proton signal from -COOH appeared at
12 ppm in the PAEK-COOH spectrum (Figure 1a), but it completely disappeared in the PAEK-NHS
spectrum (Figure 1b). This result confirmed that all -COOH pendant groups in PAEK-COOH were
entirely converted to –NHS groups, with the appearance of a new signal at 2.77 ppm in Figure 1b.
In Figure 1c, the NMR spectrum of PAEK-API did not show any NHS signal at 2.77 ppm. Instead,
there were new proton signals at 7.79, 7.56, 6.83, 4.07, 2.96 and 2.33 ppm from the API group.

The QPECH/PAEK-API cross-linked membrane was totally different in physical appearance from
the QPECH and PAEK-API blend membrane, simply obtained by mixing PAEK-API and QPECH
solutions. In Figure 2a,b, while the blend membrane is opaque, the cross-linked one is obviously
transparent. This difference was caused by the compatibility difference between the PAEK-API
and QPECH molecules in the blend and cross-linked structures. In blend system, the two polymer
micro-phases were separated, but in the cross-linked system, the crosslinking via quaternized imidazole
reaction created the homogeneous phase between them. The cross-linked structure was also confirmed
by solubility. When the blend and cross-linked samples were separately immersed in DMAc solvent,
the blend membrane was immediately dissolved, but the cross-linked one was insoluble in it. In this
study, three types of QPECH/PAEK-API cross-linked membranes were synthesized, according to the
molar ratio of QPECH to PAEK-API mentioned in Section 2.2.2.
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3.2. Ion Exchange Capacity (IEC)

The back titration was carried out to measure the IEC values of three QPECH/PAEK-API membrane
samples, and the results are shown in Table 1. As the crosslinking density increases (more PAEK-API
molecules are involved in crosslinking), the fraction of free imidazolium groups decreases, and thus
the IEC of the membranes decreases. From QPECH/PAEK-API1 to QPECH/PAEK-API3, the IEC values
decrease from 1.25 to 0.78 mequiv g−1.

Table 1. IEC, water uptake, length swelling percentage and mechanical properties of QPECH/

PAEK-API membrane.

Samples IEC
(mequiv g−1)

Mechanical property
WU
(%)

SR
(%)

ET
(J mol−1 K−1)Stress

(MPa)
Elongation

(%)

QPECH/PAEK-API1 1.25 15.07 14.52 39.72 9.38 7.468

QPECH/PAEK-API2 0.97 12.01 20.23 27.43 8.43 11.202

QPECH/PAEK-API3 0.78 7.32 27.92 23.27 7.34 16.239

AHA - - - - - 34.203

WU and SR are water uptake and length swelling percentage of membranes at 40 ◦C, respectively. ET is the activation
energy of conductivity.

3.3. Water Uptake and Length Swelling Percentage

The water uptake and length swelling percentage of the QPECH/PAEK-API membranes at different
temperatures are shown in Figure 3a,b, respectively. The water uptake and length swelling percentage
of the QPECH/PAEK-API membranes increased with the increasing number of free imidazolium
groups in QPECH, because it decreased the crosslinking density, but increased the hydrophilicity of the
membrane. As the molar ratio of QPECH to PAEK-API increased from 2.9 to 5.8, the water uptake and
length swelling percentage increased, from 21.2% to 29.8% and from 7.34% to 9.38% at 30 ◦C, and from
24.9% to 39.8% and from 9.17% to 12.5% at 80 ◦C, respectively.
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3.4. Anion Conductivity

The ionic conductivity of AEMs is significantly affected by water uptake, as ions transport through
water channels. The hydroxide ion conductivity of QPECH/PAEK-API membranes was tested using
AC impedance spectroscopy. As this was performed in the frequency range of 1 Hz to 1 MHz,
the corresponding frequency of the conductivity shown in Figure 4 reached the maximum frequency
of 1 MHz.
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30 2.409 0.446 5.777 1.236 39.853 10.428 11.463 2.710 
40 2.110 0.410 5.085 1.101 27.611 7.204 9.211 2.200 
50 1.898 0.376 4.487 0.950 17.580 4.562 7.769 1.806 
60 1.748 0.353 3.894 0.756 11.165 2.631 6.375 1.507 
70 1.654 0.280 3.442 0.702 7.821 1.976 5.329 1.260 
80 1.604 0.178 3.117 0.687 6.547 1.512 4.648 0.986 

Zre (kΩm) and Zim (kΩm) are the real and imaginary parts of the complex algebra (bulk resistance), respectively. 
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Figure 4. Temperature dependence of anion conductivity of QPECH/PAEK-API membranes.

As the API group of PAEK-API was partially cross-linked the chloromethyl group of PECH,
the crosslinking density affected the conductivity of QPECH/PAEK-API membranes, because the
increase in cross-linking density reduces the molecular mobility of the polymer chains. Figure 4 shows
that the increasing number of free imidazolium groups (or decreasing crosslinking density) leads to
increase in anion conductivity. The conductivity increased from 0.0045 S/cm to 0.022 S/cm at 30 ◦C,
and from 0.0112 S/cm to 0.033 S/cm at 80 ◦C, as the molar ratio of QPECH to PAEK-API increased
from 2.9 to 5.8. When the temperature increased (from 30 ◦C to 80 ◦C), the free volume and polymer
molecular mobility increased, and thus the conductivity increased. The hydroxide ion conductivity of
an AHA commercial membrane (Astom Corporation, Japan) was also tested for comparison. The anion
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conductivity of the QPECH/PAEK-API2 and QPECH/PAEK-API1 membranes was higher than that of
the AHA membrane.

