

Supplementary Materials: Diffusion Dialysis for Separation of Hydrochloric Acid, Iron and Zinc Ions from Highly Concentrated Pickling Solutions

Rosa Gueccia 1, Alba Ruiz Aguirre 1,2, Serena Randazzo 1, Andrea Cipollina 1,*, Giorgio Micale 1

- ¹ Department of Engineering, University of Palermo, viale delle Scienze Ed.6, 90128 Palermo, Italy; rosa.gueccia@unipa.it (R.G.); alba.ruizaguirre@unipa.it (A.R.A.); serena.randazzo@unipa.it (S.R.); giorgiod.maria.micale@unipa.it (G.M.)
- ² CIEMAT PSA, Ctra. De Senés, 04200 Tabernas, Spain
- * Correspondence: andrea.cipollina@unipa.it

1 Membrane Properties

The properties of the Fumasep membranes (type FAD-PET-75, by Fumatech GmbH, https://www.fumatech.com/EN/Onlineshop/Products%2bof%2bHydrocarbon%2bpolymers/index.html) are presented in Table S1.

Table S1. Properties of Fumasep FAD type anion exchange membrane.

Item	Unit	Specifications
thickness (dry)	μm	70-80
electric resistance a)	Ω cm 2	<1
selectivity b)	%	>90
stability	рН	<9
ion exchange capacity	meq/g	>1.5
specific conductance c)	mS/cm	> 13
weight per unit area	mg/cm ²	9-12
proton (H+) transfer rate d)	mmol/min/cm ²	>1500
Young's modulus ^{e)}	MPa	>1000
tensile strength ^{e)}	MPa	>40
elongation at break ^{e)}	%	>15
bubble point test in water at T = $25 ^{\circ}$ C	bar	>3

^{a)} in Cl⁻ form in 0.5 M NaCl at T = 25°C, measured in standard measuring cell (throughplane)

b) determined from membrane potential measurement in a concentration cell 0.1/0.5 M KCl at T = 25°C

c) determined in Cl- form in 0.5 NaCl at T =30°C

 $^{^{}m d)}$ determined from pH potential measurement in a concentration cell 0.5 M HCl/0.5 M KCl at T = 25 $^{\circ}$ C

 $^{^{\}rm e)}$ determined by stress-strain measurement at T = 25°C and 50 % r.h., according to DIN EN 527-1

2. Equilibrium Species Dissociation

Dissociation reactions equilibria for the HCl+ ZnCl₂ and HCl+ FeCl₂ systems are reported in Table S2 where also the equilibrium dissociation constants are shown (source: PHREEQC software, https://www.usgs.gov/software/phreeqc-version-3).

Table S2. Dissociation reactions for the HCl+ ZnCl₂ and HCl+ FeCl₂ systems and relative equilibrium constants (source: PHREEQC software).

Dissociation reaction	$-\log K_{eq}$	Equilibrium Constant K_{eq}
$ZnCl^+ \leftrightarrow Zn^{2+} + Cl^-$	0.43	$k_1 = 0.37$
$ZnCl_2 \leftrightarrow Zn^{2+} + 2Cl^-$	0.45	$k_2 = 0.35$
$ZnCl_3^- \leftrightarrow Zn^{2+} + 3Cl^-$	0.5	$k_3 = 0.32$
$ZnCl_4^{2-} \leftrightarrow Zn^{2+} + 4Cl^-$	0.2	$k_4 = 0.63$
$FeCl^+ \leftrightarrow Fe^{2+} + Cl^-$	0.43	$k_1 = 0.37$

Different species concentration for the $HCl+ZnCl_2$ system were assessed from Equations (S1) to (S7):

$$[ZnCl^{+}] = \frac{[Zn^{2+}][Cl^{-}]}{k_{1}} \frac{\Upsilon_{Zn^{2+}} \Upsilon_{Cl^{-}}}{\Upsilon_{ZnCl^{+}}}$$
(S1)

$$[ZnCl_2] = \frac{[Zn^{2+}][Cl^-]^2}{k_2} \frac{\Upsilon_{Zn^{2+}} \Upsilon_{Cl^-}^2}{\Upsilon_{ZnCl_2}}$$
 (S2)

$$[ZnCl_3^-] = \frac{[Zn^{2+}][Cl^-]^3}{k_3} \frac{\Upsilon_{Zn^{2+}} \Upsilon_{Cl^-}^3}{\Upsilon_{ZnCl_2^-}}$$
(S3)

$$[ZnCl_4^{2-}] = \frac{[Zn^{2+}][Cl^{-}]^4}{k_4} \frac{\Upsilon_{Zn^{2+}} \Upsilon_{Cl^{-}}^4}{\Upsilon_{ZnCl_4^{2-}}}$$
(S4)

$$[Zn]_{TOT} = [ZnCl^{+}] + [ZnCl_{2}] + [ZnCl_{3}^{-}] + [ZnCl_{4}^{2-}] + [Zn^{2+}]$$
(S5)

$$[Zn^{2+}] = \frac{[Zn]_{TOT}}{1 + [Cl^{-}]\Upsilon_{Zn^{2+}}\Upsilon_{Cl^{-}}(\frac{1}{k_{1}}\frac{1}{\Upsilon_{ZnCl^{+}}} + \frac{[Cl^{-}]}{k_{2}}\frac{\Upsilon_{Cl^{-}}}{\Upsilon_{ZnCl_{2}}} + \frac{[Cl^{-}]^{2}}{k_{3}}\frac{\Upsilon_{Cl^{-}}^{2}}{\Upsilon_{ZnCl_{2}}} + \frac{[Cl^{-}]^{3}}{k_{4}}\frac{\Upsilon_{Cl^{-}}^{3}}{\Upsilon_{ZnCl_{2}}})}$$
(S6)

$$[Cl^{-}] = [H^{+}] + 2[Zn^{2+}] + [ZnCl^{+}] - [ZnCl_{3}^{-}] - 2[ZnCl_{4}^{-}]$$
 (S7)

For the HCl+FeCl₂ system, Eqs. from S8 to S11 were considered for the dissociation species concentrations evaluation:

$$[FeCl^{+}] = \frac{[Fe^{2+}][Cl^{-}]}{k_{1}} \frac{\Upsilon_{Fe^{2+}} \Upsilon_{Cl^{-}}}{\Upsilon_{FeCl^{+}}}$$
(S8)

$$[Fe]_{TOT} = [FeCl^+] + [Fe^{2+}]$$
 (S9)

$$[Fe^{2+}] = \frac{[Fe]_{TOT}}{1 + \frac{[Cl^{-}]}{k_1} \frac{Y_{Fe^{2+}} Y_{Cl^{-}}}{Y_{FeCl^{+}}}}$$
(S10)

$$[Cl^{-}] = [H^{+}] + 2[Fe^{2+}] + [FeCl^{+}]$$
 (S11)

The ions activity coefficients reported in Eqs. S1-S11 were evaluated from Davies equation[1] which gives the mean activity coefficient of an electrolyte that dissociates into ions having charges z_1 as a function of ionic strength I:

$$-\log \Upsilon_{\pm} = 0.5042z_1^2 \left(\frac{\sqrt{I}}{1 + \sqrt{I}} - 0.3I \right)$$
 (S12)

Specifically, for the HCl+ZnCl₂ system Eqs. S13 and S14 were considered, while for the HCl+FeCl₂ system Eqs. S15 and S16 are reported:

$$\Upsilon_{\pm} \simeq \Upsilon_{Cl^{-}} \simeq \Upsilon_{ZnCl^{+}} \simeq \Upsilon_{ZnCl_{3}^{-}}$$
 (S13)

$$\Upsilon_{2^{\pm}} \simeq \Upsilon_{Zn^{2+}} \simeq \Upsilon_{ZnCl_4^{2-}} \tag{S14}$$

$$\Upsilon_{+} \simeq \Upsilon_{Cl^{-}} \simeq \Upsilon_{FeCl^{+}}$$
 (S15)

$$\Upsilon_{2^{\pm}} \simeq \Upsilon_{Fe^{2+}}$$
 (S16)

The dissociation % species is defined as the ratio between the concentration of the different species in solution and the total metal concentration.

$$dissociation \%_{species} = \frac{[species]}{[Metal]_{TOT}} \times 100$$
 (S17)

It is thus possible to evaluate the dissociation factor by multiply the different dissociation % species by the number of discrete ions obtained from the dissociation reactions of ZnCl₂ or FeCl₂ that produce the particular species:

$$ZnCl_{2\,dissociation\,factor} = \frac{3[Zn^{2+}] + 2[ZnCl^+] + [ZnCl_2] + [ZnCl_3^-] + [ZnCl_4^{2-}]}{[Zn]_{TOT}} \tag{S18}$$

$$FeCl_{2dissociation\ factor} = \frac{3[Fe^{2+}] + 2[FeCl^{+}]}{[Fe]_{TOT}}$$
 (S19)

References

1. Davies, C. W. Ion Association; Butterworths: London, 1962.