The activation energy of this conductivity was calculated from the linearized plot of the ln σ

vs. 1/T, and the resulting values are summarized in Table 1. The activation energy of the QPECH/

PAEK-API1 membrane is lower than that of the QPECH/PAEK-API3, because the presence of more
imidazolium groups provides easier ion transportation. Simultaneously, the higher crosslinking in
QPECH/PAEK-API3 increases the activation energy in association with the lower molecular mobility.

On the other hand, the corresponding real and imaginary parts of the Nyquist plots for the
calculation of the bulk resistance are shown in Table 2. The bulk resistance was calculated from

Z =

√
(Zre)

2 + (Zim)2.

Table 2. The real and imaginary parts of the bulk resistance of membranes at different temperature.

Temperature
(◦C)

QPECH/PAEK-API1 QPECH/PAEK-API2 QPECH/PAEK-API3 AHA Membranes

Zre −Zim Zre −Zim Zre −Zim Zre −Zim

30 2.409 0.446 5.777 1.236 39.853 10.428 11.463 2.710
40 2.110 0.410 5.085 1.101 27.611 7.204 9.211 2.200
50 1.898 0.376 4.487 0.950 17.580 4.562 7.769 1.806
60 1.748 0.353 3.894 0.756 11.165 2.631 6.375 1.507
70 1.654 0.280 3.442 0.702 7.821 1.976 5.329 1.260
80 1.604 0.178 3.117 0.687 6.547 1.512 4.648 0.986

Zre (kΩm) and Zim (kΩm) are the real and imaginary parts of the complex algebra (bulk resistance), respectively.

3.5. Mechanical Property

Figure 5 shows the stress vs. strain behavior for the hydrated QPECH/PAEK-API membranes.
The tensile strength of the QPECH/PAEK-API1 membrane, 7.37 MPa, was the lowest, while that of
QPECH/PAEK-API3 membrane, 15 MPa, was the highest. The elongation at break, however, was the
reverse (27.8% for QPECH/PAEK-API1 membrane, 13.7% for QPECH/PAEK-API3). These mechanical
properties of the hydrated membrane were strongly related with the water uptake shown in Figure 3.
As the concentration of PAEK-API increases, the crosslinking density increases too, but the number of
free anion-conducting groups decreases. Thus, this leads to a decrease of water uptake, but an increase
of tensile strength.Membranes 2020, 10, x FOR PEER REVIEW 11 of 15 
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3.6. Thermal Property

The thermal degradation behaviors of the three QPECH/PAEK-API membranes are shown in
Figure 6. The slight weight loss up to 250 ◦C was due to the evaporation of water bound to polymer
molecules even after drying. The QPECH and PAEK-API backbones started to degrade at 380 ◦C,
while the imidazolium groups did so at 250 ◦C. The weight loss behaviors of the membranes were
almost invariant with the composition of QPECH/PAEK-API. All of the synthesized QPECH/PAEK-API
membranes were thermally stable up to 250 ◦C, which is much higher than the practical operation
temperature of fuel cells.
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3.7. Ion Cluster Structure

Under full water uptake conditions, the imidazolium groups would form ionic clusters in the
membrane structure. QPECH/PAEK-API membranes were immersed in water before Small-angle X-ray
scattering (SAXS) measurement. The SAXS patterns of the hydrated QPECH/PAEK-API membranes
are shown in Figure 7, where the strongest characteristic peak is displayed at the scattering vector
(q) of 1.24 nm−1 (corresponding to the ionic cluster dimension of 4.91 nm). As the molar ratio of
QPECH to PAEK-API decreased from 5.8 to 2.9, the scattering peaks became broader. This was
because the membrane loses hydrophilicity with the decreasing density of free imidazolium groups.
The PAEK-COOH membrane does not show a clear SAXs peak because of the absence of the API
groups. This SAXS patterns are well correlated with the anion conductivity, mechanical properties and
water uptake of the membranes aforementioned.
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3.8. Chemical Stability

In order to examine the chemical stability of QPECH/PAEK-API membranes, the IEC values of
membranes were periodically measured after the membranes were placed in the basic pH environment
for a month. In Figure 8, as the IECs of those membranes were almost invariant, we confirmed that the
QPECH/PAEK-API membranes synthesized in this work displayed a good chemical stability.Membranes 2020, 10, x FOR PEER REVIEW 13 of 15 
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4. Conclusions

In this study, PAEK-API was cross-linked with PECH to prepare a QPECH/PAEK-API alkaline
exchange membrane, with both highly conductive and mechanically robust properties. This work
investigated the effect of the QPECH to PAEK-API molar ratio on membrane properties, such as
anion conductivity, water uptake, length swelling percentage and tensile strength, as the crosslink
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density increases but the number of free imidazolium group decreases with it. A higher conductivity
and water uptake, but lower tensile strength, was observed at the lower QPECH/PAEK-API molar
ratios. The free imidazolium groups in the hydrated membranes would create ionic clusters with
various dimensions, as shown by SAXS analysis, and this directly affects the membrane properties.
As QPECH/PAEK-API1 and QPECH/PAEK-API2 membranes showed quite well-balanced properties
overall, these are expected to be applied in anion exchange fuel cells.
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